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The capillary interaction between pairs of granular
rafts†

Lagarde Antoine,a Josserand Christophe,b and Protière Suzie∗a

When an object is placed at the surface of a liquid, its weight deforms the interface. For two iden-
tical spherical objects, such a deformation creates an attractive force, leading to the aggregation
of the two-body system. Here, we experimentally investigate the interaction between two granular
rafts, formed by the aggregation of dense millimeter-sized beads placed at an oil-water interface.
The interfacial deformation created by such a two-dimensional object exceeds by at least an order
of magnitude the deformation of a single bead. This leads to unusually high capillary forces which
strongly depend on the number of particles. Likewise, because the raft grows in size as more
particles are added, the viscous drag experienced increases along with the capillary attraction,
leading to a non-trivial dependence of the balance of forces on the number of beads. By studying
the relative motion of two granular rafts in relation with the interfacial deformation they generate,
we derive a model for the observed speed profiles. With this work, we generalize how the capillary
interaction between two non-identical complex structures evolves with their respective geometry.

1 Introduction
When a few identical objects are deposited on a fluid interface,

a daily yet striking phenomenon occurs, during which the passive
objects will spontaneously move towards one another. The impli-
cations of what could appear as a trivial experiment are countless.
In Nature, fire ants use it to survive flood by aggregating into a
floating raft1, while some animals are able to propel by deform-
ing the water surface in a specific way2. This phenomenon is also
used in industrial processes for the fabrication of macroscopic ob-
jects with a specific microstructure3–5.

The self-assembly of objects at a liquid interface relies on the
interaction due to the surface deformation around each parti-
cle6. When the menisci around several objects overlap, capil-
lary attraction (or repulsion) arises. Colloidal particles generate
lateral forces due to the undulation of the contact line around
their surface7–10, either because of surface roughness and wet-
tability, or due to a non-spherical shape. The interface around
the particle is then conveniently seen as a capillary multipole.
For anisotropic colloids, the interaction depends strongly on the
individual shapes11, giving rise to oriented aggregation either
through a precise manufacturing of the form of each particle12,
or thanks to a curved interface acting as a force field13.

For larger objects, another contribution comes from the parti-
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cles’ weight which deforms the surrounding interface by pushing
the liquid down, an effect that can be taken into account through
a generalized Archimedes’ principle14. Models for such interac-
tions have been developed almost exclusively for two identical
rigid bodies15,16. In 1949, Nicolson15 proposed a model using a
linear superposition approximation of the interface deformations
to describe the force of interaction between two floating bubbles
at a liquid interface. This far-field calculation leads to an analyt-
ical formulation of the capillary force between identical objects
(bubbles, solid sphere, ...)16,17. Good experimental agreement
has been reported for the relative motion of a small number of
large identical spheres18,19. However, most of these models and
experiments concern individual and identical particles and no de-
tailed investigations have been made so far to characterize the
interactions between clusters of particles.

In this paper, we focus on such large objects, where dense
millimeter-sized beads act as monopoles. We study the interac-
tion between two granular rafts20,21, each formed by the aggre-
gation of dense spherical beads into a single axisymmetric object.
Such 2-D structures are flexible and exhibit high deformations
of the interface due both to their weight and their geometrical
extension. The overall meniscus created by these large objects
generates a specific raft-raft interaction that needs to be charac-
terized. We quantify the dependence of the drag and the capil-
lary force experienced by a raft on both its size and the size of
the other interacting raft. The present study questions whether
two assemblies of particles forming dense objects can interact as
single entities, and investigates the influence of the clusters di-
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mensions on their interactions.

2 Kinematics of two interacting granular
rafts

2.1 Experimental setup

In a typical experiment, a thick layer of oil (kinematic viscosity
ν = 50.10−6 m2.s−1, density ρo = 960 kg.m−3, oil-water surface
tension γ = 38 mN.m−1) is carefully poured into a tank of dimen-
sions 0.2 x 0.2 x 0.25 m filled with pure water. A precise number
of particles nA are sprinkled from above. Beads are deposited far
away from one another, from every direction around the raft. Due
to the very strong gravitational interaction between such objects
the beads automatically aggregate into a compact axisymmetric
raft. When using the beads presented in table 1, we never observe
a loosely packed assembly such as the one described in22,23. The
raft size can be controlled by adding beads progressively (mean-
ing the raft is made of precisely nA particles), as represented in
figure 1.

The same procedure is reproduced elsewhere in the tank, with
nB particles. The motion of the two rafts thus formed (respec-
tively identified by the letters A and B) is recorded either from
above or from the side by a camera at 250 frames per second.
The properties of the various beads used in the experiments are
summarized in table 1, along with the approximate maximum
number of particles nmax the corresponding raft can reach before
sinking21.

Table 1 Characteristics of the beads used in experiments

Type of particle ρs (kg.m−3) Rpart (mm) nmax
Plastic 1,420 2 16
Plastic 1,420 2.5 7
Ceramic 3,800 0.35 160
Ceramic 3,800 0.45 60
Ceramic 4,800 0.35 60
Ceramic 4,800 0.45 25

At the oil-water interface, the capillary length `c =√
γ/((ρw−ρo)g) is greatly increased by buoyancy effects, so that

`c ≈ 10 mm (with ρw the density of water, and g the gravitational
acceleration). The maximal possible deformation is thus far more
important than at an air-water interface. This leads to unusually
high long-range capillary forces.

2.2 Speed measurement

For a given set of sizes (nA, nB), we record the dynamics from
above to measure the speed of the rafts, and from the side when
we want to access the deformation of the interface. A typical
experiment can be visualized in figure 2 (see supplementary in-
formation for the movies, taken from above and from the side),
for two rafts with respectively nA = 30 and nB = 50. The two rafts
move towards one another until they come into contact, at which
point they will rearrange to form a bigger raft or sink. Here, we
focus on the interaction of two rafts before they reach contact.

In a typical experiment such as the one presented in figure 2.a,
the fluid interface undergoes strong deformations due to the
weight of each raft. This induces a vertical displacement which

cannot be neglected in our measurement of the raft speed. For ex-
ample, in figure 2.a, the amplitude of the vertical motion of raft
B (nB = 30) between the last two images is more than half the
length of its horizontal motion. In our study, all the speed mea-
surements are derived from top views of the granular raft motion.
Yet, a movie taken from above only gives us information on the
horizontal projection of the speed. The vertical component is not
directly accessible. We deduce the vertical displacement from the
radial motion, via measurements of the interface deformation.

The equation for the interface is obtained by a classic equilib-
rium between the hydrostatic pressure and the pressure jump due
to the curvature. For a cylindrical coordinate system centered in
the middle of the raft, the height of the interface beyond the raft
B is obtained as the solution of the following system of equations:


γ

(
h′′

1+h′2 +
h′
r

)
− (ρw−ρo)gh

√
1+h′2 = 0

h(r→ ∞) = 0
h(r = Rra f t B) = hra f t B

(1)

with h the height of the interface (h=0 for a flat interface), r the
radial coordinate, h′ the derivative of h with respect to r, Rra f t B

the radius of the raft and hra f t B the height of the interface at the
edge of the raft (see figure 1). We neglect the irregularities at
the edge of the raft due to the presence of the particles, making
the assumption that the shape of the interface around the raft
is isotropic. We can thus write equation (1) in an axisymmetric
configuration.

Oil

Water

h
raft B

R
raft B

h

r

Fig. 1 Schematic side view of a granular raft. Deformation of the
interface around a single raft B, described by two quantities: the radius of
the raft Rra f t B, and the depth of the interface at the edge of the raft hra f t B.
The radial coordinates are defined from the center of the raft, while the
origin of the vertical axis h corresponds to the height of the undisturbed
flat interface.

After having measured Rra f t B and hra f t B from a side view of
raft B (without the presence of A), we solve equation (1) numer-
ically, and obtain the expression of h(r) imposed by the presence
of the raft B. Then, from the knowledge of the radial position L of
the center of A with respect to the center of B, which is measured
directly from the movie, we can deduce the expected vertical po-
sition of the granular raft A along its motion. Following this pro-
cedure, we can calculate the total speed V of a granular raft from
its radial displacement. Implicitly here, we use the Nicolson lin-
ear approximation15 by saying that the derivative of the vertical
position of A only depends on the interface height imposed by B.

The total speed V for the experiment of figure 2.a is plot-
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Fig. 2 Aggregation of two granular rafts. a) Time lapse of the motion of two granular rafts at an oil-water interface, filmed from the side (see sup-
plementary information for the movies, taken from above and from the side). Each raft is made of ceramic spherical beads (density ρs = 3,800 kg.m−3,
radius of a single particle Rpart = 0.45 mm), in an axisymmetric configuration, with 50 particles for the raft on the left (raft A), and 30 particles for the
one on the right (raft B). The final image corresponds to the exact moment of contact between the two rafts. Time between two images: 0.13 s. Scale
bar: 10 mm. b) Speed of the same two rafts as a function of the distance between the centers of the two rafts (made dimensionless using the radius of
a bead Rpart ). Red circles: speed of raft B; black squares: speed of raft A. The errors bars are of the order of the thickness of the curves.

ted in figure 2.b, for the two rafts, as a function of the non-
dimensionalized distance between the two centers. As a conse-
quence, the curves have to be read from right to left, with an
increase of V as the two rafts get closer, until it reaches a max-
imum speed. Then, the two rafts briefly slow down just before
contact, because of a hydrodynamic coupling in the drag force:
the liquid that separates the two rafts before collision has to be
expelled, causing an increase in the drag.

Qualitatively, we can already see in figure 2 that the sizes of the
two rafts have an effect on their motion. Indeed a raft made of
30 particles will move at a larger speed than the raft made of 50
particles during their interaction. We now need a model to relate
these speed profiles to the interacting forces acting on a granular
raft.

3 Dynamics of two interacting granular rafts

3.1 Theoretical model

We study the influence of the number of particles on the re-
spective motion of two granular rafts. To that end, we use the
theoretical framework derived for the dynamics of two identical
spheres interacting at an interface, in the limit of small deforma-
tions16, and see how the amplitude of the forces is affected by
the size of the raft.

The force between two objects at an interface depends only on
the shape of the interface around them, and is obtained by inte-
grating the capillary forces around their contact line. This shape
results from how the particles deform the interface, which in the
case presented here is the consequence of the combined effect of
their weight, their wettability and the induced buoyancy. In the
case of small spheres (Rpart� `c) where the shape of the interface
is isotropic around each bead and its deformations are small, the
calculation leads to an energy of interaction equal to the prod-

uct between the effective weight of one particle and the vertical
deformation created by the other. For two identical spheres, the
force exerted by one bead on the other is then obtained by deriv-
ing the interaction energy, leading to:

Fcap 1→1 = a(Rpart ,ρs, ...)K1

(
L
`c

)
(2)

with a a coefficient taking into account the particle and fluid prop-
erties (16 for more details), L the distance between the centers
of the two particles, and K1 the modified Bessel function of the
second kind of order one. We generalize this formulation to the
attraction of two granular rafts (designated by the letters A and
B), as schematically represented in figure 3:

Fcap A→B = f (nA,nB)a(Rpart ,ρs, ...)K1

(
L
`c

)
(3)

where f is the function we want to determine experimentally,
Fcap A→B the force exerted by the raft A on B, and nA and nB the
number of particles in each raft. To make such a generalization,
we assume here that the wavelength and amplitude of the undu-
lation of the edge of the raft are small enough so that they can be
neglected at long range and the interface around the raft can be
described as isotropic. We neglect here the granular nature of the
raft, the edge of which may be roughened by individual particles.

The drag force acting on a raft also needs a careful treatment.
For two identical spherical beads, Fdrag is expressed as a Stokes
drag corrected by the mobility function G for two spheres in a
single phase, in order to take into account the drainage of the
liquid between the particles:

Fdrag = bV G−1
(

L
Rpart

)
(4)
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Fig. 3 Forces acting on a given axisymmetric granular raft.
Schematic representation of the interaction between two granular rafts
A and B (nA and nB respectively stand for the number of particles in each
raft), at an oil-water interface. L is the distance between the centers of
the two rafts, while l is the distance between the two nearest particles of
each raft. The raft A (respectively B) is subjected to a capillary attraction
Fcap B→A and a viscous drag Fdrag A (respectively Fcap A→B and Fdrag B).

with V the speed of the particle, b= 6πµoRpartk a corrected Stokes
drag coefficient on a sphere, where k accounts for the fact that
the particle moves along an interface and as a consequence is im-
mersed in two phases24. The mobility function G was tabulated
by Batchelor25, and can be approximated by an interpolation for-
mula18. At infinity, there is no coupling and G(+∞) = 1, whereas
when the two particles are in contact, G(2) = 0.

Again, we generalize equation (4) to the motion of a granular
raft:

Fdrag A = g(nA)bVAG−1
(

l +2Rpart

Rpart

)
(5)

where g is the function we want to determine experimentally,
and l designates the distance between the edges of the two closest
particles of the two rafts, as defined in figure 3. We approximate
the hydrodynamic coupling between the two rafts by considering
the drainage of the liquid only between the two closest particles
of each interacting raft. Such a formulation of the drag is only
valid for a sphere, but here we use it for a granular raft, which
has the shape of a curved disk. As a consequence, the scaling law
for the drag should also differ from the Stokes drag of a sphere,
although we expect the general scaling laws for Stokes drag to be
valid.

Keeping in mind the assumption lying under the scaling law of
equation (5), we combine it with equation (3) and finally deduce
an expression for the speed of a raft made of nA particles attracted
by a second raft constituted by nB beads:

VA =
f (nA,nB)

g(nA)

a
b

G
(

l +2Rpart

Rpart

)
K1

(
L
`c

)
(6)

The ratio a/b is measured once and for all for each type of
particle (given radius and given density, see table 1) thanks to a
two-bead experiment, for which f (1,1) = g(1) = 1 by definition.
Then, f/g can be experimentally determined as a function of nA

and nB, giving us information on the ratio of the two forces.

3.2 Experimental results
We plot in figure 4 the speed of the raft A as a function of

the distance between the centers of the two rafts L, first with
nA = 1 and an increasing nB, and then with nB = 60 and an in-

creasing nA. The speed of the raft appears to increase both with
nA and nB, as expected from our definition of the capillary force.
This is due to the deformation of the interface that increases with
nB. Similarly, Fcap B→A is related to the weight and the size of
the raft A, an increasing quantity with nA. Focusing on a sin-
gle curve of figure 4, we recover the behavior described previ-
ously: an increasing speed as the two rafts are attracted towards
one another, until a maximum where the speed then starts to de-
crease due to the drainage of the liquid between the two rafts.
As nA or nB increases, the curves are shifted to the right since
Lmin = Rra f t A +Rra f t B, a value which increases as we add parti-
cles.

The black dotted curves of figure 4 represent the fit of equa-
tion (6) for each couple of rafts (nA, nB). There is a good agree-
ment between the experimental data and the theory for nA = 1
(figure 4.a), the fitting line being within the experimental noise.
As we increase nA, the fit starts to drift from the measured speed,
in particular regarding the position of its maximum. We discuss
the limitations of our description in the last section of the pa-
per and propose a number of hypothesis which may explain this
result. Keeping in mind that for high nA, our model does not
explain the entire dynamics, we observe the evolution of the fit-
ting coefficient f/g as a function of nA and nB for different types
of beads (see table 1), and a large variety of combinations of nA

and nB (figure 5). All the data collapse onto the same straight
line when represented as a function of nB

√
nA, on approximately

three decades, giving the following experimental result:

f (nA,nB)

g(nA)
= nB

√
nA (7)

Equation (7) gives us an empirical relation between the ra-
tio of the two forces and the number of particles in each raft.
Even though both forces are functions of nA, nB only intervenes in
the capillary force. This immediately proves that Fcap A→B ∝ nB.
Moreover, applying Newton’s third law26–28, we obtain that this
force has to be symmetrical in nA and nB and thus Fcap A→B ∝

nAnB, implying also for the drag force g(nA) ∝
√

nA. The far-field
behavior of the capillary force Fcap A→B ∝ nAnB follows a Coulomb
or gravitational-like law, replacing the electric charge or the mass
by the number of grains; since this force only depends on the
number of grains, it indicates that the organization of the parti-
cles within such compact granular rafts plays no role in the inter-
action. This is consistent with the superposition approximation,
where interface deformation at large distances can be considered
as the sum of the individual meniscii of each particle. However
we lack a physical understanding of these scalings and need to go
back to the definition of the capillary force.

4 The drag and the capillary force

As explained earlier, the capillary force exerted by a raft, as-
suming it has an isotropic shape and the deformations of the
interface are small, is proportional to the slope of the interface
deformed by its presence. In the limit of small deformations we
derive an analytical formula for this slope by solving a linearized
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Fig. 4 Agreement between experimental results and theoretical model. Speed of the raft A for different number of particles in A and B, as a
function of the distance between the centers of the two rafts (made dimensionless using the radius of a bead Rpart ), fitted by the theoretical prediction
of equation (6) (black dotted curves). For all these experiments, the particles are ceramic spherical beads (density ρs = 3,800 kg.m−3, radius of a single
particle Rpart = 0.45 mm). a) Speed of a single particle A for different sizes of the other raft, nB = 1, 5, 10, 30, 60. b) Speed of a raft of increasing size
(nA = 1, 5, 10, 20, 40), attracted by a raft of fixed size (nB = 60). The errors bars are of the order of the thickness of the curves.
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Fig. 5 Forces acting on a granular raft. Fitting coefficient of the
speed of the granular raft A, as a function of nB

√
nA, for different den-

sities and sizes of particles (green right-pointing triangles: plastic beads,
ρs = 1,420 kg.m−3, Rpart = 2.5 mm; blue left-pointing triangles: plas-
tic beads, ρs = 1,420 kg.m−3, Rpart = 2 mm; black squares: ceramic
beads, ρs = 4,800 kg.m−3, Rpart = 0.45 mm; pink stars: ceramic beads,
ρs = 4,800 kg.m−3, Rpart = 0.35 mm; blue circles: ceramic beads,
ρs = 3,800 kg.m−3, Rpart = 0.45 mm; red upward-pointing triangles: ce-
ramic beads, ρs = 3,800 kg.m−3, Rpart = 0.35 mm). The solid line has a
slope of 1.

version of equation (1):
∇2h = h

`2
c

h(r→ ∞) = 0
h(r = Rra f t) = hra f t

(8)

which gives us the following expression:

dh
dL

=
hra f t/`c

K0(Rra f t/`c)
K1

(
L
`c

)
. (9)

with K0 the modified Bessel function of the second kind of order
zero.

Equation (9) can be reconciled with the scaling Fcap A→B ∝ nA

if we show that the modified aspect ratio of a raft hra f t/`c
K0(Rra f t/`c)

is
linear with its number of particles n.

4.1 Experimental and numerical description of a raft shape

Experimentally, we measure hra f t from side views of the granu-
lar raft (blue arrows, figure 6.a). We then measure the area of the
raft Ara f t from top views (see video 2 of the supplementary infor-
mation) and calculate the equivalent radius by Rra f t =

√
Ara f t/π.

The experimental modified aspect ratio is plotted in black dia-
monds in figure 6.b for different types of beads and raft sizes, as
a function of the effective weight of a raft Fvert , that we define
as the difference between the weight of the particles and their
buoyancy:

Fvert(n) = nFvert(1) = n
4
3

πR3
partg(ρs−

ρo +ρw

2
) (10)

with n the number of particles in the raft. In equation (10), both
the weight and the buoyancy of the particles are considered linear
with n, with the supplementary assumption that a bead is equally
immersed in oil and water. However, we are aware that the gen-
eralized buoyancy of the raft, which takes into account surface
tension effect, is not strictly additive, as discussed in previous col-
lective sinking experiments14.
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All the data collapse onto a single curve, and the modified as-
pect ratio appears linear with Fvert (a power law regression on the
experimental data gives an exponent of 1.01), which is by defi-
nition proportional to n. As a consequence, the modified aspect
ratio is linear with the number of particles.

To this experimental evidence, we add a numerical confirma-
tion for the morphology of a granular raft, using the code de-
scribed in21. The raft is simulated as an axisymmetric continuous
membrane of thickness 2Rpart , with a given volume fraction of
a material of density ρs, a complementary volume fraction of a
material of density (ρo +ρw)/2, and a tension ~T directed tangen-
tially to the raft surface. As long as the tension remains positive,
a static solution is found, and the shape of both the granular raft
and the interface beyond can be solved numerically.

In figure 6.a, the simulated interface is plotted on top of exper-
imental visualisations of the corresponding granular raft, with a
visually good agreement for the top three photos. For the last two
granular rafts shown in figure 6.a, no numerical result is avail-
able: the simulations predict the sinking of the raft for such a
deformation. This is probably due to the simplicity of the model
used for the simulations, the limitations of which are discussed in
our previous work21. As a consequence, the numerics can only
give us information for part of the sizes accessible experimentally.
However, they allow us to explore a far broader range of densities
and radii of particles, and appear in that sense complementary to
the experiments. The numerical measurement of the modified
aspect ratio is represented in colored circles in figure 6. Here
again, the data collapse onto the same curve when represented
as a function of Fvert , over more than four decades, with an expo-
nent of 1.08 for a power fitting law. In conclusion, we recover the
following result both experimentally and numerically:

hra f t/`c

K0(Rra f t/`c)
∝ n (11)

Interestingly, in figure 6.b, we find that beyond a critical ver-
tical force, the linear relation between the modified aspect ratio
and Fvert no longer holds (see the right portion of the blue curve).
Such a curve corresponds to a situation where the raft reaches
a maximal depth which corresponds to a balance between the
hydrostatic pressure and the raft weight, and then extends indef-
initely as more particles are added21. As a consequence, hra f t is
bounded, leading to the saturation of the capillary force. Since
K0(Rra f t/`c)∼

√
π

2Rra f t
e−Rra f t and Fvert ∝ R2

ra f t , it explains the ver-

tical deviation in figure 6.b for large rafts.

Equation (11) can also be recovered theoretically in the limit
of small deformations (see supplementary information for more
details). All these results validate that:

Fcap B→ A = nAnBFcap 1→ 1. (12)

4.2 The drag force on each raft

Finally, we need to explain how the drag force depends on the
raft geometry:

Fdrag A =
√

nAFdrag 1 (13)

One could understand the drag dependency with nA by consid-
ering the equivalent sphere of radius Rra f t . For such a sphere, the
Stokes drag is proportional to Rra f t , which for a large range of
granular raft sizes evolves as

√
n. This argument does not hold

for the largest granular rafts (see for instance the last photo of
figure 6), for which the high curvature of the raft makes Rra f t de-
viate from this law. However at first order, Rra f t ∝

√
n, leading to

the expected drag on the granular raft. The proportionality be-
tween the drag force and the raft radius is still quite surprising,
since the shape of a granular raft is not a perfect sphere, but more
a curved disk.

5 Discussion
A number of hypotheses underlying the approach described in

this paper are no longer valid for a granular raft. They give us
some clues to understand the limits of our model. In particu-
lar we observe an increasing discrepancy between the fit and the
experimental data measured for the velocities when the rafts be-
come large (the two highest velocities of figure 4.b for nA = 20
and 40). The two-sphere canonic example we use to derive equa-
tions (3) and (5) strongly relies on the assumption of small defor-
mations around spherical beads (small in relation to the capillary
length). With granular rafts, we can reach a vertical deformation
of the interface up to almost half the capillary length. Moreover,
the morphology of a raft, a two-dimensional circular monolayer
of beads, cannot be approximated as a spherical shape, and one
could therefore expect the drag to be drastically different. Finally,
the viscous hypothesis used for the calculation of the drag can be
questioned for the bigger rafts. In this case, the maximum speed
reached during their motion is almost a hundred times higher
than for two single beads, leading to a Reynolds number of order
one. All these differences may change the amplitude of the forces
through f and g and even the form of these functions.

We also assumed that the capillary force is proportional to
K1(L/`c), a result that comes from the linearized solution of equa-
tion (1). However, for some experiments, when two dense gran-
ular rafts interact, as in figure 7, equation (1) becomes highly
non-linear, and the approximate linear solution is no longer suf-
ficient to account for the curvature of the interface. Figure 7 il-
lustrates this limitation of our model: on top of the experimental
visualisation of the interface when two granular rafts are almost
in contact, we plot the interfacial shape we would get if the defor-
mations could be superimposed, deduced from the experimental
measurement of the shape of the interface around a single gran-
ular raft of the same size. The superposition principle seems to
account rather well for the curvature on the left and right side
of each raft, but clearly overestimates the depth of the interface
between the two rafts, leading to an error on the calculation of
the capillary force. This could be part of the explanation for the
disagreement between the fit and the measured speed in figure 4
for the motion of the two biggest rafts.

Another important feature that we did not take into account is
the lateral extension of a granular raft. As already emphasized,
the derivation of equation (2) for the capillary force between two
spheres at an interface relies on various hypotheses, including the
size of the particles: Rpart � `c. However, the largest rafts, as il-
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Fig. 6 Morphology and weight of a granular raft. Relation between the deformation of the interface and the weight of the granular raft, for a
broad variety of densities, radii and numbers of particles. a) Side view of a granular raft for an increasing number of ceramic particles (density
ρs = 4,800 kg.m−3, radius of a single particle Rpart = 0.35 mm). In the top three photos, the red line represents the shape of the interface calculated by
the numerical simulation for a membrane of a radius similar to the background photo (dotted line: oil-water interface, solid line: granular raft). The blue
arrows indicate the measurement of Rra f t and hra f t . Scale bars: 3 mm in each photo. b) Modified aspect ratio hra f t/`c

K0(Rra f t/`c)
as a function of the effective

weight of the raft Fvert , for experiments (black diamonds), and numerical simulations (colored circles). The solid line has a slope of 1. The vertical errors
bars for the experiments are of the order of the size of the individual points, and are thus not displayed for clarity reasons.

Fig. 7 Example of the failure of the linear superposition assumption.
Comparison between a side view of two granular rafts during their mo-
tion towards one another (background photo) and the expected interfacial
shape obtained if the assumption of small deformations was valid (blue
dotted curve). Each of the rafts is made of 50 ceramic spherical beads
(density ρs = 3,800 kg.m−3, radius of a single particle Rpart = 0.45 mm), in
an axisymmetric configuration. The photo is taken 0.1 s before contact.
Scale bar: 5 mm.

lustrated in figure 7 for instance, can exhibit a diameter of the
order of the capillary length. In this situation equation (2) should
not be valid anymore. Here again, this could explain the dis-
crepancy between our experimental data and the corresponding
fitting curve for large rafts.

Despite all these limits, our model still accounts for the major
part of our data, proving that in a first approximation, a granular
raft does behave as a heavy membrane which is not deformed by
the interaction with other rafts.

6 Conclusion
We have investigated the interaction dynamics of a two-body

system formed after the clustering of beads into granular rafts at
an oil-water interface. In particular we described the capillary
forces generated by each granular raft, as well as the drag due to

their individual motion. Because the deformation around a gran-
ular raft strongly depends on its size (depth and width), the cap-
illary interaction can surpass by several orders of magnitude the
forces created by individual beads, with a very strong dependence
on the number of particles. A generalization of the two-particle
model is found to account very satisfactorily for the motion of the
granular rafts, and only starts to deviate from the experimental
data for objects of dimensions close to the capillary length. De-
spite the clear non-linearity of the equations describing the shape
of the interface for such large rafts, the capillary force appears
linear both with the size of the attracting and the attracted raft.
The drag, on the other hand, increases linearly with the radius of
the considered raft (or in other terms, as the square root of the
number of particles).

In this paper we have completely neglected the intrinsic
discrete nature of a granular raft by modeling it as a two-
dimensional membrane. However, in some cases the granular
aspect of the raft may play an important role. We have observed
that rafts made of smaller particles (diameter < 400 µm) show a
weaker cohesion between the grains within the raft, which may
lead to erosion and internal motions for a fast enough raft dis-
placement. Further work is thus required to characterize this phe-
nomenon and investigate the role of shape changes on the overall
interaction of granular objects at a liquid interface. Discrete as-
pects of the raft, as well as elasticity, could be also included in
future developments of the model.
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