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Many differential equations involved in natural sciences show
singular behaviors; i.e., quantities in the model diverge as the
solution goes to zero. Nonetheless, the evolution of the singu-
larity can be captured with self-similar solutions, several of which
may exist for a given system. How to characterize the transition
from one self-similar regime to another remains an open ques-
tion. By studying the classic example of the pinch-off of a viscous
liquid thread, we show experimentally that the geometry of the
system and external perturbations play an essential role in the
transition from a symmetric to an asymmetric solution. Moreover,
this transient regime undergoes unexpected log-scale oscillations
that delay dramatically the onset of the final self-similar solution.
This result sheds light on the strong impact external constraints
can have on predictions established to explain the formation of
satellite droplets or on the rheological tests applied on a fluid, for
example.

pinch-off | viscous | self-similarity | log-oscillation | external constraints

From the greedy child who wants to detach the last drop of
tomato sauce from its container to his loving parents who

desperately try to fix the dripping faucet (1), drop formation
surrounds us in our daily life. It also concerns various appli-
cations, from the usual inkjet printing to transistor circuits (2)
or even bioprinting of mammalian cells (3), for instance. Drop
detachment corresponds to a liquid breakup that is obtained by
the pinch-off of the final thin liquid thread. This pinch-off is
mathematically described by a finite-time singularity, the min-
imal radius of the liquid thread rmin(z , t) being exactly zero
for t = tpo and at z = zpo. The mathematical analysis close to
this singularity suggests different self-similar regimes, depending
on the specific balance between inertia and viscous and cap-
illary forces (4, 5). These different self-similar solutions have
been observed experimentally in dedicated experiments (6, 7)
as well as numerically (8, 9). However, recent experimental and
numerical works have shown that the general situation is more
complex (10–14): Transient dynamics and multiple transitions
have been observed for the neck evolution, delaying the onset
of self-similar regimes. During these transient dynamics, the
minimum thread radius can follow the scalings of the different
self-similar regimes. Thus, the link between the neck evolution
and the liquid thread profile has to be questioned with respect
to the self-similar solutions. Indeed, in practical situations, this
result may have crucial implications for droplet release and rheo-
logical characterization. In this article, we propose an experiment
to characterize and control this transient regime. We define
the key parameters impacting the evolution of the neck during
droplet breakup and we discriminate the different self-similar
regimes.

We first place a circular aluminum cylinder at an oil–water
interface. The cylinder is pinned at this interface and pulled
downward with a stepper motor. We can thus control both the
radius of the cylinder Rcyl and its vertical velocity vcyl (Fig. 1B).
To move the cylinder quasi-statically (vcyl = 0), we control its
vertical motion in 10-µm increments close to pinch-off and wait

a few seconds between each step (Materials and Methods). A
stretched meniscus is formed between this moving cylinder and
the layer of oil. The oil thread thins until it finally breaks up (Fig.
1D and Movie S2). We measure the evolution of the neck during
this process. This experiment enables us to investigate the impact
of a vertical velocity on the evolution of the detachment of an oil
drop in a liquid bath. We then compare this situation to a rising
oil droplet detaching from a circular nozzle immersed in water,
for different needle radii Rneedle (Fig. 1A).

The vertical velocity of the cylinder in Fig. 1D imposes bound-
ary conditions dramatically different from those of the rising
droplet in Fig. 1C (Movies S1 and S2). Qualitatively, it is already
clear that the shapes of the liquid threads are different between
the two situations: In particular, the symmetry of the viscous fila-
ment at the detachment of the droplet is not recovered when the
interface is pulled downward.

The characteristic lengthscale lµ and timescale tµ of such
viscous dynamics can be defined by

lµ=
µ2

γρ
tµ=

µ3

γ2ρ
[1]

with µ and ρ the dynamic viscosity and density of the oil, and
γ the oil–water interfacial tension. We describe the dynamics
of pinch-off through the Ohnesorge number based on the oil
properties:

Oh =
µ√
ργR

. [2]

Significance

Droplet pinch-off is one of the most commonly examined free
surface flows displaying a finite-time singularity and can serve
as the basis upon which to better understand similar singu-
lar behavior. A liquid filament connecting the droplet to the
rest of the fluid thins before it breaks and passes through sev-
eral self-similar regimes that have been thought independent
of external conditions. These regimes are essentially asymp-
totic, and it is an open question how exactly the system
passes through them. We find to our surprise that external
conditions strongly affect the transient path connecting these
regimes and even can temporarily prevent the fluid thread
from evolving through self-similar profiles. Our results raise
many questions about the influence of boundary conditions
on such self-similar dynamics.
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Fig. 1. Experimental setups and visualizations of the thinning of a viscous filament in various configurations. (A) Schematic of the first experimental
configuration. An oil droplet is formed via a needle of radius Rneedle at a low flow rate inside a bath of water. (B) Second experimental configuration. An
oil–water interface is pulled downward with an aluminum cylinder of radius Rcyl at a given velocity vcyl, until the oil meniscus formed during the process
breaks. (C) Time lapse of the detachment of an oil droplet from a nozzle (2Rneedle = 1.65 mm). Time between two images: 2.5 ms. [Scale bar: 1 mm (Movie
S1).] (D) Time lapse showing the thinning of an oil filament formed by pulling an oil–water interface with a cylinder of radius 2Rcyl = 30 mm at a vertical
velocity of vcyl = 30 mm·s−1. Time between two images: 25 ms. (Scale bar: 10 mm.) In both sequences, the final image corresponds to the exact moment of
pinch-off (Movie S2).

Here, R stands for the initial radius of the system (either Rcyl

or Rneedle, depending on the experiment). In this study, we
limited ourselves to Ohnesorge numbers between 0.1 and 0.7,
corresponding to R varying between 0.5 and 15 mm.

We measure the time evolution of rmin and z (rmin) (notations
in Fig. 1C). The thinning dynamics begin by the destabiliza-
tion of a fluid cylinder due to the Plateau–Rayleigh instability
(15, 16). Once the perturbation of the ideal liquid cylinder is
large enough, the linear stability approach can no longer hold.
Thinning is then governed by a nonlinear competition between
surface tension and viscosity (17), where the minimum radius
rmin and its vertical position z(rmin) evolve according to Eq. 3
(viscous regime),

rmin

lµ
=0.0709

(τ − t0)

tµ

z (rmin)

lµ
∼
(
τ

tµ

)β
, [3]

with τ = tpo− t the remaining time before breakup and β =
0.175. t0 accounts for the fact that this approach is not valid
all of the way to the pinch-off. Indeed, the velocity of the fluid
increases until inertia can no longer be neglected. At some point,
a balance between surface tension, viscosity, and inertia (18) is
needed and leads to Eq. 4 (inertial–viscous regime):

rmin

lµ
=0.0304

τ

tµ

z (rmin)

lµ
∼
(
τ

tµ

)0.5

. [4]

To facilitate further references to the two previous linear evolu-
tions of rmin, we designate by uv and uiv the slopes of these two
regimes, as defined in the following equation:

uv =0.0709
γ

µ
uiv =0.0304

γ

µ
. [5]

These solutions are universal: Whatever boundary and initial
conditions are restricting the system, at a given time a viscous
system will transit from the viscous regime to the inertial–
viscous one. Various experiments have confirmed these scalings
(19) and described the shape of the viscous thread for both
regimes (20): symmetric for the viscous regime and asymmetric
for the inertial–viscous one. When the viscosity of the surround-
ing fluid is taken into account, theory predicts the existence of
a last regime (21), where both rmin and z (rmin) evolve linearly
with τ .

In Fig. 2, we compare the evolution of the minimum radius
rmin of a liquid neck in the classic case of an oil drop detaching
from a needle (green circles) and a cylinder pulled from an oil–
water interface (black stars), as a function of time before breakup
τ . The curves should be read from right to left, with a monotonic
decrease of rmin as τ gets closer to zero. In the first situation,
we recover precisely the different regimes described previously:
first an exponential decrease of rmin reminiscent of the Plateau–
Rayleigh linear instability, followed by two nonlinear successive
regimes where rmin decreases linearly, adequately fitted by the

Fig. 2. Experimental evidence of a variation in the transient regime for
different external constraints during the breakup of an oil filament in water.
Shown is variation of the minimum neck radius with time until breakup for
the thinning of a stretched oil meniscus inside water (black stars: 2Rcyl =
20 mm, vcyl = 1 mm·s−1) and for the pinch-off of an oil droplet from a nozzle
(green circles: 2Rneedle = 1.65 mm). The dashed lines represent the self-similar
linear evolution describing, respectively, the viscous (red dashed line, Eq. 3)
and inertial–viscous regimes (blue dashed line, Eq. 4). (Inset) Zoom-in of the
evolution of rmin in the final moments before pinch-off (τ < 3 ms), as a
function of time before breakup. The error bars are negligible (smaller than
the size of an individual symbol) and thus are not displayed for clarity.
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theoretical predictions of Eqs. 3 (slope uv ) and 4 (slope uiv ). In
the second situation, when the cylinder is pulling the interface,
we also observe in the final stages of the pinching the same two
linear decays, with slopes comparable to uiv and uv (Fig. 2, Inset).
But interestingly, for τ > 3 ms, the dynamics differ drastically.
Instead of the classic exponential decay, we observe a succes-
sion of linear evolutions, with slopes similar to uiv (5 ms <τ <
15 ms) or uv (15 ms <τ < 35 ms). For longer times, we recover
the exponential decrease of the minimum radius, characteristic
of the Plateau–Rayleigh instability.

We do recover the theoretical slopes predicted by Eqs. 3 and
4 (Fig. 2), but in the configuration of a stretched meniscus, we
moreover observe oscillations from one slope to another. Sev-
eral differences between the two experiments described here can
be highlighted to account for these distinct behaviors: the larger
diameter of the cylinder compared with the needle (approxi-
mately 10 times larger), its vertical velocity since only buoyancy
helps the oil drop to rise whereas the cylinder pulls the interface
downward at velocity vcyl = 1 mm·s−1, and finally the direc-
tion of motion of the oil droplet (downward for the cylinder and
upward for the needle).

To identify the different regimes correctly, we plot ṙmin, the
slope of rmin as a function of τ (14). Using this representa-
tion, each linear evolution of rmin now appears as a constant
(uv for the viscous regime and uiv for the inertial–viscous
one). Moreover, the curves are plotted in log-scale ṙmin as a
function of rmin instead of τ , since the measurement of rmin

is more simple than the exact determination of the breakup
point, making comparisons between experiments easier. Fig.
3 displays such measurements for three different configura-
tions: the oil drop released from a nozzle in surrounding water
(2Rneedle = 1.65 mm), the quasi-static pulldown of a cylinder
from the same interface with a diameter comparable to the
diameter of the nozzle (2Rcyl = 2 mm), and finally the pull-
down of a large cylinder (2Rcyl = 20 mm) at a constant velocity
vcyl = 1 mm/s.

The results for the configurations where a drop detaches from
a needle (green circles) and an interface is pulled down quasi-
statically with a cylinder of the same diameter (red triangles)
are identical: an exponential increase of ṙmin, followed by a
first plateau at ṙmin ≈ uv , and a final regime at ṙmin≈ uiv (Fig.
3). As the two curves are similar, we can exclude the direction
of motion as a possible explanation for the different evolution
of rmin in the two different experiments: As expected, grav-
ity does not play a role in the self-similar regimes observed at
short timescales. The black curve is, however, drastically differ-
ent: ṙmin presents a quasi-sinusoidal oscillation in log-scale, and
only the last stages of the dynamics appear comparable between
all experiments. As intuited with Fig. 2, we observe an oscillation
between the two self-similar regimes. This result also empha-
sizes the existence of a given period of oscillation in the log(rmin)
variable.

Unlike the experiment where a drop detaches from a nozzle,
when pulling the oil–water interface downward with a cylinder,
we can strongly vary independently the parameters at play, Rcyl

and vcyl, as shown in Fig. 4. We observe a log-oscillation of ṙmin

when Rcyl or vcyl increases. When the detachment is quasi-static,
i.e., vcyl = 0 (orange circles in Fig. 4), the oscillation appears and
grows when 2Rcyl> 8 mm. When Rcyl = 5 mm, ṙmin oscillates
only for the highest pulling velocity (vcyl = 30 mm/s). Finally,
when Rcyl = 8 mm, oscillations are always present. For the
smallest cylinder Rcyl = 2 mm, we do not observe oscillations
using our experimental setup. This result confirms the numeri-
cal observations of ref. 14 where they find a similar oscillatory
convergence in log-scale toward a self-similar regime. We show
that external conditions (size and vertical velocity of the cylin-
der) play an essential role in the triggering of the oscillation in
log-scale.

10-6 10-5 10-4 10-3 10-2
0

0.01

0.02

0.03

0.04

Fig. 3. Presence of an oscillation between linear evolutions when a large
cylinder pulls down an oil–water interface. Shown is the time derivative of
the minimum radius ṙmin as a function of rmin, for three typical experiments.
Green circles: oil droplet rising in water and finally detaching from a nee-
dle (2Rneedle = 1.65 mm). Red triangles: interface pulled quasi-statically by
a cylinder (2Rcyl = 2 mm, vcyl = 0 mm·s−1). Black stars: oil–water interface
pulled down by a larger cylinder (2Rcyl = 20 mm, vcyl = 1 mm·s−1). The dashed
lines represent the theoretical linear self-similar regimes describing the vis-
cous regime (red dashed line, ṙmin = uv ) and the inertial–viscous regime (blue
dashed line, ṙmin = uiv ).

For every experiment, we can also measure the frequency of
oscillation in log-scale ωi and study its dependence with the
different parameters [using the fit ṙmin =A+B sin(ωi log t +
C ) exp(D log t)]. For the range of parameters we have explored,
ωi is constant and does not depend on the various parameters of
the different experiments we have investigated (SI Appendix, Fig.
S1). This is consistent with the natural time dependence arising
when a perturbation analysis is performed around the self-similar
dynamics (Materials and Methods). The log-scale oscillation fre-
quency depends only on the dynamical system and not on the
external conditions.

Finally, we check whether the profiles are self-similar in the
linear transient regimes observed during these oscillations. To
that end, we report the profiles of the liquid thread and define
rescaled variables according to Eqs. 3 and 4,

ξ1 =
(z − z (rmin))

l0.5µ r0.5min

, H (ξ1)=
r

rmin
[6]

ξ2 =
(z − z (rmin))

l0.825µ r0.175min

, H (ξ2)=
r

rmin
. [7]

Since rmin decreases linearly with time (in each linear regime),
we use rmin instead of τ to rescale both axes. As a consequence,
the minimum radius of the thread is located at ξ=0 and H =1.
ξ1 and ξ2 are made dimensionless using the characteristic length-
scale lµ. The profiles are relatively flat around rmin, which can
make the determination of z(rmin) difficult. We thus shift the
profiles in the ξ direction to superimpose the rescaled profiles
(7). When ṙmin = uv (resp. ṙmin = uiv ), the profiles can be
rescaled using Eq. 7 (resp. Eq. 6).

Fig. 5 shows the rescaled profiles for two cylinder diameters
pulling down the interface, during each of the linear regions
(ṙmin constant). In A and B, Rcyl = 2 mm and no log-oscillation
is observed: The profiles are rather well superimposed in each
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Fig. 4. Role of external conditions on the evolution of the thinning of a liquid thread pulled from an oil–water interface. We observe a log-oscillation
of ṙmin when Rcyl and vcyl increase. We plot the time derivative ṙmin as a function of rmin, the minimum radius, for different cylinder diameters [(A) 2Rcyl =
2 mm, (B) 2Rcyl = 5 mm, (C) 2Rcyl = 8 mm, and (D) 2Rcyl = 13 mm] and different pulling velocities (orange circles, vcyl = 0 mm/s; red crosses, vcyl = 1 mm/s;
dark-red triangles, vcyl = 30 mm/s). The dashed lines represent the theoretical linear evolutions describing the self-similar viscous (red dashed line, ṙmin = uv )
and inertial–viscous (blue dashed line, ṙmin = uiv ) regimes, respectively.

of these regions, and we also recover the symmetry of the vis-
cous regime around rmin (Fig. 5B). Moreover, the collapse of the
self-similar curves is valid only around the position of the mini-
mum radius.

Fig. 5 C–F shows the rescalings for Rcyl = 13 mm, when ṙmin

oscillates. The rescaling is also rather good close to the pinch-
off (Fig. 5C), and the three profiles are well superimposed. We
thus recover the final inertial–viscous regime, just like in the

A

FB

E

D

C

Fig. 5. Comparison of the rescaled profiles of the experimental data, obtained from an oil meniscus formed between cylinders of two different sizes when
pulling down an oil–water interface. Insets show ṙmin as a function of rmin in each case, with arrows indicating the profiles chosen in the main plot. Here
again, the dashed lines represent the theoretical linear self-similar regimes describing, respectively, the viscous regime (red dashed line, ṙmin = uv ) and the
inertial–viscous regime (blue dashed line, ṙmin = uiv ). The rescaled profiles represent H as a function of ξ1 if the expected regime is inertial–viscous or ξ2 if it
is expected to be only viscous (Eqs. 6 and 7). A and B show 2Rcyl = 2 mm, vcyl = 0 mm·s−1. C–F show 2Rcyl = 13 mm, vcyl = 1 mm·s−1. The profiles identified by
black arrows in each Inset are represented from left to right by green triangles, light-blue crosses, and dark-blue circles. No error bars are displayed so that
the distinction between the different curves remains possible.
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classic case of an oil droplet detaching from a needle. Simi-
larly, after the exponential regime, the system is well described
by the viscous regime (Fig. 5F), with the expected value of ṙmin

(red dashed line, rmin = uv ), the clear symmetry of the profiles
around rmin, and a self-similar shape (the rescaled profiles are
well superimposed).

Between these two regimes, ṙmin oscillates and reaches suc-
cessively uiv and uv . While in Fig. 5E, the profiles do look like
the self-similar profiles, they do not collapse satisfactorily (espe-
cially for positive values of ξ1). Furthermore, the width of the
error bars in Fig. 5E is comparable to the size of the data points
and thus they cannot explain the differences between the three
curves. In Fig. 5D, the situation is more obvious: The profiles
are clearly not superimposed, and we even lose the symmetry of
the profiles, even though this condition is essential for the cal-
culation leading to Eq. 3. It is clear that self-similarity is at least
lost during the evolution of the neck close to breakup in Fig. 5D,
whereas we can only speculate that it is also the case in Fig. 5E.
Overall, these results suggest that self-similarity is lost during the
oscillation of the neck radial velocity. After having identified the
two self-similar regimes, we measure the duration of the tran-
sition between them. This duration increases dramatically both
with the cylinder radii Rcyl and the velocity vcyl as it can reach up
to 50 ms (SI Appendix, Fig. S2), hiding somehow the self-similar
features of the pinch-off for most of the process.

In conclusion, our results provide experimental proof of a log-
oscillation of the slope of rmin in a viscous pinching process, dur-
ing the transition from the viscous regime to the inertial–viscous
one. In particular, this oscillating transition delays the onset of
the final inertial–viscous regime. Moreover, an important con-
sequence of this oscillation concerns the shape of the liquid
filament which apparently does not follow any of the self-similar
regimes along these transient dynamics, despite the values of
ṙmin alone suggesting otherwise. Contrary to many beliefs, the
simple knowledge of ṙmin during a linear regime is not suffi-
cient to conclude that self-similarity is observed. Even though
one would expect that external conditions play no role in this
oscillatory behavior, we find that such a phenomenon appears
when one end of the viscous filament is connected to either a
large enough structure or a moving one (at a sufficient velocity).
The influence of such quantities on the triggering of oscillations
in the transient regime has yet to be investigated. Finally, it is
surprising that the slopes for the minimum radius evolution in
the oscillation are identical to those of the linear viscous and
inertial–viscous regimes. The link between these dynamics and
the lack of self-similar profiles in this region needs therefore to
be clarified.

Materials and Methods
Oil Droplets. To perform the reference experiment of an oil droplet detach-
ing from a needle of radius Rneedle, we extrude oil with a syringe pump
(Harvard Apparatus PHD 2000) inside deionized water, at a very low flow
rate Q = 0.1 mL/min, to form drops quasi-statically. As a consequence, the
Weber number We = ρU2Rneedle/σ verifies We� 1, with U the velocity of
the fluid at the tip of the needle, so that the flow rate does not impact the
dynamics. We use silicone oil (kinematic viscosity ν = 10−4 m2·s−1, density
ρ = 966 kg·m−3, oil–water interfacial tension γ = 42 mN·m−1). The needles
used have a circular orifice of known inner and outer diameters. Because
the oil wets the surface of the needle, the important dimension is only the
outer diameter.

Stretched Meniscus Formed by a Moving Cylinder Pinned to the Oil–Water
Interface. For the cylinder experiment, we fill a tank of dimensions 0.2 ×
0.2 × 0.25 m with deionized water and add on top of it a 2-mm–thick
layer of the same silicone oil as for the needle experiment. We pull on the
interface with aluminum cylinders within a range of diameters from 2Rcyl =
1 mm to 30 mm, with a Thorlabs Linear Translation Stage mounted with
a stepped motor that can reach a velocity vcyl = 30 mm/s along a travel
range of 150 mm. To move the cylinder quasi-statically (vcyl = 0), we con-
trol its vertical motion in 10-µm increments close to pinch-off and wait
a few seconds between each step to leave enough time for the Plateau–
Rayleigh instability to grow. If no thinning is observed, the cylinder is
then moved downward again. This operation is repeated until thinning
is triggered.

To ensure the reproducibility of our experiments, we check that the initial
vertical position of the cylinder, when the motion is started, has no effect
on the thinning dynamics. To that end, we reproduce several times the same
experiment (with a given cylinder radius Rcyl and a given vertical velocity
vcyl), but for different initial positions. The evolution of rmin is found to be
the same in each experiment. Finally, for all experiments, we choose the ini-
tial acceleration profile (to increase the vertical velocity of the cylinder from
0 to vcyl) so that the constant velocity vcyl is reached before the meniscus
begins to thin.

Acquisition. A high-speed camera (Phantom v2511) records the dynamics
with a recording speed up to 25,000 frames per second. To resolve perfectly
the contour of the drop, we place between the backlight and the sample a
mask, to increase the contrast with the ambient fluid.

Log-Oscillation. Without conducting the full calculation, we remind the
reader how log(τ ) is the relevant measure of time to characterize the con-
vergence toward a self-similar regime. For that purpose, we consider the
equations leading to the inertial–viscous regime and follow the procedure
developed by Eggers (18),

ρ(∂tv + v∂zv) =−γ∂z

(
1

R1
+

1

R2

)
+ 3µ

∂z(r2∂zv)

r2
− ρg [8]

∂tr + v∂zr =−r∂zv/2

with R1 and R2 the two radii of curvature, r the radius of the fluid filament,
ρ its density, µ its viscosity, γ its surface tension, and v the velocity of the
fluid. In the pinch region, r and v can be described with two self-similar
functions φ and ψ and a single variable z/τ1/2, with τ the time remaining
before pinch-off and z the vertical position. Such an approach leads to the
asymptotic inertial–viscous regime, but if we want to capture the transition
toward this regime, we need to keep a time dependency in φ and ψ, as
in Eq. 9,

r(z, t) = lµτ
′
φ(z′/τ ′1/2, τ ′) [9]

v(z, t) = (lµ/tµ)τ ′−1/2
ψ(z′/τ ′1/2, τ ′)

with τ ′ = (tpo− t)/tµ the dimensionless time before breakup and z′ = (z−
zpo)/lµ the dimensionless vertical position. We define ξ= z′/τ ′1/2 as the
self-similar variable. Inserting Eq. 9 into Eq. 8 leads to a system of equations
almost similar to the one obtained by Eggers, with only an additional term:

−
∂ψ

∂ log τ ′
+
ψ

2
+ ξ

∂ξψ

2
+ψ∂ξψ=

∂ξφ

φ2
+ 3∂2

ξψ+ 6
∂ξψ∂ξφ

φ

−
∂φ

∂ log τ ′
+ ∂ξφ

(
ψ+

ξ

2

)
=φ

(
1−

∂ξψ

2

)
. [10]

As we can see, the time τ ′ intervenes in the equations only through log(τ ′)
so that the dynamics around the self-similar solutions involve the log of the
time only.
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