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Beamforming with metagratings at microwave
frequencies: design procedure and experimental

demonstration
Vladislav Popov, Fabrice Boust, Member, IEEE, and Shah Nawaz Burokur, Member, IEEE

Abstract—As opposed to metasurfaces, metagratings repre-
sent themselves sparse arrangements of scatterers. Established
rigorous analytical models allow metagratings to overcome per-
formance of metasurfaces in beam steering applications while
handling less degrees of freedom. In this work we deal with
reflective metagratings that have only as few as one degree
of freedom (represented by a reactively loaded thin wire) per
each propagating diffraction order. We present a detailed design
procedure and fabrication of three experimental samples capable
of establishing prescribed diffraction patterns. The samples are
experimentally studied in an anechoic chamber dedicated to
radar-cross-section bistatic measurements and results are com-
pared with three-dimension full wave numerical simulations. We
identify and analyze factors affecting operating frequency range
of metagratings, suggest a strategy to increase the bandwidth.

Index Terms—Electromagnetic metasurfaces, diffraction,
metagratings, beam steering, reflector antennas.

I. INTRODUCTION

A diffraction grating, defined as a periodic optical structure
with infinite extent in one direction diffracts waves incident on
its surface [1]. Being imposed by the periodicity of a grating,
which can be of the order of a free-space wavelength or
greater, an incident wave is scattered as propagating diffraction
orders only in certain directions. Concerning their applications,
diffraction gratings have been widely used in laser resonators
to tune and narrow lasing bandwidth [2], [3]. Blazed or
echelette gratings [4], [5], [6] capable of scattering an incident
wave into a specific diffraction order have been applied in
frequency-scanning reflector antennas [7], [8], [9], [10] and for
radar cross section (RCS) reduction [11], [12] at microwave
frequencies and in Littrow mount external cavity lasers in
optics [13]. Classical blazed gratings are three-dimensional
(3D) structures that generally take the form of right-angle
sawtooths [14] and rectangular grooves [5].

In the last few years, 2D metamaterials, also known as
metasurfaces [15], have been applied to mimic blazed gratings
functionality [16]. Metasurfaces representing themselves as
very thin structures have been proposed as planar alternatives
to metamaterials to exhibit light manipulation possibilities
in various frequency domains, extending from microwave to
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Fig. 1. Schematic diagram of the system under consideration: a periodic array
of loaded thin wires (pink cylindrical lines) placed on PEC-backed dielectric
substrate having permittivity εs and thickness h. The array is excited by a
TE-polarized plane wave incident at angle θ.

visible frequencies. Local magnitude and phase of reflection
and/or transmission coefficients of a metasurface can be con-
trolled, and can thus be used to manipulate scattered wavefront
of an incident beam. As such, metasurfaces have been used
to perform functions including anomalous reflection and re-
fraction [17], [18], [19], [20], [21], [22], deflection [23], [24],
[25], [26], lensing [23], [24], [27], [28], [29], [30], thin-film
cloaking [31], [32], [33], coupling of propagating waves to
surface waves [34], [35], optical vortex beams generation [36],
[37], [38], [39], and holographic imaging [40], [41], [42],
[43], [44], [45], to name a few.

Most of the metasurface-based wavefront manipulation ge-
ometries rely on the generalized laws of reflection and re-
fraction presented in Ref. [17]. However several studies have
shown that this approach suffer from low efficiency, partic-
ularly in configurations where extreme wave manipulation
is considered (see, e.g., Refs. [46], [47], [48]). Moreover,
implementation of field transformations into physical meta-
surface structures can reveal to be highly challenging and
drawbacks concerning optimization time, design complexity
of subwavelength periodically arranged resonant meta-atoms
and material losses still exist.

Very recently, the concept of metagratings evolved from
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classical diffraction gratings has been proposed as an in-
teresting alternative to metasurfaces for boosting wavefront
manipulation efficiency [49]. They are designed for diffrac-
tion engineering by cancelling a finite number of undesired
propagating diffraction orders and allowing desired ones to
radiate. In general, a metagrating is an array of scatterers
(polarizable particles) separated by a distance of the order
of the operating wavelength λ. The sparse arrangement of
scatterers does not allow one describing metagratings in
terms of local reflection and transmission coefficients (or
surface impedances) as metasurfaces. In terms of meta-atoms,
a metagrating consists of a limited number of meta-atoms
in a supercell (period) compared to a metasurface which is
composed of supercells incorporating numerous meta-atoms
with subwavelength periodicity. Although metagratings can
be considered as relatively simple systems in comparison
to metasurfaces, functionalities such as perfect anomalous
reflection and perfect beam splitting have been demonstrated in
Refs. [49], [50], [51], [52], where three propagating diffraction
orders were considered at most and were handled by only
two degrees of freedom. In Refs. [53], [54], the concept was
generalized and the possibility to fully control an arbitrary
number of propagating diffraction orders by means of a
specific number of degrees of freedom was demonstrated.

Essentially metagratings can be understood by considering
an example of 1D metagratings represented by a periodic array
of supercells composed of N thin wires each. An incident
wave excites polarization line currents in the wires resulting in
the scattered field represented by Floquet-Bloch modes which
are defined by the period L of the array (i.e., the length
of the supercell). In particular, the diffraction angles of the
propagating diffraction orders can be found via the grating
formula: L(sin[θm] − sin[θi]) = mλ, where m represents
the number of an order and θi is the incidence angle of
an impinging plane wave. Furthermore, a line current is
mathematically represented by the 2D Dirac delta function
δ(y, z) that allows one to find the scattered field analytically,
i.e., to know the complex amplitudes of all diffraction orders
(propagating and nonpropagating).

In what follows, we deal with a particular configuration
of 1D metagratings when thin wires are placed on the top
of a metal-backed dielectric substrate as illustrated in Fig. 1.
A plane-wave illumination is assumed and the wires interact
only with the TE-polarized field. As it was shown in the
theoretical study [53], the complex amplitudes ATE

m of the
electric field of the reflected plane waves are given by the
following expression:

ATE
m = − kη

2L

(1 +RTE
m )ejβmh

βm

N∑
q=1

Iqe
jξm(q−1)d

+ δm0R
TE
0 e2jβ0h (1)

where k and η are respectively, the wavenumber and the char-
acteristic impedance outside the substrate, ξm = k sin[θi] +
2πm/L and βm =

√
k2 − ξ2m represent respectively, the

tangential and normal components of wavevector of the plane
waves, and RTE

m is the corresponding Fresnel’s reflection
coefficient. Equation (1) suggests that complex amplitudes of

Fig. 2. (a) Schematic illustration of a capacitive unit cell: printed capacitance
on top of a grounded dielectric substrate. (b) Load-impedance density of the
printed capacitance extracted from specular reflection. d ≈ 11.6 mm for the
first sample and d ≈ 15.7 mm in case of the second and third samples.
Geometrical parameters are: w = 0.25 mm, B = 3 mm and h = 5 mm and
operating frequency is set to 10 GHz.

all M propagating diffraction orders can be set arbitrarily if
there are at least N = M line currents Iq in a supercell.
Other parameters of the system, such as the parameters of
the substrate and the distances between the line currents
are assumed being fixed conversely to previously mentioned
studies in Refs. [49], [50], [51], [52].

Although here we focus on the TE polarization and reflec-
tive configuration of metagratings, the case of TM polarization
can be studied similarly by means of duality relations (see,
e.g., Refs. [55], [56]). The mathematical approach used in [53]
to derive Eq. (1) can be straightforwardly generalized on
transmissive-type metagratings, as the particular configuration
studied in [57].

In this work, based on the theoretical study of Ref. [53], the
design of simplified metagratings composed of the number of
loaded wire as the considered number of propagating diffrac-
tion orders, is presented. The load-impedance densities of the
wires are calculated and engineered from subwavelength wire
elements. Measurements are performed on fabricated samples
to experimentally validate the theoretical results . The rest of
the paper is organized as follows. In Section II we provide
the design methodology of the reflective-type metagratings.
Section III is devoted to the discussion of the experimental
results and their comparison to simulation results. In the
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same Section we discuss the mechanism behind the observed
wide-band response of the proposed metagratings (see also
Refs. [51], [53]). Section IV concludes the paper.

II. DESIGN PROCEDURE

In order to be able to control the diffraction pattern with a
metagrating one has to carefully engineer it. An appropriate
dielectric substrate for a given frequency range is required.
Its thickness h and relative permittivity εs should be carefully
chosen in order to avoid excitation of waveguide modes [53].
These waveguide modes are analog of surface plasmon polari-
tons responsible for well-known grating anomalies (or Wood’s
anomalies). On the other hand, the presence of waveguide
modes leads to divergence of certain Fresnel’s reflection coef-
ficients RTE

m in Eq. (1), manifesting themselves in significant
numerical errors. Thus, in order to select a good substrate for a
given metagrating’s period L, one can plot the absolute value
of the first few Fresnel’s reflection coefficients corresponding
to nonpropogating diffraction orders as a function of the
substrate’s parameters (thickness and permittivity) and avoid
poles. As a rule of thumb, a substrate with low permittivity
and thickness of the order of λ/(4

√
εs) is a good candidate

for the design of metagratings.
After selecting the correct substrate, the calculation of the

characteristics of scatterers composing the metagrating has to
be performed. Incident plane wave excites polarization line
currents Iq in loaded thin wires that can be characterized by
load-impedance Zq and input-impedance Zin densities. Each
configuration of the diffraction pattern requires different set of
load-impedance densities found from the Ohm’s law:

ZqIq = Eq − ZinIq −
N∑
p=1

Z(m)
qp Ip. (2)

The right-hand side of Eq. (2) represents the total electric
field at the location of the qth wire (including the self-action
ZinIq). Thus, Eq = (1 + RTE

0 ) exp[jβ0h − jξ0(q − 1)d]
is the external electric field created by the incident wave
e−jk sin θy−jk cos θz+jωt reflected from the substrate and the
sum

∑N
p=1 Z

(m)
qp Ip takes into consideration the mutual interac-

tions of the qth wire with the rest of the wires (infinite number)
and the grounded substrate. The quantities Z(m)

qp are called as
mutual-impedance densities. Generally, load-impedance densi-
ties calculated from Eq. (2) require engineering active and/or
lossy response, i.e. <[Zq] 6= 0. For instance, in order to
perform a large angle nonspecular reflection by means of a
N = M metagrating, one has to cancel two propagating
diffraction orders out of M = 3 available (as in the case of
normal incidence). Then, the conditions ATE

−1 = 0 and ATE
0 = 0

leave one with only a single variable (being the phase of ATE
1 )

that cannot be used to satisfy three different equations

<

[(
Eq −

N∑
p=1

Z(m)
qp Ip

)
I∗q

]
−<[Zin]|Iq|2 = 0 (3)

providing reactive load-impedance densities (the asterisk
stands for the complex conjugate). Equation (1) relates the
complex amplitudes and currents, i.e. Eq. (3) can be rewritten

TABLE I
PARAMETERS OF THE FABRICATED METAGRATINGS. THE INDEXES
CORRESPOND TO THE NUMBERED UNIT CELLS IN FIGS. 3 (A)–(C).

Loads (η/λ) Z1 Z2 Z3 Z4 Z5

Sample 1 −j30.3 −j6.35 −j1.57 - -
Sample 2 −j3.77 −j0.43 −j31.2 −j7.06 −j5.27
Sample 3 −j3.75 −j4.84 j0.05 −j2.94 −j8.86

Arm’s length (mm) A1 A2 A3 A4 A5

Sample 1 0.37 3.25 8.70 - -
Sample 2 5.23 11.2 0.33 2.91 3.90
Sample 3 5.25 4.22 12.3 6.28 2.27

in terms of Am, with m numbering propagating diffraction
orders.

In order to deal with N = M passive and lossless meta-
gratings, equation (3) has to be satisfied. To that end, spurious
scattering in undesired propagating diffraction orders has to
be permitted. By introducing scattering losses, we sacrifice the
efficiency for sake of design that would require only reactive
elements. An optimal configuration is achieved by numerically
maximizing the power scattered in desired propagating diffrac-
tion orders while minimizing the left-hand-side of Eq. (3). It
is worth to note that reflecting metasurfaces face the same
difficulty (see for e.g., Refs. [46], [47]) with notable exception
of Refs. [58], [59], which are rather special cases. Generally,
the efficiency of nonspecular reflection is used to evaluate
the performance of conventional reflectarrays, i.e., efficiency
decreases when the angle of nonspecular reflection increases.
However, highly efficient multichannel reflection can still be
achieved as we demonstrate further.

Once Eq. (3) is satisfied and corresponding complex am-
plitudes are found, load-impedance densities are calculated
from Eq. (2) and implemented by wire elements engineered
at subwavelength scale. Although in a general case both
capacitive and inductive loads might be required [54], only
capacitive elements are necessary in the examples considered
further for an operating frequency set to 10 GHz. It is assumed
that the samples would be fabricated by means of the con-
ventional printed-circuit-board (PCB) technology. Thus, thin
wires are represented by metallic strips of width w � λ,
thickness of tm = 35 µm, and input-impedance density Zin =

kηH
(2)
0 (kw/4)/4 as given in Ref. [60]. Capacitive loads are

obtained by means of a microstrip printed capacitances, as
illustrated in Fig. 2 (a). Load-impedance density of printed
capacitances can be approximated analytically using formulas
for sheet impedance of a patch array [61] as it is done in [50],
[53], [51], [54]. Although the analytical model represents a
simple tool for designing metagratings, it takes into account
the mutual coupling with adjacent loaded wires via a phe-
nomenological scaling parameter which is found by means of
3D full-wave simulations of an entire supercell and, thus, is not
unique. On the other hand, a recently developed simulation-
based approach [56] allows one to construct metagrating unit
cell by unit cell. Instead of performing computations on a
whole supercell, it deals with a single unit cell and takes an-
alytically into account the interaction between adjacent wires
to retrieve load-impedance density. Additionally, simulation-
based approaches are advantageous for being able to consider
all practical aspects of meta-atoms, such as finite thickness of
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Fig. 3. (a)–(c) Schematics of prescribed diffraction patterns established by the three different designed metagratings with: (a) nonspecular reflection at an
angle of 60◦ with N = 3 unit cells per period, (b) nonspecular reflection at an angle of 23◦ with N = 5 unit cells per period, and (c) equal excitation
of the −2nd and +1st orders out of five diffraction orders, respectively. The green and red beams correspond to excited and suppressed diffraction orders,
respectively. (d)–(f) Measurement results of the scattered power in the [6 GHz – 18 GHz] frequency range. (g)–(i) Power management in the excited diffracting
orders and scattering losses, the roman digits correspond to the highest propagating diffraction order in a given frequency range.

the metal cladding and conduction and dielectric losses.

We design three experimental samples of metagratings
to operate at 10 GHz (λ ≈ 30 mm) and we assume a
normally incident plane-wave illumination (θ = 0) for all
three configurations. The functionalities of these three samples
are schematically illustrated in Figs. 3 (a)–(c). The h = 5
mm thick F4BM220 dielectric substrate having permittivity
εs = 2.2(1 − j10−3) is selected as a good candidate for the
proposed designs. The first sample deals with three diffraction
orders maximizing the power scattered in the +1st order and
suppressing scattering in the the −1st and 0th orders. Hence,
it is composed of three unit cells per supercell, which has a
length L = λ/ sin(60◦) at 10 GHz. This metagrating is able
to achieve anomalous reflection at 60◦ degrees. The second
and third samples each has five unit cells per supercell of
length L = 2λ/ sin(50◦), which allows one to control five
diffraction orders: −2nd, −1st, 0th, +1st and +2nd. The second
sample maximizes the power scattered in the +1st propagating
diffraction order and thus performs small angle anomalous
reflection, corresponding approximately to 23◦ at 10 GHz. The

third sample equally excites the −2nd and +1st orders while
suppressing the three others.

On the basis of these specifications, the required load-
impedance density are calculated by means of Eqs. (1) –
(3) and are presented in Table I. Only two capacitive unit
cells of length d = λ/[3 sin(60◦)] and d = 2λ/[5 sin(50◦)]
need to be simulated for the design of the three metagratings.
A schematics of the unit cell is shown in Fig. 2 (a). In
3D full-wave simulations performed with COMSOL MULTI-
PHYSICS, periodic boundary conditions are applied to the side
faces of the unit cell and the model is excited with a periodic
port. Parameters w and B are fixed to 0.25 mm and 3 mm,
respectively. The arm’s length A of the printed capacitance
is used as a tuning parameter for the load-impedance density.
The load-impedance densities are first extracted from the S11

parameter of the unit cell as detailed by the procedure in [56]
and are plotted as function of A in Fig. 2 (b). Although
being built for two different parameters d, the two curves in
Fig. 2(b) almost coincide. It proofs that the analytical model
used in Ref. [56] to take into account the interaction between
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Fig. 4. (a)–(c) Photographies of the first, second and third samples (from
top to bottom, respectively). (d), (e) Schematics of the experimental setup: to
measure the scattering range of angles from −90◦ to 90◦ the experiment is
performed in the two steps illustrated by figures (d) and (e).

adjacent wires and the substrate, allows one to obtain the load-
impedance density of a wire itself and not of a corresponding
array. Eventually, the load-impedance densities are used to
tailor the geometrical parameters of the microstrip printed
capacitances listed in Table I. Photographies of the fabricated
samples are displayed in Fig. 4 (a)–(c) and their physical
size is approximately 480 mm (y-direction) by 160 mm (x-
direction).

III. EXPERIMENTAL RESULTS

In this section we demonstrate experimentally the control of
diffraction patterns with the proposed and fabricated metagrat-
ing designs. The samples are tested in an anechoic chamber
dedicated to radar-cross-section bistatic measurements, where
transmitting and receiving horn antennas are mounted on a
circular track of 5 m radius. A schematic representation of
the experimental setup is shown in Figs. 4 (d) and (e). In the
current experiments, the transmitter is fixed and the receiver

Fig. 5. (a) Computational results of the normalized power scattered by a re-
flective metagrating (having three reactive wires per period L = λ/ sin(60◦))
in the +1st diffraction order vs. the frequency. Normally incident plane
wave is assumed. Optimal reactive load-impedance densities are found at
each frequency. (b) Absolute value of the Fresnel’s reflection coefficient
corresponding to the second (evanescent in the considered frequency range)
diffraction order.

moves with 1◦ step and the minimum angle between the
transmitter and receiver for the scanning is 4◦. In order to be
able to measure the specular reflection, the transmitter is fixed
at ∓2◦. Thus, the experiments are conducted in two steps:
when the transmitter is fixed at ∓2◦, the receiver moves form
±2◦ to ±90◦, as it is clearly illustrated in Figs. 4 (d) and (e).

Figures 3(d)–(f) visualize angle measurements of the scat-
tered power in the frequency range spanning from 6 to 18
GHz. It is clearly observed that the positions of the main
lobes (corresponding to diffraction orders) are in perfect
agreement with the results given by the grating formula
θm = sin−1(mc/(νL)+sin[θi]) (represented by black dashed
curves). Here, c is the speed of light in vacuum and ν is the
frequency. However, the spectrum of waves scattered from a
finite-size sample in the far-field is much more complex than
just a few plane waves representing propagating diffraction or-
ders. Thus, in order to estimate the performance of the samples
we execute next steps following Ref. [52]. In the first place,
we localize each diffraction order between the angles θ(1)m and
θ
(2)
m which correspond to 3 dB of the power attenuation with

respect to the maximum power of the lobe. The maximum is
found near the angle θm = sin−1(mc/(νL)+sin[θi]). Finally,
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the normalized power fm(ν) scattered in a given diffraction
order m at the frequency ν is estimated by means of the
following integral formula

fm(ν) =

∫ θ(2)m

θ
(1)
m

P (ν, θ)dθ∑
m

∫ θ(2)m

θ
(1)
m

P (ν, θ)dθ
, (4)

where P (ν, θ) is the absolute power scattered in the receiving
angle θ at the frequency ν. The summation in the denominator
is performed over all propagating diffraction orders at the
frequency ν. Figures 3(g)–(i) show the performance of the
experimental samples (solid curves obtained by means of
Eq. (4)) as function of the frequency, scattering losses rep-
resent the power scattered in undesired diffraction orders. The
dashed curves demonstrate the results obtained from 3D full-
wave simulations (a supercell with imposed periodic boundary
conditions and excited by a periodic port). By comparing the
solid and dashed curves, one can observe a good agreement
between the experimental and simulation results.

Although the samples were designed to operate at a single
frequency (10 GHz), it is seen that the scattering losses remain
low in a wide range of frequencies. One of the most important
factors affecting an operating frequency range is the frequency
response of unit cells. Resonant elements, in a general manner,
significantly decrease an operating frequency range (see, e.g.,
Refs. [54], [56]). As demonstrated by Fig. 2(b), unit cells used
to construct experimental samples do not exhibit resonances
at 10 GHz. Since the designed metagratings possess a number
of degrees of freedom equal to the number of propagating
diffraction orders, it is expected that the scattering losses
increase when approaching frequencies where the number of
propagating diffraction orders changes (corresponding to dif-
ferent areas in Figs. 3(g)–(i) labeled with roman digits). While
it is the case for the second and third samples, the performance
of the first one decreases far before the appearance of the
second propagating diffraction orders, see Figs. 3(g)–(i). It
unveils yet another crucial factor influencing an operating
frequency range: excitation of waveguide modes discussed in
the very beginning of Section II. Although we avoid waveguide
modes around the design frequency of 10 GHz, they may
appear at lower or higher frequencies and this is exactly
what happens with the first sample, as we further present in
Fig. 5. A waveguide mode is excited at the frequency when
the Fresnel’s reflection coefficient RTE

2 diverges and leads to
drastic decrease of the performance of the metagrating, as it
can be clearly observed in Fig. 5 when comparing two different
thicknesses of the dielectric substrate. In the experimental and
simulation data the waveguide mode manifests itself in the
resonance observed around 16.4 GHz, see Figs. 3(d) and (g).
Figure 5(a) presents the computational results of maximizing
the power of a normally incident plane wave coupled to the
+1st propagating diffraction order in the three unit cells per
period metagrating, assuming purely reactive load-impedance
densities. As demonstrated, the excitation of the waveguide
mode can be suppressed by choosing a thinner substrate (for
e.g. 2.5 mm instead of 5 mm) which enables restoring the
performance over the entire range of frequencies where there

are three propagating diffraction orders (see blue curves in
Fig. 5).

IV. CONCLUSION

To conclude, we have described in details the design proce-
dure of reflective metagratings and tested three experimental
samples able of establishing prescribed diffraction pattern in a
wide frequency range. The experimental results have demon-
strated a good agreement with 3D full-wave simulations. Thus,
we have experimentally verified the concept of metagratings
for controlling multiple beams with as few as one degree of
freedom (represented by a reactive load) per a propagating
diffraction order. We have identified the main factors affecting
the operating frequency range of metagratings which should
facilitate the development of wide-band beamforming devices
in the future.
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