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Abstract. The most common problem among image segmentation meth-
ods is unbalanced data, where we find a class or a label of interest has
the minority of data compared to other classes. This kind of problems
makes Artificial Neural Networks, including Convolutional Neural Net-
works (CNNs), bias toward the more frequent label. Thus, training a
CNNs model with such kind of data, will make predictions with low
sensitivity, where the most important part in medical applications is to
make the model more sensitive toward the lesion-class, i.e. tumoral re-
gions. In this work, we propose a new Online Class-Weighting loss layer
based on the Weighted Cross-Entropy function to address the problem
of class imbalance. Then, to evaluate the impact of the proposed loss
function, a special case study is done, where we applied our method for
the segmentation of Glioblastoma brain tumors with both high- and low-
grade. In this context, an efficient CNNs model called OcmNet is used.
Our results are reported on BRATS-2018 dataset where we achieved the
average Dice scores 0.87, 0.75, 0.73 for whole tumor, tumor core, and en-
hancing tumor respectively compared to the Dice score of radiologist that
is in the range 74% - 85%. Finally, the proposed Online Class-Weighting
loss function with a CNNs model provides an accurate and reliable seg-
mentation result for the whole brain in 22 seconds as inference time, and
that make it suitable for adopting in research and as a part of different
clinical settings.

Keywords: Online Class-Weighting · Weighted Cross-Entropy · Con-
volutional Neural Networks · Deep Learning · Glioblastoma Tumors ·
Image Segmentation.

1 Introduction and Related Work
Current state-of-the-art image segmentation in the field of Deep Learning

are based on Convolutional Neural Networks, where in general we find a feature
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extractor with a bank of convolution layers (i.e. trainable parameters), then pool-
ing layers to make the images less sensitive and invariant to small translations
(i.e. resisting to local translation), the last stage in CNNs models is a classifier
which classifies each pixel (or voxel) into one of many classes. Since 2012, the
tool of CNNs model led to a big breakthrough in all computer vision applications
such as image classification, segmentation, e.g. LeCun et al. [1], Krizhevsky et
al. [2] also in object detection Redmon et al. [3]. In the field of medical image
classification and segmentation, we can classify methods-based CNNs into two
categories: 2D-CNNs and 3D-CNNs models. Many works are proposed in the
first category such as Axel et al. [4], Pereira et al. [5], Chang [6], Ben naceur et
al. [7], Zhao et al. [8] and Havaei et al. [9] who extended the previous work of
Axel et al. [4], where these methods use 2 dimensional patches as an input to
train and classify medical image data. On the other hand, in the second cate-
gory, we can cite works such as Urban et al. [10], Kamnitsas et al. [11, 12], where
these methods use 3 dimensional image patches as an input to CNNs models.
In the context of our ongoing work [7], we have faced and solved many Deep
learning issues: (1) we proposed new three CNNs architectures for brain tumor
segmentation problem, (2) we proposed a non-parametric fusion function that
merges different brain tumor predictions, acting as a voting function which elects
only the tumor region with a high probability, (3) we proposed a new optimizer
to overcome the problem of vanishing gradient; where the gradient’s signal be-
comes almost zero (vanishingly small) at the front layers of deep CNNs model.
The proposed optimizer adds a new bloc after each training phase and so on
until we obtain the satisfied segmentation results in terms of Dice coefficient.
The issue of data imbalance is common across multi-label image segmentation
tasks, where there are many proposed methods in state-of-the-art. In overall
there are two categories of solutions to this issue: some methods try to mitigate
this problem by proposing equal sampling of training images patches [13], [9], on
the other hand, some methods propose a new loss functions: cross entropy-based
median frequency balancing [14], cross entropy-based weight map [15], combina-
tion of sensitivity and specificity [16], asymmetric similarity loss function [17],
and many others [18], [19], [20], [21], [22]. To our knowledge, the existing methods
are usually a specific function dedicated for well-defined applications however,
these methods could be efficient in its corresponding applications but do not
work well in others.
The aim of this paper is to overcome the issue of classical loss functions and
define a generic one. To this end, we propose a new method called Online Class-
Weighting. Then, to evaluate the impact and the effectiveness of our new pro-
posed Weighted Cross-Entropy loss function, we train a CNNs model with our
Online Class-Weighting for the problem of fully automatic brain tumor segmen-
tation. For achieving this goal, our main contributions are divided into two folds:

1. To address the unbalanced data issue, we present a new Online Class-Weighting
method that is based on the Weighted Cross-Entropy loss function,
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2. To demonstrate the Online Class-Weighting performance, we evaluate our
proposition within a case study applied to a fully automatic brain tumor
segmentation of Highly Unbalanced Glioblastoma tumors.

2 Proposed Online Class-Weighting Method
Our proposed Online Class-Weighting method is based on the Weighted

Cross-Entropy loss function (see equation 3) which is used in most image-related
applications [14] [15].

pj =
expzj

n∑
k=1

expzk

for j ∈ {1, .., n} (1)

Loss(p, q)j = − 1

n
(×

∑
j

qj × log(pj)) (2)

Loss(p, q)j = − 1

n
(
∑
j

Wj × qj × log(pj)) wj ∈ [0, 1] &

n∑
j=1

Wj = 1 (3)

Where Loss (q, p)j is the loss function (i.e. equation 3) that represents the er-
ror between the estimated probability pj ∈ [0,1] (i.e. equation 1) and the ground
truth class qj ∈ {0,1}, n is the number of classes, wj ∈ [0, 1] is the weighting
factor assigned to the class j.
In this work, to make the prediction of the estimated probability accurate and
faster, we have used one-hot encoding, where this encoding gives all probabili-
ties of the ground truth to one class (i.e. the correct class), and the other classes
become zero, e.g. q = [1,0,0,0], this vector q indicates that the first class is the
correct class. In this case, to calculate the overall error we need only one opera-
tion instead of many operations for all classes.
The estimated probability is computed using Softmax function (see equation
1) which is used in the last layer of Neural Network after a forward propaga-
tion. Thus, this function squash the output to become between 0 and 1. Then,
these probabilities are fed into Weighted Cross-Entropy function (see equation
3), where this function defines a weighting factor wj ∈ [0, 1] assigned to the class
j compared to classical Cross-Entropy loss function (see equation 2). The main
issue of the Weighted Cross-Entropy loss function is how to find the weighting
factors wj . To solve this issue, we propose here a new method called Online
class-weighting. It allows to find wj for each class during the training phase by
searching for the best parameters using the training rate progress of each class
with respect to different training iterations. Indeed, Online Class-Weighting ini-
tializes the weighting factors based on some computed measurements such as an
evaluation metric, or an error’s change. At the beginning, it measures the per-
formance by evaluating the training results with and without the initialization
of each class. This evaluation helps to measure the training accuracy of each
class. After that, a new training is launched while rewarding each class with an
adapted weighting factor wj until the algorithm reaches a defined epoch itera-
tion. wj is computed regarding to the previous accuracy of the corresponding
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class. We note that our proposed Online Class-Weighting algorithm is generic
and able to be applied with any number of classes and suitable for different
possible weighting factor initialization, and evaluation metrics. In the following,
the Online Class-Weighting algorithm describes the proposed method.

Algorithm 1: Online Class-Weighting

Data: training dataset of m instances (X1:m, Y1:n), where an input
image Xt ∈ Rd×d, and a target image Yj ∈ Nd×d, n is the number
of labels and j ∈ {1, ..., n}. Z, S are respectively the total number
of epoches and a set of epoches. Z, S, ∈ N+, where 0 < S < Z.

Result: set of weighting factors {wj , /
n∑

j=1

wj = 1, wj ∈ [0, 1]}, and the

final evaluation results Mj for each class j.
1 Initialization of the n weighting factors w1,j , where w1,j = 1;
2 Launch training for S epoches with the initialized weighting factors w1,j ;
3 Evaluation of the first training results for each class (M1,j);

4 Weighting factors re-initialization w2,j where w2,j = f(X),
n∑

j=1

w2,j = 1;

5 Launch second training for S epoches with the initialized w2,j ;
6 Re-evaluation of the second training results for each class (M2,j);
7 Computing stopping criteria: C = g(Error2(training), Error2(testing));
8 Initialization of the training iteration index: i = 3;
9 while stopping criteria is not satisfied do

10 Updating the weighting factors: wi,j = h(Mi−1,j ,Mi−2,j), where
n∑

j=1

wi,j = 1 and i is the iteration index of the current S epoches;

11 Launch training with the updated weighting factors wi,j ;
12 Re-evaluation of the training results for each class (Mi,j);
13 Computing stopping criteria: C = g(Errori(training),

Errori(testing));
14 Training iteration index i equals to: i = i+ 1;

The algorithm of Online Class-Weighting works as a policy for the assessment
of a Deep Learning model performance. Lines from 1 to 6 attempt to evaluate
the behavior of a Deep learning model without and with applying the weight-
ing factors. This assessment consists of computing the evaluation metrics (e.g.
Dice coefficient, area under precision-recall curve [17]) of the training results
for each class, for example Healthy, Necrosis and Non-enhancing tumor, Edema,
and Enhancing tumor class. After that, we use these measurements to calculate
the change in these weighting factors over the training phase. Line 7 computes
the stopping criteria based on the training and testing errors. Lines 10 and 11
calculate the new weighting factors based on the evaluation metrics between the
current training iteration and the two previous ones. To demonstrate the Online
Class-Weighting performance, a case study for Glioblastoma tumor segmentation
is described in the next section.
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3 A case study: Online Class-Weighting approach for
Glioblastoma tumor segmentation

In this section, we evaluate the proposed Online Class-Weighting algorithm
with our CNNs model on BRATS-2018 dataset. For that, we present the used
CNNs architecture that is designed for the segmentation of Glioblastoma brain
tumors. Moreover, we introduce simple but effective settings (e.g. the weighting
factors initialization) used in the Online Class-Weighting algorithm. Finally, we
illustrate different experiments applied with different evaluation metrics.
3.1 Used Neural Networks Architecture

To demonstrate the performance and the efficiency of our loss function, we
trained a fully convolutional neural networks architecture (see figure 1), where
the design of this network is based on:

1. The extraction of multiple hierarchical representations (i.e. multiple feature
maps) over the entire input image.

2. It is known that the use of pooling layer allows images to lose some infor-
mation, which leads to reducing the features’ size, thus we designed this
network architecture to use the minimum number of pooling layers.

3. Instead of using fully connected layers as the default classifier in many CNNs
architectures [1], [2], [23], we used a 1 x 1 x 4 convolution Softmax layer to
save the memory and to speed up the inference time.

4. Our used CNNs architecture called OcmNet which is built based on the rule
of using many interconnected modules, where this technique is implemented
in known CNNs architectures such as GoogLeNet [24].

Fig. 1. The OcmNet architecture with 64 x 64 x 4 four channel input patches, consisting
of two dense modules. The output 1 x 1 x 4 is a 1 x 1 convolution layer with 4
classes of BRATS dataset where we have 4 sub-regions: Healthy tissue, Necrosis and
Non-enhancing tumor, Edema, Enhancing core. Also, this architecture has 181,124
parameters.

Convolutional Neural Networks are known for its ability to extract many
complicated and hierarchical features from input images, but one of the issues
known in CNNs algorithm is: it labels each pixel (or voxel) separately from the
others (Havaei et al. [9], Pereira et al. [25]). Thus, to make CNNs take into
account the influence of pixel’s neighborhood, we concatenate the output of
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different levels from the first module (see figure 1) with the second module to
encourage the OcmNet to make a second prediction of the pixel’s label. For the
pre-processing step, we apply three normalization steps as follows:

1. Removing the 1% highest and lowest intensities: this technique helps to
remove some noise at the tail of the histogram.

2. Subtracting the mean and dividing by the standard deviation of non zero
values in all channels.

3. Isolating the background from the tumoral regions by assigning the mini-
mum values to -9. This normalization step helps CNNs to differentiate easily
between the background and the tumoral regions.

For the post-processing step, we remove some mis-classified non-tumor re-
gions by applying two post-processing techniques:

1. Using a global threshold equals to 110 for each 2D MRI image to remove
small non-tumoral regions based on connected-components. We refer to this
Post-processing as Post-processing 1.

2. Using a Morphological opening operation, where we noticed that this oper-
ator improves the results of the first post-processing. We refer to this Post-
processing as Post-processing 2.

3.2 Training and testing datasets
BRATS’s dataset has a training set of 210 patients with high-grade Glioblas-

toma and 75 low-grade Glioblastoma. Glioblastoma tumors have 4 classes: Healthy
tissue in addition to 3 sub-regions (Necrosis and Non-Enhancing tumor, Edema
and Enhancing tumor). Each patient’s brain image comes with 4 MRI sequences
(i.e., T1, T1c, T2, flair) and the Ground truth labels that are made by radiol-
ogist. We split BRATS dataset into 70% for training (i.e. first phase), 30% for
testing (i.e. second phase), then in the validation phase (i.e. third phase), we
used BRATS 2018 validation set which contains 66 MRI images of patients with
unknown grade. For the evaluation of our CNNs architectures on the validation
dataset, we used the online evaluation system3. Moreover, OcmNet model is
trained from scratch using a large number of MRI Overlapping Patches where
we applied 25% overlap among patches.
3.3 Online Class-Weighting settings

After the definition of the Online Class-Weighting algorithm (see section 2),
here we introduce different settings used in this algorithm:

1. Starting from the weighting factors: we initialize the weighting factors using
the mean distribution, i.e. each weighting factor equals to 1/n (n is the num-
ber of classes), where n in our case study equals to 4, i.e. Healthy regions,
Necrosis and Non-enhancing tumor, Edema and Enhancing tumor. The al-
gorithm of Online Class-Weighting, line 4 (see algorithm 1), initializes the
weighting factors w2,j as w2,j = f(X), thus w2,j = 1/n = 1/4 = 0.25.

3 Center for Biomedical Image Computing and Analytics University of Pennsylvania,
Url:https://ipp.cbica.upenn.edu/
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2. The second point consists of selecting the best candidates for the current
iteration (i) during the training phase4 as a function of distance between the
training results of the iteration (i−1) and the iteration (i−2). After each S
epoches (we found S = 5 provides the best results in our experiments) the
algorithm changes the weighting factor according to wi,j = h(Mi−1,j ,Mi−2,j)
(see algorithm 1, line 10), where Mi−1,j and Mi−2,j are the Dice coefficient
(see section 3.4) of the training iteration (i−1) and (i−2) respectively. The
function h selects two candidates in the following formulas then in the next
step (see step 3), calculates the new weighting factors:

Candidate(class)u = Argmax
j∈[1:n]

(Mi−1,1 −Mi−2,1), ...(Mi−1,4 −Mi−2,4) (4)

Candidate(class)v = Argmin
j∈[1:n]

(Mi−1,1 −Mi−2,1), ...(Mi−1,4 −Mi−2,4) (5)

The algorithm chooses two candidates using Argmax and Argmin functions,
where equation (4) returns the class that showed improvement for the last
S epoches, thus the algorithm rewards this class. Equation (5) returns the
class that is stucked in a valley of the sub-optimal point at the local mimina
of loss function. In general, this class is the more frequent label, thus the
algorithm penalizes this class.

3. After selecting the best candidates using Argmax and Argmin, the algo-
rithm computes the new weighting factors as the following:

Wi,u = Wi−1,u + β Wi,v = Wi−1,v − β (6)

Where Wi,u, and Wi,v in equation (6) are the best candidates, β is the rate
of weight’s change, where β in our experiments is equal to 0.2 for obtaining
a soft weight’s change between two successive weighting factors.

4. The last point is stopping criteria (see algorithm 1, lines 7 and 13):

1. If the error’s change (EC) between training and testing sets is greater
than a threshold equals to 0.1: EC = | Error(testing) - Error(training) |.

2. Or testing set accuracy does not improve for a number of epoches K. We
found K = 20 provides the best results in our experiments, (see figure 2).

3. The last parameters is: if the above two criteria (i.e. a and b) are always
false, thus the algorithm will stop after a defined number of epoches Z,
where in our case study Z = 240.

3.4 Evaluation metrics
For the evaluation of our tumor segmentation method, we use the most per-

tinent evaluation metrics in state-of-the-art that are used in BRATS5: complete
(i.e., necrosis and non-enhancing tumor, edema, enhancing tumor), core (i.e.
necrosis and non-enhancing tumor, enhancing tumor), enhancing (i.e. enhancing
tumor), the evaluation metrics are calculated as follows:

Dice= |P1 ∧ T1|
(|P1| + |T1|)/2 , Sensitivity = |P1 ∧ T1|

|T1| , Specificity= |P0 ∧ T0|
|T0| ,

4 From this technique we inspired the name of Online Class-Weighting loss function
5 https://www.med.upenn.edu/sbia/brats2018/data.html
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Fig. 2. The curve of stopping criteria that is based on three parameters : Error’s change
(EC), K epoches, S epoches.

Hausdorff = max { sup
p∈∂P1

inf
t∈∂T1

d(p , t) , sup
t∈∂T1

inf
p∈∂P1

d(t , p) }

Where ∧ is the logical AND operator, P is the model predictions and T
is the ground truth labels. T1 and T0 represent the true lesion region and the
remaining normal region respectively. P1 and P0 represent the predicted lesion
region and the predicted to be normal respectively. (|.|) is the number of pixels.
In addition, ′p′ and ′t′ are two points of the surface ∂P1 and ∂T1 respectively,
and d(p, t), d(t, p) are the shortest least-squares distance (i.e. euclidean distance)
between point ′p′ and ′t′ and vice versa for d(t, p).
3.5 Experimental results and Discussion
Online Class-Weighting versus Cross-Entropy, Focal loss function:

To demonstrate the performance of the Online Class-Weighting algorithm, we
compare our loss function with state-of-the art Cross-entropy and Focal loss [21].
Cross-entropy and Focal loss are known and showed a high performance in many
computer vision applications. Table 1 shows the results of our proposed CNNs
architecture with 3 loss functions: Focal loss, Cross-Entropy and Online Class-
Weighting. As we can see from table 1, according to the Dice score of Healthy,
NCR/NET and Edema classes, we have competitive results with Cross-Entropy
function. However, according to the Dice Complete, Core and Enhancing score,
our OcmNet provides the best results with Online Class-Weighting loss. Thus,
OcmNet architecture with Online Class-Weighting provides the best results on 5
over 6 metrics. With these results, Online Class-Weighting method outperformed
the results of Cross-Entropy and Focal loss function.
Comparison to State-of-the-art:Table 2 illustrates the results of the seg-
mentation performance of different methods. As we can see, our proposed Ocm-
Net with Online Class-Weighting model improved the segmentation results in
terms of Dice, sensitivity, specificity, Hausdorff distance. Moreover, OcmNet
with Online Class-Weighting performs better than the latest methods applied
to Glioblastoma brain tumor segmentation such as [4], [8], [12] in terms of Dice
score and Specificity. Also, OcmNet with Online Class-Weighting architecture
obtained competitive results with [5], [6], [9], [10] in terms of Dice coefficient
and Hausdorff distance. Also, as we can see from table 2 and according to the
standard deviation, OcmNet with Online Class-Weighting could achieve 100%
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Table 1. Healthy, Necrosis and Non-enhancing tumor (NCR/NET), Edema, Enhanc-
ing tumor represent the different Glioblastoma tumor sub-regions segmentation results
of OcmNet architecture with 3 different loss functions: Focal loss, Cross-Entropy, and
our proposed Online Class-Weighting. Moreover, for each experiment we show the Dice
score of 10 MRI images from BRATS-2018 dataset. Values in bold are the best results.

Methods Dice score

Healthy NCR/NET Edema Enhancing Complete Core

OcmNet + Focal loss 0.99 0.38 0.70 0.60 0.79 0.62
OcmNet + Cross-Entropy loss 0.99 0.63 0.80 0.72 0.87 0.81

OcmNet + Online Class-weighting 0,99 0,61 0,80 0,75 0,88 0,83

prediction on some patients MRI images in terms of Dice score and specificity,
i.e. the prediction of OcmNet with Online Class-Weighting model corresponds to
the manual segmentation of radiologist experts. Havaei et al. [9], Zhao et al. [8]

Table 2. Segmentation results of our proposed OcmNet and Online Class-Weighting
method with the state-of-the-art CNNs methods. WT, TC, ET denote Whole Tumor
(complete), Tumor Core, Enhancing Tumor core respectively. (±) is the standard de-
viation. Post 1 and Post 2 denote post-processing 1 and post-processing 2 respectively.
Fields with ( - ) are not mentioned in the published work.

Methods Dice score Sensitivity Specificity Hausdorff

WT TC ET WT TC ET WT TC ET WT TC ET

Urban et al. [10] 0.88 0.83 0.72 - - - - - - - - -

Axel et al. [4] 0.79 0.68 0.57 - - - 0.79 0.67 0.63 - - -

Pereira et al. [5] 0.87 0.73 0.68 - - - 0.86 0.77 0.70 - - -

Chang [6] 0.87 0.81 0.72 - - - - - - 9.1 10.1 6.0

Havaei et al. [9] 0.88 0.79 0.73 0.89 0.79 0.68 0.87 0.79 0.80 - - -

Kamnitsas et
al. [12]

0.847 0.67 0.629 - - - 0.876 0.607 0.662 - - -

Zhao et al. [8] 0.84 0.73 0.62 - - - 0.82 0.76 0.67 - - -

OcmNet + Online
Class-weighting

0.863
(±0.1)

0.752
(±0.2)

0.71
(±0.3)

0.863
(±0.2)

0.763
(±0.3)

0.774
(±0.3)

0.992
(±0.01)

0.996
(±0.01)

0.998
(±0.003)

23.37
(±28.2)

18.55
(±23.7)

11.97
(±24.6)

OcmNet + Online
Class-weighting +

Post 1

0.87
(±0.1)

0.753
(±0.2)

0.73
(±0.3)

0.86
(±0.2)

0.76
(±0.3)

0.776
(±0.3)

0.994
(±0.01)

0.996
(±0.01)

0.998
(±0.004)

14.71
(±22.5)

16.33
(±21.8)

9.83
(±20.7)

OcmNet + Online
Class-weighting +
Post 1 + Post 2

0.864
(±0.1)

0.75
(±0.2)

0.72
(±0.3)

0.853
(±0.2)

0.76
(±0.3)

0.76
(±0.3)

0.994
(±0.01)

0.996
(±0.01)

0.998
(±0.003)

14.63
(±22.4)

16.37
(±21.9)

8.14
(±20.04)

proposed a method based on equal sampling of training images patches to solve
the problem of class-imbalance. However, we tried many experiments on this
method and we found that it mitigates the impact of class-imbalance problem
but it does not solve it (class-imbalance). Thus, loss function-based methods are
the best choice and more robust. Cross entropy-based median frequency balanc-
ing [14], cross entropy-based weight map [15] propose a modified cross-entropy
loss function, but each of which adapts this function to a specific application,
which is not the case with our proposed Online Class-Weighting loss function. It
does not assume any distribution or prior knowledge about the application fields
before the training phase. In addition, the most important metric for a clinical
decision support system [17] is sensitivity (recall), where OcmNet with Online
Class-Weighting achieved a high accuracy on this metric (i.e. sensitivity), see
table 2. In summary, OcmNet with Online Class-Weighting model obtained high
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segmentation results, and so did with the Post-processing techniques, where the
Post-processing 2 improved a lot the Hausdorff distance metric. The first conclu-
sion from these segmentation results is that Gioblastoma brain tumors contain
in most cases one connected region, i.e. we have demonstrated this hypothesis
after applying the Post-processing 1, where we have seen an improvement in the
segmentation performance. The second conclusion is that the class of Enhancing
tumor does not have much border with the healthy tissue, i.e. this is demon-
strated after applying the Post-processing 2, where we have seen a decrease in
the surface of mis-classified Enhancing tumor region and an improvement in the
Hausdorff distance metric. Finally, in this study, we have demonstrated that our
proposed method has achieved the state-of-the-art segmentation performance in
terms of Dice score, sensitivity, specificity, Hausdorff distance.
Inference time:To deploy a deep learning model on a large scale or on a real-
time system, it is necessary to improve the deep learning inference time. Figure
3 shows the speed (seconds) versus CNNs-based methods. Our proposed Ocm-
Net with Online Class-Weighting method is the fastest method among all other
models.

Fig. 3. Evaluation results of inference time (seconds) with the state-of-the-art CNNs
methods versus our proposed OcmNet with Online Class-Weighting model.

4 Conclusion
In this work, we presented a new generic Online Class-Weighting algorithm,

where the performance and the efficiency of this algorithm is demonstrated
through a brain tumor segmentation case study with OcmNet model. In ad-
dition, the training of OcmNet with the Online Class-Weighting showed a high
performance against Cross-Entropy and Focal loss functions. Moreover, the ad-
vantage of Online Class-Weighting is: it allows to find the weighting factors for
each class during the training by searching for the best parameters using the
rate of progress of each class with respect to the training phase. Moreover, our
experimental results show that the OcmNet with Online Class-Weighting archi-
tecture improved the segmentation results. Also, these results are demonstrated
through a separated validation dataset with real MRI images where the average
Dice scores are 0.87, 0.75, 0.73, for whole tumor, tumor core, and enhancing
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tumor respectively. OcmNet with Online Class-Weighting and Post-processing 1
and Post-processing 2 is the best architecture in terms of Dice, sensitivity, speci-
ficity and Hausdorff distance. This architecture has only 181,124 parameters and
that make it suitable for adopting in research and as a part of different clinical
settings. In this work, we proposed a generic loss function that can be applied to
other applications. Based on the preliminary results, our OcmNet with Online
Class-Weighting algorithm provides a very promising result. As a perspective of
this research, we intend to investigate different scenarios and parameters for an
optimal use of the proposed Online Class-Weighting method.
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