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Abstract22

Spatial constraint systems (scs) are semantic structures for reasoning about spatial and epistemic23

information in concurrent systems. We develop the theory of scs to reason about the distributed24

information of potentially infinite groups. We characterize the notion of distributed information of a25

group of agents as the infimum of the set of join-preserving functions that represent the spaces of26

the agents in the group. We provide an alternative characterization of this notion as the greatest27

family of join-preserving functions that satisfy certain basic properties. We show compositionality28

results for these characterizations and conditions under which information that can be obtained by29

an infinite group can also also be obtained by a finite group. Finally, we provide algorithms that30

compute the distributive group information of finite groups.31
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1 Introduction36

In current distributed systems such as social networks, actors behave more as members of a37

certain group than as isolated individuals. Information, opinions, and beliefs of a particular38

actor are frequently the result of an evolving process of interchanges with other actors in a39

group. This suggests a reified notion of group as a single actor operating within the context40

of the collective information of its members. It also conveys two notions of information, one41

spatial and the other epistemic. In the former, information is localized in compartments42

associated with a user or group. In the latter, it refers to something known or believed by a43

single agent or collectively by a group.44
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2 Reasoning about Distributed Knowledge

In this paper we pursue the development of a principled account of a reified notion of45

group by taking inspiration from the epistemic notion of distributed knowledge [12]. A group46

has its information distributed among its member agents. We thus develop a theory about47

what exactly is the information available to agents as a group when considering all that is48

distributed amongst its members.49

In our account a group acts itself as an agent carrying the collective information of its50

members. We can interrogate, for instance, whether there is a potential contradiction or51

unwanted distributed information that a group might be involved in among its members52

or by integrating a certain agent. This is a fundamental question since it may predict or53

prevent potentially dangerous evolutions of the system.54

Furthermore, in many real life multi-agent systems, the agents are unknown in advance.55

New agents can subscribe to the system in unpredictable ways. Thus, there is usually no56

a-priori bound on the number of agents in the system. It is then often convenient to model57

the group of agents as an infinite set. In fact, in models from economics and epistemic58

logic [14, 13], groups of agents have been represented as infinite, even uncountable, sets. In59

accordance with this fact, in this paper we consider that groups of agents can also be infinite.60

This raises interesting issues about the distributed information of such groups. In particular,61

that of group compactness: information that when obtained by an infinite group can also be62

obtained by one of its finite subgroups. We will provide conditions for this to hold.63

Context. Constraint systems (cs)1 are algebraic structures for the semantics of process64

calculi from concurrent constraint programming (ccp) [18]. In this paper we shall study cs65

as semantic structures for distributed information of a group of agents.66

A cs can be formalized as a complete lattice (Con,v). The elements of Con represent67

partial information and we shall think of them as being assertions. They are traditionally68

referred to as constraints since they naturally express partial information (e.g., x > 42). The69

order v corresponds to entailment between constraints, c v d, often written d w c, means c70

can be derived from d, or that d represents as much information as c. The join t, the bottom71

true and the top false of the lattice correspond to conjunction, the empty information and72

the join of all (possibly inconsistent) information.73

The notion of computational space and the epistemic notion of belief in the spatial ccp74

(sccp) process calculi [15] is represented as a family of join-preserving maps si : Con→ Con75

called space functions. A cs equipped with space functions is called a spatial constraint76

system (scs). From a computational point of view si(c) can be interpreted as an assertion77

specifying that c resides within the space of agent i. From an epistemic point of view, si(c)78

specifies that i considers c to be true. An alternative epistemic view is that i interprets c as79

si(c). All these interpretations convey the idea of c being local or subjective to agent i.80

This work. In the spatial ccp process calculus sccp [15], scs are used to specify the81

spatial distribution of information in configurations 〈P, c〉 where P is a process and c is a82

constraint, called the store, representing the current partial information. E.g., a reduction83

〈 P, s1(a) t s2(b) 〉 −→ 〈 Q, s1(a) t s2(b t c) 〉 means that P , with a in the space of agent 184

and b in the space of agent 2, can evolve to Q while adding c to the space of agent 2.85

Given the above reduction, assume that d is some piece of information resulting from the86

combination (join) of the three constraints above, i.e., d = atbtc, but strictly above the join87

of any two of them. We are then in the situation where neither agent has d in their spaces,88

but as a group they could potentially have d by combining their information. Intuitively, d is89

distributed in the spaces of the group I = {1, 2}. Being able to predict the information that90

1 For simplicity we use cs for both constraint system and its plural form.
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agents 1 and 2 may derive as group is a relevant issue in multi-agent concurrent systems,91

particularly if d represents unwanted or conflicting information (e.g., d = false).92

In this work we introduce the theory of group space functions ∆I : Con→ Con to reason93

about information distributed among the members of a potentially infinite group I. We shall94

refer to ∆I as the distributed space of group I. In our theory c w ∆I(e) holds exactly when95

we can derive from c that e is distributed among the agents in I. E.g., for d above, we should96

have s1(a) t s2(b t c) w ∆{1,2}(d) meaning that from the information s1(a) t s2(b t c) we97

can derive that d is distributed among the group I = {1, 2}. Furthermore, ∆I(e) w ∆J(e)98

holds whenever I ⊆ J since if e is distributed among a group I, it should also be distributed99

in a group that includes the agents of I.100

Distributed information of infinite sets can be used to reason about multi-agent compu-101

tations with unboundedly many agents. For example, a computation in sccp is a possibly102

infinite reduction sequence γ of the form 〈 P0, c0 〉 −→ 〈 P1, c1 〉 −→ · · · with c0 v c1 v · · · .103

The result of γ is
⊔

n≥0 cn, the join of all the stores in the computation. In sccp all fair104

computations from a configuration have the same result [15]. Thus, the observable behaviour105

of P with initial store c, written O(P, c), is defined as the result of any fair computation106

starting from 〈P, c〉. Now consider a setting where in addition to their sccp capabilities in [15],107

processes can also create new agents. Hence, unboundedly many agents, say agents 1, 2, . . .,108

may be created during an infinite computation. In this case, O(P, c) w ∆N(false), where N109

is the set of natural numbers, would imply that some (finite or infinite) set of agents in any110

fair computation from 〈P, c〉 may reach contradictory local information among them. Notice111

that from the above-mentioned properties of distributed spaces, the existence of a finite set112

of agents H ⊆ N such that O(P, c) w ∆H(false) implies O(P, c) w ∆N(false). The converse113

of this implication will be called group compactness and we will provide meaningful sufficient114

conditions for it to hold.115

Our main contributions are listed below.116

1. We characterize the distributed space ∆I as a space function resulting from the infimum117

of the set of join-preserving functions that represent the spaces of the agents of a possibly118

infinite group I.119

2. We provide an alternative characterization of a distributed space as the greatest join120

preserving function that satisfies certain basic properties.121

3. We show that distributed spaces have an inherent compositional nature: The information122

of a group is determined by that of its subgroups.123

4. We provide a group compactness result for groups: Given an infinite group I, meaningful124

conditions under which c w ∆I(e) implies c w ∆J(e) for some finite group J ⊆ I.125

5. For finite scs we shall provide algorithms to compute ∆I that exploit the above-mentioned126

compositional nature of distributed spaces.127

All in all, in this paper we put forward an algebraic theory for group reasoning in the context128

of ccp. The theory and algorithms here developed can be used in the semantics of the129

spatial ccp process calculus to reason about or prevent potential unwanted evolutions of ccp130

processes. One could imagine the incorporation of group reasoning in a variety of process131

algebraic settings and indeed we expect that such formalisms will appear in due course.132

2 Background133

We presuppose basic knowledge of domain and order theory [3, 1, 6] and use the following134

notions. Let C be a poset (Con,v), and let S ⊆ Con. We use
⊔
S to denote the least135

upper bound (or supremum or join) of the elements in S, and
d
S is the greatest lower136
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bound (glb) (infimum or meet) of the elements in S. An element e ∈ S is the greatest137

element of S iff for every element e′ ∈ S, e′ v e. If such e exists, we denote it by max S.138

As usual, if S = {c, d}, c t d and c u d represent
⊔
S and

d
S, respectively. If S = ∅, we139

denote
⊔
S = true and

d
S = false. We say that C is a complete lattice iff each subset140

of Con has a supremum in Con. The poset C is distributive iff for every a, b, c ∈ Con,141

a t (b u c) = (a t b) u (a t c). A non-empty set S ⊆ Con is directed iff for every pair of142

elements x, y ∈ S, there exists z ∈ S such that x v z and y v z, or iff every finite subset143

of S has an upper bound in S. Also c ∈ Con is compact iff for any directed subset D of144

Con, c v
⊔
D implies c v d for some d ∈ D. A self-map on Con is a function f from Con to145

Con. Let (Con,v) be a complete lattice. The self-map f on Con preserves the join of a set146

S ⊆ Con iff f(
⊔
S) =

⊔
{f(c) | c ∈ S}. A self-map that preserves the join of finite sets is147

called join-homomorphism. A self-map f on Con is monotonic if a v b implies f(a) v f(b).148

We say that f distributes over joins (or that f preserves joins) iff it preserves the join of149

arbitrary sets. A self-map f on Con is continuous iff it preserves the join of any directed set.150

3 Spatial Constraint Systems151

Constraint systems [18] are semantic structures to specify partial information. They can be152

formalized as complete lattices [2].153

I Definition 1 (Constraint Systems [2]). A constraint system (cs) C is a complete lattice154

(Con,v). The elements of Con are called constraints. The symbols t, true and false will be155

used to denote the least upper bound (lub) operation, the bottom, and the top element of C.156

The elements of the lattice, the constraints, represent (partial) information. A constraint157

c can be viewed as an assertion. The lattice order v is meant to capture entailment of158

information: c v d, alternatively written d w c, means that the assertion d represents at159

least as much information as c. We think of d w c as saying that d entails c or that c can160

be derived from d. The operator t represents join of information; c t d can be seen as an161

assertion stating that both c and d hold. We can think of t as representing conjunction162

of assertions. The top element represents the join of all, possibly inconsistent, information,163

hence it is referred to as false. The bottom element true represents empty information. We164

say that c is consistent if c 6= false, otherwise we say that c is inconsistent. Similarly, we say165

that c is consistent/inconsistent with d if c t d is consistent/inconsistent.166

Constraint Frames. One can define a general form of implication by adapting the167

corresponding notion from Heyting Algebras to cs. A Heyting implication c → d in our168

setting corresponds to the weakest constraint one needs to join c with to derive d.169

I Definition 2 (Constraint Frames,[7]). A constraint system (Con,v) is said to be a constraint170

frame iff its joins distribute over arbitrary meets. More precisely, c t
d
S =

d
{c t e | e ∈ S}171

for every c ∈ Con and S ⊆ Con. Define c→ d as
d
{e ∈ Con | c t e w d}.172

The following properties of Heyting implication correspond to standard logical properties173

(with →, t, and w interpreted as implication, conjunction, and entailment).174

I Proposition 3 ([7]). Let (Con,v) be a constraint frame. For every c, d, e ∈ Con the175

following holds: (1) c t (c→ d) = c t d, (2) (c→ d) v d, (3) c→ d = true iff c w d.176

Spatial Constraint Systems. The authors of [15] extended the notion of cs to account for177

distributed and multi-agent scenarios with a finite number of agents, each having their own178

space for local information and their computations. The extended structures are called179

spatial cs (scs). Here we adapt scs to reason about possibly infinite groups of agents.180
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A group G is a set of agents. Each i ∈ G has a space function si : Con→ Con satisfying181

some structural conditions. Recall that constraints can be viewed as assertions. Thus given182

c ∈ Con, we can then think of the constraint si(c) as an assertion stating that c is a piece of183

information residing within a space of agent i. Some alternative epistemic interpretations of184

si(c) is that it is an assertion stating that agent i believes c, that c holds within the space of185

agent i, or that agent i interprets c as si(c). All these interpretations convey the idea that c186

is local or subjective to agent i.187

In [15] scs are used to specify the spatial distribution of information in configurations188

〈P, c〉 where P is a process and c is a constraint. E.g., a reduction 〈 P, si(c) t sj(d) 〉 −→189

〈 Q, si(c) t sj(d t e) 〉 means that P with c in the space of agent i and d in the space of190

agent j can evolve to Q while adding e to the space of agent j.191

We now introduce the notion of space function.192

I Definition 4 (Space Functions). A space function over a cs (Con,v) is a continuous self-193

map f : Con→ Con s.t. for every c, d ∈ Con (S.1) f(true) = true, (S.2) f(ctd) = f(c)tf(d).194

We shall use S(C) to denote the set of all space functions over C = (Con,v).195

The assertion f(c) can be viewed as saying that c is in the space represented by f . Property196

S.1 states that having an empty local space amounts to nothing. Property S.2 allows us to197

join and distribute the information in the space represented by f .198

In [15] space functions were not required to be continuous. Nevertheless, we will argue199

later, in Remark 18, that continuity comes naturally in the intended phenomena we wish200

to capture: modelling information of possibly infinite groups. In fact, in [15] scs could only201

have finitely many agents.202

In this work we also extend scs to allow arbitrary, possibly infinite, sets of agents. The203

continuity requirement in addition to S.1 and S.2 makes space functions to preserve arbitrary204

joins.205

I Proposition 5 ([7]). Let f be a space function over a cs (Con,v). Then (1) f is monotonic206

and (2) f preserves arbitrary joins.207

A spatial cs is a cs with a possibly infinite group of agents each having a space function.208

I Definition 6 (Spatial Constraint Systems). A spatial cs (scs) is a cs C = (Con,v) equipped209

with a possibly infinite tuple s = (si)i∈G of space functions from S(C).210

We shall use (Con,v, (si)i∈G) to denote an scs with a tuple (si)i∈G. We refer to G and211

s as the group of agents and space tuple of C and to each si as the space function in C of212

agent i. Subsets of G are also referred to as groups of agents (or sub-groups of G).213

Let us illustrate a simple scs.214

I Example 7. The scs (Con,v, (si)i∈{1,2}) in Fig.1 is given by the complete lattice M2 and215

two agents. We have Con = {p ∨ ¬p, p,¬p, p ∧ ¬p} and c v d iff c is a logical consequence216

of d. The top element false is p ∧ ¬p, the bottom element true is p ∨ ¬p, and p and ¬p217

are incomparable with each other. The set of agents is {1, 2} with space functions s1 and218

s2: For agent 1, s1(p) = ¬p, s1(¬p) = p, s1(false) = false, s1(true) = true, and for agent 2,219

s2(p) = false = s2 (false), s2(¬p) = ¬p, s2(true) = true. The intuition is that the agent 2220

sees no difference between p and false while agent 1 interprets ¬p as p and vice versa.221

More involved examples of scs include meaningful families of structures from logic and222

economics such as modal algebras with continuous modal operators, Kripke structures and223

Aumann structures (see [15]). In Ex.19 we describe the Aumann structure example from224

[15]. We shall also illustrate scs with infinite groups in the next section.225
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p ∨ ¬p

p ¬p

p ∧ ¬p

s1

s1

s1

s1 s2

s2

s2

s2

Figure 1 Cs given by lattice M2 ordered by implication and space functions s1 and s2.

4 Distributed Information226

In this section we characterize the notion of collective information of a group of agents. We227

begin with some intuition. Roughly speaking, the distributed (or collective) information of a228

group I is the join of each piece of information that resides in the space of some i ∈ I. The229

distributed information of I w.r.t. c is the distributive information of I that can be derived230

from c. We are interested in formalizing whether a given e can be derived from the collective231

information of the group I w.r.t. c.232

The following examples, which we will use throughout the paper, illustrate the above233

intuition.234

I Example 8. Consider a scs (Con,v, (si)i∈G) where G = N and (Con,v) is a constraint235

frame. Let c def= s1(a)t s2(a→ b)t s3(b→ e). The spatial constraint c specifies the situation236

where a, a→ b and b→ e are in the spaces of agent 1, 2 and 3, respectively. Neither agent237

holds e in their space in c. Nevertheless, the information e can be derived from the collective238

information of the three agents w.r.t. c, since from Prop.3 we have at (a→ b)t (b→ e) w e.239

Let us now consider an example with infinitely many agents. Let c′ def=
⊔

i∈N si(ai) for some240

increasing chain a0 v a1 v . . . . Take e′ s.t. e′ v
⊔

i∈N ai. Notice that unless e′ is compact241

(see Section 2), it may be the case that no agent i ∈ N holds e′ in their space; e.g., if e′ = ai242

for any i ∈ N. Yet, from our assumption, e′ can be derived from the collective information243

w.r.t. c′ of all the agents in N, i.e.,
⊔

i∈N ai.244

The above example may suggest that the distributed information can be obtained by245

joining individual local information derived from c. Individual information of an agent i can246

be characterized as the i-projection of c defined thus:247

I Definition 9 (Agent and Join Projections). Let C = (Con,v, (si)i∈G) be a scs. Given i ∈ G,248

the i-agent projection of c ∈ Con is defined as πi(c)
def=

⊔
{e | c w si(e)}. We say that e is249

i-agent derivable from c iff πi(c) w e. Given I ⊆ G the I-join projection of a group I of c is250

defined as πI(c) def=
⊔
{πi(c) | i ∈ I}. We say that e is I-join derivable from c iff πI(c) w e.251

The i-projection of an agent i of c naturally represents the join of all the information of252

agent i in c. The I-join projection of group I joins individual i-projections of c for i ∈ I. This253

projection can be used as a sound mechanism for reasoning about distributed-information:254

If e is I-join derivable from c then it follows from the distributed-information of I w.r.t. c.255

Consider the following example.256
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I Example 10. Let c be as in Ex.8. We have π1(c) w a, π2(c) w (a→ b), π3(c) w (b→ e).257

Indeed e is I-join derivable from c since π{1,2,3}(c) = π1(c) t π2(c) t π3(c) w e. Similarly258

for c′ as in Ex.8 we conclude that e′ is I-join derivable from c′ since πN(c′) =
⊔

i∈N πi(c) w259 ⊔
i∈N ai w e′.260

Nevertheless, I-join projections do not provide a complete mechanism for reasoning about261

distributed information as illustrated below.262

I Example 11. Let d def= s1(b) u s2(b). Recall that we think of t and u as conjunction and263

disjunction of assertions: d specifies that b is present in the space of agent 1 or in the space264

of agent 2 though not exactly in which one. Thus from d we should able to conclude that b265

belongs to the space of some agent in {1, 2}. Nevertheless, in general b is not I-join derivable266

from d since from π{1,2}(d) = π1(d)tπ2(d) we cannot, in general, derive b. To see this consider267

the scs in Fig.2a and take b = ¬p. We have π{1,2}(d) = π1(d)tπ2(d) = truet true = true 6w b.268

One can generalize the example to infinitely many agents: Consider the scs in Ex.8. Let269

d′
def=

d
i∈N si(b′). We should be able to conclude from d′ that b′ is in the space of some agent270

in N but, in general, b′ is not N-join derivable from d′.271

4.1 Distributed Spaces272

In the previous section we illustrated that the I-join projection of c, πI(c), the join of273

individual projections, may not project all distributed information of a group I. To solve274

this problem we shall develop the notion of I-group projection of c, written as ΠI(c). To do275

this we shall first define a space function ∆I called the distributed space of group I. The276

function ∆I can be thought of as a virtual space including all the information that can be in277

the space of a member of I. We shall then define an I-projection ΠI in terms of ∆I much278

like πi is defined in terms of si.279

Recall that S(C) denotes the set of all space functions over a cs C. For notational280

convenience, we shall use (fI)I⊆G to denote the tuple (fI)I∈P(G) of elements of S(C).281

Set of Space Functions. We begin by introducing a new partial order induced by C. The282

set of space functions ordered point-wise.283

I Definition 12 (Space Functions Order). Let C = (Con,v, (si)i∈G) be a spatial cs. Given284

f, g ∈ S(C), define f vs g iff f(c) v g(c) for every c ∈ Con. We shall use Cs to denote the285

partial order (S(C),vs); the set of all space functions ordered by vs.286

A very important fact for the design of our structure is that the set of space functions287

S(C) can be made into a complete lattice.288

I Lemma 13. Let C = (Con,v, (si)i∈G) be a spatial cs. Then Cs is a complete lattice.289

4.2 Distributed Spaces as Maximum Spaces.290

Let us consider the lattice of space functions Cs = (S(C),vs). Suppose that f and g are291

space functions in Cs with f vs g. Intuitively, every piece of information c in the space292

represented by g is also in the space represented by f since f(c) v g(c) for every c ∈ Con.293

This can be interpreted as saying that the space represented by g is included in the space294

represented by f ; in other words the bigger the space, the smaller the function that represents295

it in the lattice Cs.296

Following the above intuition, the order relation vs of Cs represents (reverse) space297

inclusion and the join and meet operations in Cs represent intersection and union of spaces.298



8 Reasoning about Distributed Knowledge

The biggest and the smallest spaces are represented by the bottom and the top elements of299

the lattice Cs, here called λ⊥ and λ> and defined as follows.300

I Definition 14 (Top and Bottom Spaces). For every c ∈ Con, define λ⊥(c) def= true,301

λ>(c) def= true if c = true and λ>(c) def= false if c 6= true.302

The distributed space ∆I of a group I can be viewed as the function that represents the303

smallest space that includes all the local information of the agents in I. From the above304

intuition, ∆I should be the greatest space function below the space functions of the agents in305

I. The existence of such a function follows from completeness of (S(C),vs) (Lemma 13).306

I Definition 15 (Distributed Space Functions). Let C be a scs (Con,v, (si)i∈G). The dis-307

tributed spaces of C is given by ∆ = (∆I)I⊆G where308

∆I
def= max{f ∈ S(C) | f vs si for every i ∈ I}.309

We shall say that e is distributed among I ⊆ G w.r.t. c iff c w ∆I(e). We shall refer to each310

∆I as the (distributed) space of the group I.311

It follows from Lemma 13 that ∆I =
d
{si | i ∈ I} (where

d
is the meet in the complete312

lattice (S(C),vs)). Fig.2b illustrates a scs and its distributed space ∆{1,2}.313

Compositionality. Distributed spaces have pleasant compositional properties. They314

capture the intuition that the distributed information of a group I can be obtained from the315

the distributive information of its subgroups.316

I Theorem 16. Let (∆I)I⊆G be the distributed spaces of a scs (Con,v, (si)i∈G). Suppose that317

K,J ⊆ I ⊆ G. (1) ∆I = λ> if I = ∅, (2) ∆I = si if I = {i}, (3) ∆J (a)t∆K(b) w ∆I(a t b),318

and (4) ∆J(a) t∆K(a→ c) w ∆I(c) if (Con,v) is a constraint frame.319

Recall that λ> corresponds to the empty space (see Def.14). The first property realizes the320

intuition that the empty subgroup ∅ does not have any information whatsoever distributed321

w.r.t. a consistent c: for if c w ∆∅(e) and c 6= false then e = true. Intuitively, the second322

property says that the function ∆I for the group of one agent must be the agent’s space323

function. The third property states that a group can join the information of its subgroups.324

The last property uses constraint implication, hence the constraint frame condition, to express325

that by joining the information a and a→ c of their subgroups, the group I can obtain c.326

Let us illustrate how to derive information of a group from smaller ones using Thm.16.327

I Example 17. Let c = s1(a) t s2(a→ b) t s3(b→ e) as in Ex.8. We want to prove that e328

is distributed among I = {1, 2, 3} w.r.t. c, i.e., c w ∆{1,2,3}(e). Using Properties 2 and 4329

in Thm.16 we obtain c w s1(a) t s2(a→ b) = ∆{1}(a) t∆{2}(a→ b) w ∆{1,2}(b), and then330

c w ∆{1,2}(b) t s3(b→ e) = ∆{1,2}(b) t∆{3}(b→ e) w ∆{1,2,3}(e) as wanted.331

I Remark 18 (Continuity). The example with infinitely many agents in Ex.8 illustrates well332

why we require our spaces to be continuous in the presence of possibly infinite groups. Clearly333

c′ =
⊔

i∈N si(ai) w
⊔

i∈N ∆N(ai). By continuity,
⊔

i∈N ∆N(ai) = ∆N(
⊔

i∈N ai) which indeed334

captures the idea that each ai is in the distributed space ∆N.335

In Thm.16 we listed some useful properties about (∆I)I⊆G. In the next section we shall336

see that (∆I)I⊆G is the greatest solution of three basic properties.337

We conclude this subsection with an important family of scs’s from mathematical eco-338

nomics: Aumann structures. We illustrate that the notion of distributed knowledge in these339

structures is an instance of a distributed space.340
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p ∨ ¬p

p ¬p

p ∧ ¬p
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s1

s1

s1 s2
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π1

π1

π1

π1

π2

π2

π2

π2

(a) Projections π1 and π2 given s1 and s2.

p ∨ ¬p

p ¬p

p ∧ ¬p

s1

s1

s1

s1 s2

s2

s2

s2

∆I

∆I

∆I

∆I

(b) ∆I with I = {1, 2} given s1 and s2.

Figure 2 Projections (a) and Distributed Space function (b) over lattice M2.

I Example 19. Aumann Constraint Systems. Aumann structures [13] are an event-based341

approach to modelling knowledge. An Aumann structure is a tuple A = (S,P1, . . . ,Pn)342

where S is a set of states and each Pi is a partition on S for agent i. The partitions are343

called information sets. If two states t and u are in the same information set for agent344

i, it means that in state t agent i considers state u possible, and vice versa. An event in345

an Aumann structure is any subset of S. Event e holds at state t if t ∈ e. The set Pi(s)346

denotes the information set of Pi containing s. The event of agent i knowing e is defined as347

Ki(e) = {s ∈ S | Pi(s) ⊆ e}, and the distributed knowledge of an event e among the agents348

in a group I is defined as DI(e) = {s ∈ S |
⋂

i∈I Pi(s) ⊆ e}.349

An Aumann structure can be seen as a spatial constraint system C(A) with events as350

constraints, i.e., Con = {e | e is an event in A}, and for every e1, e2 ∈ Con, e1 v e2 iff351

e2 ⊆ e1. The operators join (t) and meet (u) are intersection (∩) and union (∪) of events,352

respectively; true = S and false = ∅. The space functions are the knowledge operators,353

i.e., si(c) = Ki(c). From these definitions and since meets are unions one can easily verify354

that ∆I(c) = DI(c) which shows the correspondence between distributed information and355

distributed knowledge.356

4.3 Distributed Spaces as Group Distributions Candidates.357

We now wish to single out a few fundamental properties on tuples of self-maps that can be358

used to characterize distributed spaces.359

I Definition 20 (Distribution Candidates). Let C be a scs (Con,v, (si)i∈G). A tuple δ =360

(δI)I⊆G of self-maps on Con is a group distribution candidate (gdc) of C if for each I, J ⊆ G:361

(D.1) δI is a space function in C, (D.2) δI = si if I = {i}, (D.3) δI ws δJ if I ⊆ J .362

Property D.1 requires each δI to be a space function. This is trivially met for δI = ∆I .363

Property D.2 says that the function δI for a group of one agent must be the agent’s space364

function. Clearly, δ{i} = ∆{i} satisfies D.2; indeed the distributed space of a single agent365

is their own space. Finally, Property D.3 states that δI(c) w δJ(c), if I ⊆ J . This is366

also trivially satisfied if we take δI = ∆I and δJ = ∆J . Indeed if a subgroup I has some367

distributed information c then any subgroup J that includes I should also have c. This also368

realizes our intuition above: The bigger the group, the bigger the space and thus the smaller369

the space function that represents it.370
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Properties D1-D3, however, do not determine ∆ uniquely. In fact, there could be infinitely-371

many tuples of space functions that satisfy them. For example, if we were to chose δ∅ = λ>,372

δ{i} = si for every i ∈ G, and δI = λ⊥ whenever |I| > 1 then D1, D2 and D3 would373

be trivially met. But these space functions would not capture our intended meaning of374

distributed spaces: E.g., we would have true w δI (e) for every e thus implying that any e375

could be distributed in the empty information true amongst the agents in I 6= ∅.376

Nevertheless, the following theorem states that (∆I)I⊆G could have been equivalently377

defined as the greatest space functions satisfying Properties D1-D3.378

I Theorem 21 (Max gdc). Let (∆I)I⊆G be the distributed spaces of C = (Con,v, (si)i∈G).379

Then (∆I)I⊆G is a gdc of C and if (δI)I⊆G is a gdc of C then δI vs ∆I for each I ⊆ G.380

Let us illustrate the use of Properties D1-D3 in Thm.21 with the following example.381

I Example 22. Let c = s1(a)ts2(a→ b)ts3(b→ e) as in Ex.8. We want to prove c w ∆I(e)382

for I = {1, 2, 3}. From D.2 we have c = ∆{1}(a) t∆{2}(a→ b) t∆{3}(b→ e). We can then383

use D.3 to obtain c w ∆I(a) t∆I(a→ b) t∆I(b→ e). Finally, by D.1 and Proposition 3 we384

infer c w ∆I(a t (a→ b) t (b→ e)) w ∆I(e), thus c w ∆I(e) as wanted. Now consider our385

counter-example in Ex.11 with d = s1(b) u s2(b). We wish to prove d w ∆I(b) for I = {1, 2}.386

I.e., that b can be derived from d as being in a space of a member of {1,2}. Using D.1 and387

D.3 we obtain d w d′ = ∆{1}(b) u∆{2}(b) w ∆{1,2}(b) u∆{1,2}(b) = ∆{1,2}(b) as wanted.388

The characterization of distributed spaces by Thm.21 provide us with a convenient proof389

method: E.g. to prove that a tuple F = (fI)I⊆G equals (∆I)I⊆G, it suffices to show that the390

tuple is a gdc and that fI ws ∆I for all I ⊆ G. We use this mechanism in Section 5.391

4.4 Group Projections392

As promised in Section 4.1 we now give a definition of Group Projection. The function ΠI(c)393

extracts exactly all information that the group I may have distributed w.r.t. c.394

I Definition 23 (Group Projection). Let (∆I)I⊆G be the distributed spaces of an scs C =395

(Con,v, (si)i∈G). Given the set I ⊆ G, the I-group projection of c ∈ Con is defined as396

ΠI(c) def=
⊔
{e | c w ∆I(e)}. We say that e is I-group derivable from c iff ΠI(c) w e.397

Much like space functions and agent projections, group projections and distributed spaces398

also form a pleasant correspondence: a Galois connection [3].399

I Proposition 24. Let (∆I)I⊆G be the distributed spaces of C = (Con,v, (si)i∈G). For every400

c, e ∈ Con, (1) c w ∆I(e) iff ΠI(c) w e, (2) ΠI(c) w ΠJ (c) if J ⊆ I, and (3) ΠI(c) w πI(c).401

The first property in Prop.24, a Galois connection, states that we can conclude from402

c that e is in the distributed space of I exactly when e is I-group derivable from c. The403

second says that the bigger the group, the bigger the projection. The last property says that404

whatever is I-join derivable is I-group derivable, although the opposite is not true as shown405

in Ex.11.406

4.5 Group Compactness.407

Suppose that an infinite group of agents I can derive e from c (i.e., c w ∆I(e)). A legitimate408

question is whether there exists a finite sub-group J of agents from I that can also derive e409

from c. The following theorem provides a positive answer to this question provided that e is410

a compact element (see Section 2) and I-join derivable from c.411



M. Guzmán et al. 11

I Theorem 25 (Group Compactness). Let (∆I)I⊆G be the distributed spaces of an scs412

C = (Con,v, (si)i∈G). Suppose that c w ∆I(e). If e is compact and I-join derivable from c413

then there exists a finite set J ⊆ I such that c w ∆J(e).414

We conclude this section with the following example of group compactness.415

I Example 26. Consider the example with infinitely many agents in Ex.8. We have416

c′ =
⊔

i∈N si(ai) for some increasing chain a0 v a1 v . . . and e′ s.t. e′ v
⊔

i∈N ai. Notice417

that c′ w ∆N(e′) and πN(c′) w e′. Hence e′ is N-join derivable from c′. If e′ is compact, by418

Thm.25 there must be a finite subset J ⊆ N such that c′ w ∆J(e′).419

5 Computing Distributed Information420

Let us consider a finite scs C = (Con,v, (si)i∈G) with distributed spaces (∆I)I⊆G. By finite421

scs we mean that Con and G are finite sets. Let us consider the problem of computing ∆I :422

Given a set {si}i∈I of space functions, we wish to find the greatest space function f such423

that f v si for all i ∈ I (see Def.15).424

Because of the finiteness assumption, the above problem can be rephrased in simpler425

terms: Given a finite lattice L and a finite set S of join-homomorphisms on L, find the426

greatest join-homomorphism below all the elements of S. Even in small lattices with four427

elements and two space functions, finding such greatest function may not be immediate, e.g.,428

for S = {s1, s2} and the lattice in Fig.1 the answer is given Fig.2b.429

In this section we shall use the theory developed in previous sections to help us find430

algorithms for this problem. Recall from Def.15 and Lemma 13 that ∆I equals the following431

max{f ∈ S(C) | f v si for all i ∈ I} =
⊔
{f ∈ S(C) | f v si for all i ∈ I} =

l
{si | i ∈ I}432

A naive (meet-based) approach would be to compute ∆I(c) by taking the point-wise meet433

construction σI(c) def=
d
{si(c) | i ∈ I} for each c ∈ Con. But this does not work in general434

since ∆I(c) =
d
{si | i ∈ I}(c) is not necessarily equal to σI(c) =

d
{si(c) | i ∈ I}. In fact435

σI ws ∆I but σI may not even be a space function as shown in Fig.3a.436

A brute force (join-based) solution to computing ∆I(c) can be obtained by generating the437

set {f(c) | f ∈ S(C) and f v si for all i ∈ I} and taking its join. This approach works since438

the join of a set of space functions S can be computed point-wise: (
⊔
S)(c) =

⊔
{f(c)|f ∈ S}.439

However, the number of such functions in S(C) can be at least factorial in the size of Con.440

For constraint frames, which under the finite assumption coincides with distributive lattices,441

the size of S(C) can be non-polynomial in the size of Con.442

I Proposition 27 (Lower Bounds on Number of Space Functions). For every n ≥ 2, there443

exists a cs C = (Con,v) such that |S(C)| ≥ (n− 2)! and n = |Con |. For every n ≥ 1, there444

exists a constraint frame C = (Con,v) such that |S(C)| ≥ nlog2 n and n = |Con |.445

Nevertheless, in the following sections we shall be able to exploit order theoretical results446

and properties of distributed spaces to compute ∆I(c) for every c ∈ Con in polynomial447

time in the size of Con. The first approach uses the inherent compositional nature of ∆I448

in distributed lattices. The second approach uses the above-mentioned σ as suitable upper449

bound of ∆I to compute ∆I(c) by approximating it from above.450

5.1 Distributed Spaces in Distributed Lattices451

Here we shall illustrate some pleasant compositionality properties of distributed spaces that452

can be used for computing ∆I in distributed lattices (constraint frames). These properties453
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(a) For I = {1, 2}, σI(c) =
d

i∈I si(c) is not a
space function: σI(p t ¬p) 6= σI(p) t σI(¬p).

a
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s1
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s1, s2

δ+
I

δ+
I

δ+
I

δ+
I

δ+
I

(b) For I = {1, 2}, δ+
I (Lemma 28) is not a space

function: δ+
I (b) t δ+

I (e) = b 6= a = δ+
I (b t e).

Figure 3 Counter-examples over lattice M2 (a) and the non-distributive lattice M3 (b).

capture the intuition that just like distributed information of a group I is the collective454

information from all its members, it is also the collective information of its subgroups. The455

following results can be used to produce algorithms to compute ∆I(c).456

We use XJ to denote the set of tuples (xj)j∈J of elements xj ∈ X for each j ∈ J.457

I Lemma 28. Let (∆I)I⊆G be the distributed spaces of a finite scs C = (Con,v, (si)i∈G).458

Suppose that (Con,v) is a constraint frame. Let δ+
I : Con → Con, with I ⊆ G, be the459

function δ+
I (c) def=

d
{
⊔

i∈I si(ai) | (ai)i∈I ∈ ConI and
⊔

i∈I ai w c}. Then ∆I = δ+
I .460

The above lemma basically says that ∆I(c) is the greatest information below all possible461

combinations of information in the spaces of the agents in I that derive c. The proof that462

δ+
I ws ∆I uses the fact that space functions preserve joins. The proof that δ+

I vs ∆I proceeds463

by showing that (δ+
I )I⊆G is a group distribution candidate (Def.20). Distributivity of the464

lattice (Con,v) is crucial for this direction. In fact without it ∆I = δ+
I does not necessarily465

hold as shown by the following counter-example.466

I Example 29. Consider the non-distributive lattice M3 and the space functions s1 and467

s2 in Figure 3b. We obtain δ+
I (b t c) = δ+

I (e) = a and δ+
I (b) t δ+

I (c) = b t a = b. Then,468

δ+
I (b t c) 6= δ+

I (b) t δ+
I (c), i.e., δ+

I is not a space function.469

Lemma 28 can be used to prove the following theorem which intuitively characterizes the470

information of a group from that of its subgroups. Each of the following results will be used471

to generate algorithms to compute ∆I(c), each an improvement on the previous one.472

I Theorem 30. Let (∆I)I⊆G be the distributed spaces of a finite scs C = (Con,v, (si)i∈G).473

Suppose that (Con,v) is a constraint frame. Let J,K ⊆ G be two groups such that I = J ∪K.474

Then the following equalities hold:475

1. ∆I(c) =
l
{∆J(a) t∆K(b) | a, b ∈ Con and a t b w c}. (1)476

2. ∆I(c) =
l
{∆J(a) t∆K(a→ c) | a ∈ Con}. (2)477

3. ∆I(c) =
l
{∆J(a) t∆K(a→ c) | a ∈ Con and a v c}. (3)478
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The above properties bear witness to the inherent compositional nature of our notion of479

distributed space. This nature will be exploited by the algorithms below. The first property480

in Thm.30 essentially reformulates Lemma 28 in terms of subgroups rather than agents. It481

can be proven by replacing ∆J (a) and ∆K(b) by δ+
J (a) and δ+

K(b), defined in Lemma 28 and482

using distributivity of joins over meets. The second and third properties in Theorem 30 are483

pleasant simplifications of the first using heyting implication. These properties realize the484

intuition that by joining the information a and a→ c of their subgroups, the group I can485

obtain c.486

5.2 Algorithms for Distributed Lattices487

Recall that λ> represents the empty distributed space (see Def.14). Given finite scs C =488

(Con,v, (si)i∈G) with distributed spaces (∆I)I⊆G, the recursive function DeltaPart3(I, c)489

in Algorithm 1 computes ∆I(c) for any given c ∈ Con. Its correctness, assuming that (Con,v)490

is a constraint frame (i.e., a distributed lattice), follows from Thm.30(3). Termination follows491

from the finiteness of C and the fact the sets J and K in the recursive calls form a partition492

of I. Notice that we select a partition (in halves) rather than any two sets K,J satisfying493

the condition I = J ∪K to avoid significant recalculation.494

Algorithm 1 Function DeltaPart3(I, c) computes ∆I(c)
1: function DeltaPart3(I, c) . Computes ∆I(c)
2: if I = ∅ then
3: return λ>(c)
4: else if I = {i} then
5: return si(c)
6: else
7: {J,K} ← Partition(I) . returns a partition {J,K} of I s.t., |J | = b|I|/2c
8: return

d
{DeltaPart3(J, a) tDeltaPart3(K, a→ c) | a ∈ Con and a v c}.

Algorithms. Notice DeltaPart3(I, c) computes ∆I(c) using Thm.30(3). By modifying495

Line 8 with the corresponding meet operations, we obtain two variants of DeltaPart3496

that use, instead of Thm.30(3), the Properties Thm.30(1) and Thm.30(2). We call them497

DeltaPart1 and DeltaPart2. Finally, we also obtain a non-recursive algorithm that498

outputs ∆I(c) by computing δ+
I (c) in Lemma 28 in the obvious way: Computing the meet499

of elements of the form
⊔

i∈I si(ai) for every tuple (ai)i∈I such that
⊔

i∈I ai w c. We call it500

Delta+.501

Worst-case time complexity. We assume that binary distributive lattice operations u, t,502

and→ are computed in O(1) time. We also assume a fixed group I of sizem = |I| and express503

the time complexity for computing ∆I in terms of n = |Con |, the size of the set of constraints.504

The above-mentioned algorithms compute the value ∆I(c). The worst-case time complexity505

for computing the function ∆I is in (1) O(mn1+m) using Delta+, (2) O(mn1+2 log2 m) using506

DeltaPart1, and (3) O(mn1+log2 m) using DeltaPart2 and DeltaPart3.507

5.3 Algorithm for Arbitrary Lattices508

Let (∆I)I⊆G be the distributed spaces of a finite scs C = (Con,v, (si)i∈G). The maximum509

space function ∆I under a collection {si}i∈I can be computed by successive approximations,510

starting with some (not necessarily space) function known to be less than all {si}i∈I . Assume511

a self map σ : Con → Con such that σ w ∆I and, for all i ∈ I, σ v si. A good starting512
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point is σ(u) =
d
{si(u) | i ∈ I}, for all u ∈ Con. By definition of u, σ(u) is the biggest513

function under all functions in {si}i∈I , hence σ w ∆I . The algorithm computes decreasing514

upper bounds of ∆I by correcting σ values not conforming to the space function property515

σ(u) t σ(v) = σ(u t v). The correction decreases σ and maintains the invariant σ w ∆I .516

There are two ways of correcting σ values: (1) when σ(u) t σ(v) < σ(u t v), assign517

σ(u t v)← σ(u) t σ(v) and (2) when σ(u) t σ(v) 6v σ(u t v), assign σ(u)← σ(u) u σ(u t v)518

and also σ(v)← σ(v) u σ(u t v). It can be shown that the assignments in both cases should519

decrease σ while preserving the σ w ∆I invariant.520

The procedure (see Algorithm 2) loops through pairs u, v ∈ Con while there is some pair521

satisfying cases (1) or (2) above for the current σ. When there is, it updates σ as mentioned522

before. At the end of the loop all u, v ∈ Con pairs satisfy the space function property. By523

the invariant mentioned above, this means σ = ∆I .524

Algorithm 2 DeltaGen finds ∆I

σ(u)←
d
{si(u) | i ∈ I} . for all u ∈ Con

while u, v ∈ Con ∧ σ(u) t σ(v) 6= σ(u t v) do
if σ(u) t σ(v) < σ(u t v) then . case (1)

σ(u t v)← σ(u) t σ(v)
else . case (2)

σ(u)← σ(u) u σ(u t v)
σ(v)← σ(v) u σ(u t v)

The complexity of the initialization of DeltaGen is O(nm), where n = |Con| and m525

is the number of space functions. Each element in Con can be decreased at most n times.526

Identifying an element to be decreased (in the test of the loop) takes O(n2). Since there are527

n2 possible decreases, worst time complexity of the loop is in O(n4).528

6 Conclusions and Related Work529

We developed semantic foundations and provided algorithms for reasoning about the dis-530

tributed information of groups in multi-agents systems. We plan to develop similar techniques531

for reasoning about other group phenomena in multi-agent systems from social sciences and532

computer music such as group polarization [4] and group improvisation [17].533

The closest related work is that of [15] (and its extended version [16]) which introduces534

spatial constraint systems (scs) for the semantics of a spatial ccp language. Their work is535

confined to a finite number of agents and to reasoning about agents individually rather than536

as groups. We added the continuity requirement to the space functions of [15] to be able to537

reason about possibly infinite groups. In [7, 8, 9, 10] scs are used to reason about beliefs, lies538

and other epistemic utterances but also restricted to a finite number of agents and individual,539

rather than group, behaviour of agents.540

Our work is inspired by the epistemic concept of distributed knowledge [5]. Knowledge541

in distributed systems was discussed in [11], based on interpreting distributed systems using542

Hintikka’s notion of possible worlds. In this definition of distributed knowledge, the system543

designer ascribes knowledge to processors (agents) in each global state (a processor’s local544

state). In [12] the authors present a general framework to formalize the knowledge of a545

group of agents, in particular the notion of distributed knowledge. The authors consider546

distributed knowledge as knowledge that is distributed among the agents belonging to a547

given group, without any individual agent necessarily having this knowledge. In [13] the548
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authors study knowledge and common knowledge in situations with infinitely many agents.549

The authors highlight the importance of reasoning about infinitely many agents in situations550

where the number of agents is not known in advance. Their work does not address distributed551

knowledge but points out potential technical difficulties in their future work.552
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A Proofs595

Proof of Lemma 13.596

Let C = (Con,v, (si)i∈G) be a spatial cs. Then Cs is a complete lattice.597

Proof. We are going to prove that the set of space functions over (Con,v) forms a complete598

lattice.599

Let S = {si}i∈I be a family of space functions with arbitrary indexing set I ⊆ G. For600

every constraint c ∈ Con, we let (
⊔
S)(c) =

⊔
i∈I si(c). We shall show that

⊔
S is a space601

function.602

(
⊔
S)(true) =

⊔
i∈I si(true) =

⊔
true = true.603

(
⊔
S)(c t d) = (

⊔
S)(c) t (

⊔
S)(d).604

(
⊔
S)(c t d) =

⊔
i∈I

si(c t d)605

=
⊔
i∈I

(si(c) t si(d))606

=(
⊔
i∈I

si(c)) t (
⊔
i∈I

si(d))607

=(
⊔
S)(c) t (

⊔
S)(d)608

609

Continuity: (
⊔
S)(

⊔
D) =

⊔
d∈D(

⊔
S)(d) for any directed set D.610

Suppose thatD is a directed set. From definition (
⊔
S)(

⊔
D) =

⊔
i∈I si(

⊔
D). By the con-611

tinuity of each space function si,
⊔

i∈I si(
⊔
D) =

⊔
i∈I

⊔
d∈D si(d) =

⊔
d∈D

⊔
i∈I si(d) =612 ⊔

d∈D(
⊔
S)(d), as required.613

J614

Proof of Theorem 16.615

Let (∆I)I⊆G be the distributed spaces of a scs C = (Con,v, (si)i∈G). Suppose that616

I ⊆ G.617

1. ∆I = λ> if I = ∅,618

2. ∆I = si if I = {i},619

3. ∆J(a) t∆K(b) w ∆I(a t b) if K,J ⊆ I,620

4. ∆J(a) t∆K(a→ c) w ∆I(c) if K,J ⊆ I and (Con,v) is a constraint frame.621

Proof. The proof of part (1) follows from definition of λ> (see Definition 14) and the fact that622

max ∅ = true. Part (2) is immediate from Definition 15 of ∆I . For property (3), recall that623

the bigger the group the smaller the space function associated to it. Thus, if K,J ⊆ I note624

that ∆J (a) w ∆I(a) and ∆K(b) w ∆I(b), then ∆J (a) t∆K(b) w ∆I(a) t∆I(b) = ∆I(a t b).625

To prove (4), we use part (3) with a = a and b = a→ c, and Proposition 3. J626

Proof of Theorem 21.627

Let (∆I)I⊆G be the distributed spaces of a scs C = (Con,v, (si)i∈G). Then (1) (∆I)I⊆G628

is a gdc of C and (2) if (δI)I⊆G is a gdc of C then δI vs ∆I for each I ⊆ G.629

Proof. To prove (1) consider the properties (D.1)-(D.3) in Definition 20 for ∆I . Property630

(D.1) follows from definition of ∆I (Definition 15). Property (D.2) is proven in Theorem 16631

part (2). Property (D.3) is a consequence of: the bigger the group the smaller the space632

function associated to it. To prove (2) note that δI is a space function and ∆I is the maximum633

of the space functions below si for every i ∈ I. J634
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Proof of Proposition 24.635

Let (∆I)I⊆G be the distributed spaces of an scs C = (Con,v, (si)i∈G). (1) c w ∆I(e) if636

and only if ΠI(c) w e, (2) ΠI ws ΠJ if J ⊆ I, and (3) ΠI ws πI .637

Proof. For (1), firstly assume that c w ∆I(e). From Definition 23, ΠI(c) =
⊔
{d | c w ∆I(d)}.638

Then, ΠI(c) w e. Secondly, assume ΠI(c) w e and let S = {d | c w ∆I(d)}. Note that639

c w
⊔
{∆I(d) | d ∈ S}. From continuity of ∆I , we know that

⊔
{∆I(d) | d ∈ S} = ∆I(tS)640

and by monotonicity c w ∆I(tS) = ∆I(ΠI(c)) w ∆I(e).641

Property (2) follows from Theorem 21. If J ⊆ I, then ∆J ws ∆I . Then {d | c w ∆J (d)} ⊆642

{d | c w ∆I(d)} and thus ΠI ws ΠJ .643

Finally, to prove property (3), by part (2) it is true that for every {i} ⊆ I, ΠI ws Π{i}.644

Therefore, ΠI ws
⊔

i∈I Π{i}. Now, for every c ∈ Con,
⊔

i∈I Π{i}(c) =
⊔

i∈I{
⊔
{d | c w645

∆{i}(d)}} =
⊔

i∈I{
⊔
{d | c w si(d)}} =

⊔
i∈I{πi(c)} = πI(c). Therefore, ΠI(c) w πI(c), for646

every c ∈ Con. J647

Proof of Theorem 25.648

Let (∆I)I⊆G be the distributed spaces of an scs C = (Con,v, (si)i∈G). Suppose that649

c w ∆I(e). If e is compact and I-join derivable from c then there exists a finite set J ⊆ I650

such that c w ∆J(e).651

Proof. Suppose that c w ∆I(e). If I is finite then take J = I. If I is not finite, since e is652

I-join derivable from c we have πI(c) =
⊔
S w e where S = {πi(c) | i ∈ I}.653

Define SI = {πJ(c) | J ⊆ I and J is finite }. Take any πH(c), πK(c) ∈ SI . Since H and654

K are finite, their union K ∪H must also be finite and included in I. Hence πH∪K(c) ∈ SI .655

Therefore, SI is a directed set.656

Since S = {πi(c) | i ∈ I} = {π{i}(c) | i ∈ I} is included in SI , we obtain
⊔
SI w

⊔
S w e.657

But e is compact and SI directed hence there must be πJ(c) ∈ SI , with J a finite set, such658

that πJ(c) w e. From Prop.24 (3) and Prop.24 (1), we conclude c w ∆J(e) as wanted. J659

Proof of Proposition 27.660

(1) There exists a family of scs C = (Con,v, (si)i∈G) such that |S(C)| ≥ (n− 2)! where661

n = |Con|. (2) There exists a family of scs C = (Con,v, (si)i∈G), with (Con,v) being a662

constraint frame, such that |S(C)| = nlog2 n where n = |Con|.663

Proof. For (1) take the complete lattice Mn obtained by adding a top and bottom to the664

poset n̄ obtained by giving N = {1, 2, . . . , n− 2} the discrete order (x v y iff x = y). Any665

function preserving top and bottom and permuting the elements of N is a space function.666

Hence, there are (n− 2)! such functions. So |S(C)| ≥ (n− 2)!.667

For (2) take the powerset P(S) of some finite set S ordered by inclusion (join is set668

union). Suppose n = |P(S)|. Let F = {f : P(S)→ P(S)} be the family of functions that669

satisfy (a) f(T ) =
⊔

t∈T f({t}) if |T | > 1 and (b) f(∅) = ∅. One can verify that f is a space670

function. The set P(S) has log2 n singletons. Since there is no restriction on how f should671

map singletons we conclude |F | = nlog2 n. J672

Proof of Lemma 28.673

Let (∆I)I⊆G be the distributed spaces of a finite scs C = (Con,v, (si)i∈G). Suppose that674

(Con,v) is a constraint frame. Let δ+
I : Con→ Con, with I ⊆ G, be the function675

δ+
I (c) def=

l
{
⊔
i∈I

si(ai) | (ai)i∈I ∈ ConI and
⊔
i∈I

ai w c}676

for every c ∈ Con. Then ∆I = δ+
I .677
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Proof. Firstly, we are going to show that δ+
I is a group distribution candidate.678

(D.1) δ+
I is a space function.679

1. δ+
I (true) = true.680

Note that true ∈ {
⊔

i∈I si(ai) |
⊔

i∈I ai w true}, therefore δ+
I (true) = true.681

2. δ+
I (c t d) = δ+

I (c) t δ+
I (d).682

We prove that δ+
I is monotonic: If c w d then δ+

I (c) w δ+
I (d). Assume c w d. If

⊔
i∈I ai w c,683

then
⊔

i∈I ai w d. Therefore, {
⊔

i∈I si(ai) |
⊔

i∈I ai w c} ⊆ {
⊔

i∈I si(ai) |
⊔

i∈I ai w d}684

which implies δ+
I (c) w δ+

I (d).685

Since δ+
I is monotonic, δ+

I (c t d) w δ+
I (c) and δ+

I (c t d) w δ+
I (d), thus δ+

I (c t d) w686

δ+
I (c) t δ+

I (d).687

The other direction follows from this derivation for (ai)i∈I , (bi)i∈I , (ci)i∈I ∈ ConI :688

δ+
I (c) t δ+

I (d)689

= 〈Definition of δ+
I (d)〉690

δ+
I (c) t

l
{
⊔
i∈I

si(bi) |
⊔
i∈I

bi w d}691

= 〈t distributes over u〉692

l
{δ+

I (c) t
⊔
i∈I

si(bi) |
⊔
i∈I

bi w d}693

= 〈Definition of δ+
I (c)〉694

l
{
l
{
⊔
i∈I

si(ai) |
⊔
i∈I

ai w c} t
⊔
i∈I

si(bi) |
⊔
i∈I

bi w d}695

= 〈t distributes over u〉696

l
{
l
{
⊔
i∈I

si(ai) t
⊔
i∈I

si(bi) |
⊔
i∈I

ai w c} |
⊔
i∈I

bi w d}697

= 〈Associativity of u〉698

l
{
⊔
i∈I

(si(ai) t si(bi)) |
⊔
i∈I

ai w c and
⊔
i∈I

bi w d}699

w〈x w y and w w z implies x t w w y t z; ci = ai t bi; si(ai) t si(bi) = si(ai t bi)〉700

l
{
⊔
i∈I

si(ci) |
⊔
i∈I

ci w c t d}701

= 〈Definition of δ+
I (c t d)〉702

δ+
I (c t d)703

704

3. δ+
I is continuous.705

Similar to proof of part (2). Since (Con,v) is a finite scs, continuity follows from706

preservation of finite joins.707

(D.2) δ+
I = si, if I = {i}.708
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Assume I = {i} and let c ∈ Con.709

δ+
{i}(c)710

=〈Definition of δ+
{i}(c)〉711

l
{

⊔
i∈{i}

si(ai) | (ai)i∈{i} ∈ Con{i} and
⊔

i∈{i}

ai w c}712

=〈Simplification〉713

l
{si(ai) | ai ∈ Con and ai w c}714

=〈c w c; si is monotonic〉715

si(c)716
717

(D.3) δ+
I ws δ

+
J , if I ⊆ J .718

Assume I ⊆ J and let c ∈ Con.719

δ+
I (c)720

=〈Definition of δ+
I (c)〉721

l
{
⊔
i∈I

si(ai) | (ai)i∈I ∈ ConI and
⊔
i∈I

ai w c}722

w〈I ⊆ J ;
⊔
i∈I

ai w
⊔
j∈J

aj〉723

l
{

⊔
j∈J

sj(aj) | (aj)j∈J ∈ ConJ and
⊔
j∈J

aj w c}724

=〈Definition of δ+
J (c)〉725

δ+
J (c)726

727

Therefore, δ+
I (c) w δ+

J (c) for all c ∈ Con.728

Finally, from Theorem 21 since δ+
I is a gdc, then δ+

I vs ∆I .729

To complete the proof, we want to show that ∆I(c) v δ+
I (c) for all c ∈ Con. Let730

(ai)i∈I ∈ ConI be an arbitrary tuple such that
⊔

i∈I ai w c. Since {i} ⊆ I for every i and ∆I731

is a gdc, ∆I(c) v ∆{i}(c) = si(c), thus
⊔

i∈I ∆I(c) v
⊔

i∈I si(c). Additionally,
⊔

i∈I si(c) v732 ⊔
i∈I si(

⊔
i∈I ai) from monotonicity of every si. Therefore, ∆I(c) v

⊔
i∈I si(

⊔
i∈I ai). Since733

each si is continuous si(
⊔

i∈I ai) =
⊔

i∈I si(ai), then ∆I(c) v
⊔

i∈I si(ai) for any (ai)i∈I ∈734

ConI , thus ∆I(c) is a lower bound of {
⊔

i∈I si(ai) | (ai)i∈I ∈ ConI and
⊔

i∈I ai w c} and so735

∆I(c) v δ+
I (c) for every c ∈ Con. J736

Proof of Theorem 30.737

Let (∆I)I⊆G be the distributed spaces of a finite scs C = (Con,v, (si)i∈G). Suppose that738

(Con,v) is a constraint frame. Let J,K ⊆ G be two groups such that I = J ∪K. Then the739

following equalities hold:740

1. ∆I(c) =
l
{∆J(a) t∆K(b) | a t b w c}. (4)741

2. ∆I(c) =
l
{∆J(a) t∆K(a→ c)}. (5)742

3. ∆I(c) =
l
{∆J(a) t∆K(a→ c) | a v c}. (6)743

Proof. 1. Let a, b ∈ Con. From Lemma 28744

∆J(a) =
l
{

⊔
j∈J

sj(aj) | (aj)j∈J ∈ ConJ and
⊔
j∈J

aj w a}745
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and746

∆K(b) =
l
{

⊔
k∈K

sk(bk) | (bk)k∈K ∈ ConK and
⊔

k∈K

bk w b}747

Thus, ∆J(a) t∆K(b) =
d
{
⊔

i∈I si(ci) | (ci)i∈I ∈ ConI and
⊔

i∈I ci w a t b} where for748

every sj = sk, si(ci) = sj(aj) t sk(bk) and ci = aj t bk. If sj 6= sk, either si(ci) = sj(aj)749

or si(ci) = sk(bk). Now, given c ∈ Con consider the set {∆J(a) t∆K(b) | a t b w c} for750

any a, b ∈ Con.751

l
{∆J(a) t∆K(b) | a t b w c}752

=〈Construction of ∆J(a) t∆K(b)〉753

l
{
l
{
⊔
i∈I

si(ci) | (ci)i∈I ∈ ConI and
⊔
i∈I

ci w a t b} | a t b w c}754

=〈Associativity of u〉755

l
{
⊔
i∈I

si(ci) | (ci)i∈I ∈ ConI and
⊔
i∈I

ci w a t b and a t b w c}756

=〈(w) x w y and w w z implies x t w w y t z; (v) construction of ci〉757

l
{
⊔
i∈I

si(ci) | (ci)i∈I ∈ ConI and
⊔
i∈I

ci w c}758

=〈Lemma 28〉759

∆I(c)760
761

2. This property can be seen as a simplification of the first one: recall that a→ c represents762

the least element e such that ate w c. Take any b such that atb w c. Then b w a→ c and763

since space functions are monotonic ∆J (a) t∆K(b) w ∆J (a) t∆K(a→ c). From this it764

follows that
d

(S∪{∆J (a)t∆K(a→ c) ,∆J (a)t∆K(b)}) =
d

(S∪{∆J (a)t∆K(a→ c)})765

for any S ⊆ Con. This shows that ∆J (a)t∆K(b) is redundant since ∆J (a)t∆K(a→ c)766

is included in the set on the right-hand side of equality in the second property.767

3. Similarly, this property can be seen as a simplification of the second one. Take any a′ 6v c.768

It suffices to find a v c such that ∆J (a′) t∆K(a′ → c) w ∆J (a) t∆K(a→ c) since then769 d
(S ∪ {∆J (a)t∆K(a→ c) ,∆J (a′)t∆K(a′ → c)}) =

d
(S ∪ {∆J (a)t∆K(a→ c)}) for770

any S ⊆ Con.771

Since a′ 6v c either (a) a′ = c or (b) a′ and c are incomparable w.r.t. v, written a′ ‖ c.772

Suppose (a) holds. Then take a = c thus a → c = true. By monotonicity we have773

∆J(a′) t∆K(a′ → c) w ∆J(a) t∆K(a→ c) as wanted. Suppose that (b) a′ ‖ c holds.774

Notice that a′ → c v c. Suppose that a′ → c = c. Then we can take a = true, and thus775

a→ c = c = a′ → c. By monotonicity we have ∆J (a′)t∆K(a′ → c) w ∆J (a)t∆K(a→ c)776

as wanted. Suppose a′ → c < c holds. In this case, which is more interesting, we can777

build a poset L = ({a′ t c, a′, c, a′ → c, a′ u (a′ → c) },v) and verify that L is a778

non-distributive sub-lattice of (Con,v), isomorphic to a lattice known as N5 (see Fig. ??).779

But from order theory we know this cannot happen since we assumed (Con,v) to be780

distributive, and distributive lattices do not have sub-lattices isomorphic to N5 ([3]).781

J782

Proof of Complexity for Algorithms in Section 5.2.783

The worst-case time complexity for computing the value ∆I(c) for each algorithm is in (1)784

O(mnm) for Delta+, (2) O(mn2 log2 m) for DeltaPart1, (3) O(mnlog2 m) for DeltaPart2,785

DeltaPart3 and DeltaPart3+.786
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Proof. (1) Delta+ checks nm tuples with a cost O(m) for a total of O(mnm). (2) The worst-787

case time complexity of DeltaPart1 is given by the recurrence equation T (m) = n2(1 +788

2T (m/2)) and T (1) = 1 whose solution is O(mn2 log2 m). (3) The worst-case time complexity789

of DeltaPart2, DeltaPart3 and DeltaPart3+ is given by T (m) = n(1 + 2T (m/2)) and790

T (1) = 1 whose solution is O(mnlog2 m).791

The worst-case time complexity for computing function ∆I with each of the algorithms792

above is obtained by multiplying the corresponding complexity by a factor of n. J793

B Experimental Results794

Figure 4 Experimental results, average time, over n-element powerset lattices with a randomly
generated number of space functions. Note that for the x-axis 512_8 means an 8-element powerset
lattice with 512 nodes, and |I| = 8.

Figure 4 shows the results of running each of the proposed algorithms to calculate ∆I over795

a n-element powerset lattice with a varing number of randomly generated space functions,796

using Python 3.7.1 on a AC-powered 15-inches MacBook Pro Mid 2014, with an Intel Core797

i7-4770HQ CPU at 2.2 GHz, and 16 GB 1600 MHz DDR3 RAM. From a 4-element powerset798

lattice with 16 nodes, to a 10-element powerset lattice with 1024 nodes. For each powerset799

lattice we generated a set {si}i∈I of randomly generated space functions, with |I| = 4, 8, 12,800

and 16, then we ran each algorithm multiple times, measured the system-clock time and801

calculated the average. Missing datapoints in Figure 4 implies that the algorithm took more802

than 600 seconds, except for Delta+ wich took more than 1800 seconds but was kept there803

for illustration purposes. The same results but only for |I| = 4 are shown in Table 1.804
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Nodes Delta+ DeltaPart1 DeltaPart2 DeltaPart3 DeltaPart3+ DeltaGen DeltaGen+
16 2.01 0.958 0.0135 0.00127 0.000632 0.00360 0.000603
32 64.6 25.3 0.0990 0.00554 0.00181 0.0633 0.00343
64 1901 600 0.740 0.0216 0.00542 0.948 0.0154
128 >600 >600 5.82 0.0922 0.0160 15.4 0.0860
256 >600 >600 46.2 0.433 0.0483 252 0.361
512 >600 >600 385 2.31 0.166 >600 2.01
1024 >600 >600 >600 12.5 0.547 >600 10.7
Table 1 Average time in seconds for each algorithm over a powerset lattices with |I| = 4
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(Con,v, s = (si)i∈G), spatial constraint806

system, scs, 5807

G, group of agents, 5808

C, (Con,v), constraint system, cs, 4809

Con, set of constraints, 4810

∆, distributed spaces, 8811

∆I , distributed space of a group I, 8812

ΠI(c), the I-group projection of c ∈ Con, 10813

v, entailment, order relation, 3814

∼ ·, Heyting negation, 4815

δ, group distribution candidate, 9816

false (top), all (possibly inconsistent)817

information, 3818

λ⊥(c), biggest space, bottom element of the819

lattice, 8820

λ>(c), smallest space, empty space, top821

element of the lattice , 8822

S(C), set of all space functions over a cs C, 7823

πI(c), I-join projection of a group I of c, 6824

πi(c), i-agent projection of c ∈ Con, 6825

→, Heyting implication, 4826

S(C), set of all space functions over827

C = (Con,v), 5828

s, space tuple, 5829

si, space function of agent i, 5830

u,
d
, meet, GLB, infimum, 3831

t,
⊔
, join, LUB, supremum, 3832

max max operation, 3833

true (bottom), empty information, 3834

XJ , denotes the set of tuples (xj)j∈J of835

elements xj ∈ X for each j ∈ J. ,836

12837

f vs g, space order, 7838

compact element, 3839

constraint frame, 4840

continuous function, 3841

D.1, first axiom group distribution candidate,842

9843

D.2, second axiom group distribution844

candidate, 9845

D.3, third axiom group distribution846

candidate, 9847

directed set, 3848

finite scs, 11849

join-homomorphism, 3850

join-preservation, 3851

lattice, complete, 3852

S.1, first space axiom, 5853

S.2, second space axiom, 5854
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