
HAL Id: hal-02172200
https://hal.science/hal-02172200

Submitted on 3 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FastCPA: Efficient Correlation Power Analysis
Computation with a Large Number of Traces

Quentin L. Meunier

To cite this version:
Quentin L. Meunier. FastCPA: Efficient Correlation Power Analysis Computation with a Large Num-
ber of Traces. 6th Cryptography and Security in Computing Systems (CS2’19), Jan 2019, Valence,
Spain. �10.1145/3304080.3304082�. �hal-02172200�

https://hal.science/hal-02172200
https://hal.archives-ouvertes.fr

FastCPA: Efficient Correlation Power Analysis Computation
with a Large Number of Traces

Quentin L. Meunier
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005 Paris, France

quentin.meunier@lip6.fr

ABSTRACT
Cryptographic algorithm implementations need to be secured
against side-channel attacks. Correlation Power Analysis (CPA)
is an efficient technique for recovering secret key bytes of a crypto-
graphic algorithm implementation by analyzing the power traces of
its execution. Although CPA usually does not require a lot of traces
to recover secret key bytes, it is no longer true in a noisy environ-
ment, for which the required number of traces can be very high.
Computation time can then become a major concern for perform-
ing this attack and assessing the robustness of an implementation
against it.

This article introduces FastCPA, which is a correlation computa-
tion targeting the same goal as regular CPA, but based on power
consumption vectors indexed by plaintext values. The main advan-
tage of FastCPA is its fast execution time compared to the regular
CPA computation, especially when the number of traces is high:
for 100,000 traces, the speedup factor varies from 70 to almost 200
depending on the number of samples.

An analysis of FastCPA accuracy is made, based on the number
of correct key bytes found with an increasing noise. This analysis
shows that FastCPA performs similarly as the regular CPA for a
high number of traces. The minimum required number of traces to
get the correct key guess is also computed for 100,000 noisy traces
and shows that FastCPA obtains similar results to those of regular
CPA. Finally, although FastCPA is more sensitive to plaintext values
than the regular CPA, it is shown that this aspect can be neglected
for a high number of traces.

KEYWORDS
Correlation Power Analysis, Side-Channel Attacks, Performance,
Efficient Computation

ACM Reference Format:
Quentin L. Meunier. 2019. FastCPA: Efficient Correlation Power Analysis
Computation with a Large Number of Traces. In Sixth Workshop on Cryp-
tography and Security in Computing Systems (CS2 ’19), January 21, 2019,
Valencia, Spain. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/
3304080.3304082

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CS2 ’19, January 21, 2019, Valencia, Spain
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6182-8/19/01. . . $15.00
https://doi.org/10.1145/3304080.3304082

1 INTRODUCTION
Cryptographic algorithm implementations need to be secured
against side-channel attacks. Since the first differential power anal-
ysis (DPA) on the DES by Kocher et. al [8], a lot of techniques
based on side-channels information have been developed and en-
hanced for recovering secrets or assessing security against leakage:
multi-bit DPA [1, 11], correlation power analysis (CPA) [2, 10], par-
titioning power analysis [9], mutual information analysis [5, 12]
and statistical tests, especially specific and non specific Welch’s
T-Tests [3, 14]. These attacks and measures are carefully taken into
account by system designers, especially for embedded systems, for
which an attacker can measure the power consumption and the
electromagnetic emanations, which are two of the main physical
quantities used for non invasive attacks.

This article focuses on CPA, as it is an efficient technique for
recovering a key given a simple power consumption model, and it
usually requires a number of traces smaller by an order of magni-
tude than a DPA for recovering a key byte. If for an unprotected
implementation running on a device without noise, a hundred of
traces are usually sufficient to recover the key, protected imple-
mentations can require a huge amount of traces to assess their
protection w.r.t. a type of attacks. Besides, real world devices usu-
ally contain much noise, and an attack may work only if the number
of traces is very large. Finally, to assess the protection of a secure
device against certain types of attacks, the designers need to con-
sider a large amount of traces, since it corresponds to the worst
case scenario, and resisting to an attack using 1,000 traces does not
mean resisting to an attack using 100,000 traces. For these reasons,
some works now consider the resistance of devices against up to a
million of traces or more [14]. Therefore, having an efficient way
for evaluating all types of attacks and tests is critical, as illustrated
in [15], which highlights the high computational demand of the
CPA and proposes a parallel implementation for a CPA at any order.
Besides, several works have brought significant improvements in
the T-Test computation complexity [4, 13, 14].

The basics of CPA are described in Section 2, and related work
is discussed in section 3. We then introduce FastCPA, which is an
efficient correlation coefficient computation allowing to recover
secret key bytes, and describe the approach in Section 4. We show
that FastCPA allows to significantly reduce the computation time
of the CPA, especially when the number of traces is large (typically
more than 1,000) in Section 5. We also show that this modification
gives similar results in terms of detection accuracy. Finally, we
conclude in Section 6.

2 CPA BASICS
CPA was first introduced by Brier et. al in [2]. It is based on a power
consumption model of the running device at some point in time,

https://doi.org/10.1145/3304080.3304082
https://doi.org/10.1145/3304080.3304082
https://doi.org/10.1145/3304080.3304082

CS2 ’19, January 21, 2019, Valencia, Spain Quentin L. Meunier

which must depend on certain secret bits, and on some input bits
which change for each trace (namely the plaintext). For the AES,
the time instant mostly used for performing the attack is after the
first SBox, because it is the place where the linearity between the
plaintext and the key is broken and with the finest granularity,
i.e. where key bytes are not yet mixed together, allowing for few
key values hypotheses. Similarly, the attack can be performed be-
fore the last SBox and target the last round key. The most widely
used consumption models are the Hamming distance between two
relevant values (e.g. stored consecutively in the same register), or
simply the Hamming weight of a particular value. Then, this model
is correlated with actual power consumption measures using the
empirical Pearson’s correlation coefficient. This empirical correla-
tion coefficient between two samples xi and yi (1 ≤ i ≤ n) is given
by:

r̂ =
σ̂X ,Y

σ̂X σ̂Y
(1)

with

σ̂X ,Y =
1
N

N∑
i=1

(xi − x) (yi − y) (2)

σ̂X =

√√√
1
N

N∑
i=1

(xi − x)2, σ̂Y =

√√√
1
N

N∑
i=1

(yi − y)2 (3)

where x and y are the empirical means of xi and yi .
In the following, we focus on one key byte as the attack tries to

recover key bytes independently. More specifically, given N power
traces of length L, we note by tn,i the consumption value of point
i in trace n (with 1 ≤ n ≤ N , 1 ≤ i ≤ L). For K possible subkeys
(typically K = 256), we note hn,k the power estimation in trace n
(depending on the plaintext), assuming the subkey is k (0 ≤ k < K).
With these data, we can see how well our model and measurements
match for each guess k at each time instant i , by calculating:

rk,i =

N∑
n=1

(hn,k − hk) (tn,i − ti)

√√√ N∑
n=1

(hn,k − hk)
2

N∑
n=1

(tn,i − ti)
2

(4)

in which hk and ti are respectively the average values of the
modeled power consumption and themeasured power consumption
at instant i .

We can show that ri,k can be equivalently computed with the
following formula, which is more efficient because it allows for
online computation (i.e. the data set needs to be traversed only
once):

rk,i =

N
N∑
n=1

hn,k tn,i − (
N∑
n=1

hn,k) (
N∑
n=1

tn,i)

√√√
((

N∑
n=1

hn,k)
2 − N

N∑
n=1

h2n,k) ((
N∑
n=1

tn,i)
2 − N

N∑
n=1

t2n,i)

(5)

Then, by taking the maximum of the rk,i over all the values for
i and k , we can deduce which key hypothesis is the most probable

(the maximum over i is required since we do not know a priori at
which instant in the trace our power model applies).

An algorithm for computing such a correlation coefficient based
on Equation 5 is shown in Algorithm 1. In particular, we can note
that the complexity of this algorithm is proportional to N × K × L,
what can be somewhat prohibitive: an AES round typically is 6,000
samples (using 4 samples per cycle), what makes more than 153
billions iterations of the innermost loop for 100,000 traces!

Algorithm 1 Algorithm for computing the correlation coefficient
Require: N traces with L points of measure, a power model hn,k

for each key hypothesis k and trace n
Ensure: The key byte value with highest correlation w.r.t. the

power consumption model is returned
for all i ∈ [1;L] do

sum_ti ← 0
sum_t2i ← 0

end for
for all k ∈ [0;K − 1] do

sum_hk ← 0
sum_h2k ← 0
for all i ∈ [1;L] do

sum_htk,i ← 0
end for

end for
for all n ∈ [1;N] do

for all i ∈ [1;L] do
sum_ti ← sum_ti + tn,i
sum_t2i ← sum_t2i + t

2
n,i

end for
for all k ∈ [0;K − 1] do

sum_hk ← sum_hk + hn,k
sum_h2k ← sum_h2k + h

2
n,k

for all i ∈ [1;L] do
sum_htk,i ← sum_htk,i + tn,i · hn,k

end for
end for

end for
MaxCorrCoeff← 0
MaxKHyp← 0
for all i ∈ [1;L] do

for all k ∈ [0;K − 1] do
CorrCoeff← N ·sum_htk,i−sum_hk ·sum_ti√

((sum_hk)2−N ·sum_h2
k) ((sum_ti)2−N ·sum_t 2i)

if |CorrCoeff| >MaxCorrCoeff then
MaxCorrCoeff← |CorrCoeff|
MaxKHyp← k

end if
end for

end for
returnMaxKHyp

In opposition, the method proposed in this article requires less
than 1 billion iterations of the innermost loop for the same config-
uration.

FastCPA: Efficient Correlation Power Analysis Computation with a Large Number of Traces CS2 ’19, January 21, 2019, Valencia, Spain

3 RELATEDWORKS
Since the first works on CPA, the focus has first been on the method
accuracy, and recently moved on the computation effectiveness.

In [9], the authors try to unify the concepts of DPA, multi-bit
DPA and CPA via the concept of Partitioning Power Analysis (PPA).
The article defines classes in which all the traces are partitioned,
depending on their Hamming weight at a given moment in the
computation. The correlation is then computed on the classes using
different weights for the different classes. The authors show that
CPA is a particular case of PPA. Although the work presented in
this article uses the same principle of classes as well, it is not a
particular case of PPA since the classes are not based on Hamming
weights but directly on values. Besides, [9] focuses on key recovery
accuracy and does not consider computation time.

The work described in [7] presents an improvement of CPA
which consists in selecting a biased subset of the power traces con-
taining more information than the average traces. The selection
process tries to maximize the signal to noise ratio, by selecting the
traces which are located at the extremities of the empirical prob-
ability density function. This article does not focus on execution
time, and in particular does not present a computational analysis in
terms of execution time: overhead linked to the selection process,
and time saved thanks to the reduction of traces.

More recently, [14] presented a very effective way to compute
the T-Test requiring only a single pass on the set of traces, allowing
to compute regularly the T-Test value and to potentially stop before
all the traces have been processed. The method uses the higher
order central moments and is stable at least up to the fifth order.
However, the proposed method is not applicable to CPA.

The method presented in [13] also targets an effective computa-
tion of the T-Test by representing the set of traces at each instant by
a vector containing, for each possible measured value, the number
of times that the corresponding value has been measured. This
technique allows to decouple the estimation of measurements dis-
tributions and the computation of the statistical moments, which
thus becomes independent from the number of traces. The work
presented in this article also uses the idea to gather values in a
vector, this time not indexed by the measured value, but by the
plaintext value. To the best of our knowledge, the method proposed
in this article has not been proposed in prior works.

4 FASTCPA
This Section first presents our proposed algorithm for performing
the correlation power analysis, and then we expose the rationale of
the proposed approach compared to the original CPA.

4.1 Algorithm
Similarly to the original CPA, our proposed method for performing
the correlation power analysis on an attacked key byte targets an
intermediate value in the computation. The method is based on
the idea to create, at each point in time, a vector of consumption
values indexed by the plaintext byte value. The ith element of such
a vector thus represents the average measured consumption for
all runs where the plaintext value was i at a given point in time.
During the first phase of the algorithm, these vectors are created
in a single pass, requiring N × L iterations.

In a second part, these vectors are correlated, for each point in
time, with vectors of identical length containing a consumption
model, for all key hypotheses. These consumption model vectors
are also indexed by the plaintext value, and contain typically the
Hamming weight of the targeted internal value. This second phase
takes L × K2 iterations.

The proposed algorithm is shown in Algorithm 2. In this algo-
rithm, the CompCC function calculates the correlation coefficient
between the two vectors and is given in Algorithm 3.

Algorithm 2 Proposed FastCPA algorithm
Require: N traces with L measure points, a pre-computed vector
of the power consumption model hk for each key hypothesis
k , with the associated means and variances. We typically have
hk [pt] = hk,pt = HW(SBox[k⊕pt]).

Ensure: The key byte value with highest correlation w.r.t. the
power consumption model is returned
for all pt ∈ [0;K − 1] do

for all i ∈ [1;L] do
MeanPoweri,pt = 0;
NumValuesi,pt = 0;

end for
end for
for all n ∈ [1;N] do

pt ← plaintext[n];
for all i ∈ [1;L] do

NumValuesi,pt ← NumValuesi,pt + 1
MeanPoweri,pt ←MeanPoweri,pt +

tn,i−MeanPoweri,pt
NumValuesi,pt

end for
end for
MaxCorrCoeff← 0
MaxKHyp← 0
for all i ∈ [1;L] do

µ0,σ 2
0 ← ComputeMeanAndVar(MeanPoweri)

for all k ∈ [0;K − 1] do
▷ µ1 and σ 2

1 are pre-computed values corresponding
▷ respectively to the mean and the variance of hk
▷ The function CompCC computes the correlation coef-
▷ ficient between the two vectors MeanPoweri and hk
CorrCoeff← CompCC(MeanPoweri , µ0, σ 2

0 , hk , µ1, σ
2
1)

if |CorrCoeff| >MaxCorrCoeff then
MaxCorrCoeff← |CorrCoeff|
MaxKHyp← k

end if
end for

end for
returnMaxKHyp

4.2 Rationale
Compared to the original correlation coefficient computation, this
method puts the same weight on each of the plaintext possible
value in the correlation computation, and correlates only K points.
For example, if we consider a 2-bit plaintext for simplicity and if we
have 1,000 traces for plaintext value “0”, 100 for plaintext values “1”

CS2 ’19, January 21, 2019, Valencia, Spain Quentin L. Meunier

Algorithm 3 Function CompCC
Require: u and v two vectors of K values, with their respective

means µ0, µ1 and their respective variances σ 2
0 ,σ

2
1

Ensure: The empirical correlation coefficient between the two
vectors is returned
µ01 ← 0
for all k ∈ [0;K − 1] do

µ01 ← µ01 +
u[k]v[k]−µ01

k+1
end for
return µ01−µ0µ1√

σ 2
0 σ

2
1

and “2”, and only 5 for plaintext value “3”, all four plaintext values
consumptions are weighted the same and count as much in the
proposed correlation computation. Indeed, it is not obvious that
each of the 1,000 power consumption values for the plaintext value
“0” should count as much as each of the 5 values for plaintext value
“3”: intuitively, we feel that this 5 values contain more information
than 1/200 of all measured values. Yet, putting the same weight is
still not ideal because of the variability – having less values means
less confidence in the average – but we can see that the question of
the best way of computing the correlation is not trivial. We can also
notice that the quantities computed in the case where the number
of traces is identical for each plaintext value are different from those
of the original CPA. This shows the need to assess experimentally
the efficiency of the proposed computation compared to the original
one.

More formally, if we defineTi the set of measures at instant i ,Tvi
the restriction ofTi for traces in which the plaintext value is v , and
ηk,v the power consumption model for key guess k and plaintext
value v , the formula for the computed correlation coefficient is
(assuming plaintext values are in [0;K − 1]):

rk,i =

K−1∑
v=0

(ηk,v − ηk) (τi,v − τi)

√√√K−1∑
v=0

(
ηk,v − ηk

)2 K−1∑
v=0

(
τi,v − τi

)2 (6)

with:

τi,v =
1
|Tvi |

∑
t ∈Tvi

t , τi =
1
K

K−1∑
v=0

τi,v , ηk =
1
K

K−1∑
v=0

ηk,v (7)

We can note that τi is not the average power consumption mea-
sured at instant i , but the average of the averages for all plaintext
values.

5 EXPERIMENTAL EVALUATION
This Section evaluates FastCPA on a standard AES implementation
compared to the traditional correlation coefficient used for CPA
(Ref. CPA) w.r.t. two criteria: the execution time, and the accuracy
of both methods for several configurations. For all experiments and
configurations, the traces were recorded by the ChipWhispererPro
(R) platform [6] with an Xmega target board.

5.1 Execution Time
We measured the execution times of both methods for a CPA tar-
geting a key byte after the first SBox, for the configurations listed
in Table 1.

Table 1: Parameters of the CPA attack on an AES key byte
for execution time measurements

Number of samples (L) { 1,000; 3,000; 6,000; 10,000 }
Number of traces (N) { 2,000; 5,000; 10,000; 20,000;

50,000; 100,000 }
Number of key values (K) { 256 }

The computations, implemented as a single-threaded program,
were run on an Intel (R) Xeon E5-2637 v2 processor at 3.50 GHz,
and the code for both versions has been compiled with gcc 4.8 and
optimisation level O2. The results are shown in Figure 1.

(a) 1000 samples (b) 3000 samples

(c) 6000 samples (d) 10,000 samples

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Trace number (x1000)

Ref. CPA

FastCPA (This Work)

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Trace number (x1000)

Ref. CPA

FastCPA (This Work)

0

50

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Trace number (x1000)

Ref. CPA

FastCPA (This Work)

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80 90 100

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
)

Trace number (x1000)

Ref. CPA

Fast CPA (This Work)

Figure 1: Execution time results for bothmethods, for traces
containing 1,000 samples (a), 3,000 samples (b), 6,000 sam-
ples (c), 10,000 samples (d), for a varying number of traces.

We can see that the FastCPA computation method is way faster
than the original CPA computation, achieving speedup factors from
×2 (2,000 traces of 1,000 samples) to ×191 (100,000 traces of 10,000
samples).

To allow for more readable results of FastCPA, we provide Table 2
which contains the execution times of this proposed method.

As expected, the larger the configuration is in terms of number of
samples and traces, the greater speedup FastCPA exhibits compared
to the reference CPA. We can note the that FastCPA computation

FastCPA: Efficient Correlation Power Analysis Computation with a Large Number of Traces CS2 ’19, January 21, 2019, Valencia, Spain

(a) 5,000 traces (b) 100,000 traces

0

2

4

6

8

10

12

14

16

0 0.05 0.1 0.15 0.2

N
u
m
b
e
r

o
f

c
o
r
r
e
c
t

k
e
y

b
y
t
e
s

Standard deviation of gaussian noise added

Ref. CPA

Fast CPA (This Work)

0

2

4

6

8

10

12

14

16

0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u
m
b
e
r
o
f
c
o
r
r
e
c
t
k
e
y
b
y
t
e
s

Standard deviation of gaussian noise added

Ref. CPA

Fast CPA (This Work)

Figure 2: Number of correct key bytes for both methods, with a varying gaussian noise added, for configurations 1 (a) and 2 (b)

Table 2: FastCPA Execution Time (in seconds)

Traces
Samples 1,000 3,000 6,000 10,000
2,000 0.49 1.48 3.16 5.32
5,000 0.50 1.52 3.16 5.29
10,000 0.51 1.58 3.48 5.62
20,000 0.57 1.70 3.50 6.00
50,000 0.72 2.29 4.16 7.54
100,000 0.90 2.72 5.48 10.23

time seems less sensitive to the number of traces than to the number
of samples: when the former is multiplied by 10, the execution time
is roughly multiplied by 2, whereas when the latter is multiplied
by 10, the execution time is roughly multiplied by 10 as well.

5.2 Method Accuracy
To evaluate the method accuracy w.r.t. the reference CPA, we can-
not just compare the values of the correlation coefficients of both
methods, as the coefficients will be higher with FastCPA due to
the fact that the number of points is to correlate is smaller (256 vs.
number of traces). Thus, we compare the number of correct key
guesses as the noise increases, for a recorded set of traces and for
both methods. The noise added is a centered gaussian noise.

Two configurations are considered for this experiment:

• Configuration 1: 5,000 traces comprising 3,000 samples, with
a Gaussian noise added ranging from σ = 0 (16 correct key
bytes for both methods) to σ = 0.2 (16 incorrect key bytes
for both methods), with steps of 0.01;
• Configuration 2: 100,000 traces comprising 3,000 samples,
with a Gaussian noise added ranging fromσ = 0.3 (16 correct
key bytes for both methods) to σ = 0.90 (16 incorrect key
bytes for both methods), with steps of 0.01;

The values of σ should be considered knowing that all the
recorded samples values are in the interval [-0.7; 0.1].

The goal of configuration 1 is to assess that even with a relatively
low number of traces, the proposed method performs decently. At
the opposite, configuration 2 corresponds to the case where more
traces are required to perform an attack because of the presence of
noise, and therefore where more computation is required.

The results for configuration 1 are presented in Figure 2(a). We
can see that for 5,000 traces, the reference CPA seems to perform
a little better, since the drop in the number of key bytes correctly
found happens for a slightly higher noise.

However, the results for configuration 2 with 100,000 traces
indicate that while being a lot faster, the precision of FastCPA is
very similar to the reference CPA, as shown on Figure 2(b). We
believe that this experimentation illustrates the situations where
FastCPA shows all of its usefulness.

To strengthen the confidence in FastCPA accuracy, we also mea-
sured for each byte the minimum number of traces required to
get the correct key value (for any higher number of traces), and
compared it for both methods. Obviously, for non noisy traces, the
regular CPA performs better since it can get the correct key in 30
to 100 traces, whereas a minimum number of traces is required for
FastCPA to get it (see section 5.3). Thus, we performed this measure
for an arbitrary standard deviation noise value of 0.3, since all key
bytes are still correctly found for both methods for such a noise.
The results are shown in Figure 3.

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u
m
b
e
r

o
f

T
r
a
c
e
s

(
x
1
0
0
0
)

Key Bytes

FastCPA (This Work)

Ref. CPA

Figure 3: Minimum number of traces required for getting
the correct key guess for any greater number of traces, for
a gaussian noise with standard deviation σ = 0.3. The lower
the better.

CS2 ’19, January 21, 2019, Valencia, Spain Quentin L. Meunier

We can see that the results for both methods do not differ signif-
icantly, except for key byte 12 for which FastCPA requires almost
90K traces, while the reference CPA only requires 68K traces.

5.3 Plain Text Sensitivity
The proposed approach is more sensitive to the plaintext values in
the sense that the correlation given by the function CompCC will be
low until all (or almost) of the plaintext possible values have been
reached by at least one run. This effect is visible on the Figure 4
which shows the correlation coefficients obtained for one key byte1
for a number of traces varying between 1 and 5,000.

Figure 4: Plain Text Sensitivity: correlations obtained for
one key byte for bothmethods for each key guess, for a num-
ber of traces varying between 1 and 5,000. The red line cor-
responds to the correct key guess, the blue lines to bad key
guesses.

There are several ways to take this drawback into account. First,
the traces can be ordered so that plain values do not appear twice as
long as all of them have not been encountered. Second, the CompCC
function can be adapted to only consider the points of the vector for
which at least one run had the corresponding plaintext. This allows
to suppress this effect and gives the curve a similar aspect to the one
of the original correlation. However, this is not necessarily desirable
since this lengthen the compute time of the function, and after a
sufficient number of traces, the corresponding code modification
becomes useless. Finally, table 3 shows the probability to not have
reached all plaintext values, supposing uniformly and independent
plaintexts, after some number of traces for 256 possible plaintext
values.

Table 3: Probability of not reaching all 256 plaintext values
after a varying number of traces

Traces 500 1,000 2,000 3,000 4,000
Probability 100 % 99.5 % 9.7 % 0.2 % 0.004 %

We can see that after 4,000 runs, the probability of not reaching
all plaintext possible values is less than 0.005 %, suggesting that we
can neglect this aspect for a high number of traces.

1The curves shapes are representative of all other key bytes

6 CONCLUSION
In this article, we proposed a new method, called FastCPA to per-
form a correlation power analysis in order to recover secret key
bytes. This method consists in gathering measures by plaintext val-
ues and build a profile vector indexed by plaintext values, which is
then correlated to a power consumptionmodel vector. The proposed
method achieves up to ×200 speedups compared to the original
CPA computation, and is particularly efficient when the number of
traces is high. The proposed method’s accuracy to recover secret
key bytes is comparable to the original CPA for two different met-
rics, namely the number of correct key bytes found for an increasing
gaussian noise added to the traces, and the minimum number of
traces required to get the correct key guess.

Future work includes the study of combining FastCPA with exist-
ing techniques for reducing the number of traces or for improving
its accuracy. We also intend to adapt the correlation computation
by giving different weights to the vector elemnts depending on the
number of corresponding samples. Finally, we intend to make ex-
periments with up to one million traces for both methods to assess
the scalability of the proposed approach.

REFERENCES
[1] Régis Bevan and Erik Knudsen. 2002. Ways to enhance differential power analysis.

In International Conference on Information Security and Cryptology. Springer, 327–
342.

[2] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation power anal-
ysis with a leakage model. In International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 16–29.

[3] Jean-Sébasticn Coron, Paul Kocher, and David Naccache. 2000. Statistics and
secret leakage. In International Conference on Financial Cryptography. Springer,
157–173.

[4] AAdamDing, CongChen, and Thomas Eisenbarth. 2016. Simpler, faster, andmore
robust t-test based leakage detection. In International Workshop on Constructive
Side-Channel Analysis and Secure Design. Springer, 163–183.

[5] Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. 2008. Mutual
information analysis. In International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 426–442.

[6] NewAE Technology Inc. [n. d.]. ChipWhisperer Pro Platform. https://newae.com,
http://wiki.newae.com/CW1200_ChipWhisperer-Pro.

[7] Yongdae Kim, Takeshi Sugawara, Naofumi Homma, Takafumi Aoki, and Akashi
Satoh. 2010. Biasing power traces to improve correlation power analysis attacks.
In First International Workshop on Constructive Side-Channel Analysis and Secure
Design (COSADE 2010). Citeseer, 77–80.

[8] Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential power analysis.
In Annual International Cryptology Conference. Springer, 388–397.

[9] Thanh-Ha Le, Jessy Clédière, Cécile Canovas, Bruno Robisson, Christine Servière,
and Jean-Louis Lacoume. 2006. A proposition for correlation power analysis en-
hancement. In International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 174–186.

[10] Rita Mayer-Sommer. 2000. Smartly analyzing the simplicity and the power of
simple power analysis on smartcards. In International Workshop on Cryptographic
Hardware and Embedded Systems. Springer, 78–92.

[11] Thomas S Messerges, Ezzat A Dabbish, and Robert H Sloan. 2002. Examining
smart-card security under the threat of power analysis attacks. IEEE transactions
on computers 51, 5 (2002), 541–552.

[12] Emmanuel Prouff and Matthieu Rivain. 2009. Theoretical and practical aspects
of mutual information based side channel analysis. In International Conference
on Applied Cryptography and Network Security. Springer, 499–518.

[13] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. 2017. Fast Leakage
Assessment. In International Conference on Cryptographic Hardware and Embedded
Systems. Springer, 387–399.

[14] Tobias Schneider and Amir Moradi. 2015. Leakage assessment methodology.
In International Workshop on Cryptographic Hardware and Embedded Systems.
Springer, 495–513.

[15] Tobias Schneider, Amir Moradi, and Tim Güneysu. 2015. Robust and One-Pass
Parallel Computation of Correlation-Based Attacks at Arbitrary Order - Extended
Version. Cryptology ePrint Archive, Report 2015/571. https://eprint.iacr.org/
2015/571.

https://eprint.iacr.org/2015/571
https://eprint.iacr.org/2015/571

	Abstract
	1 Introduction
	2 CPA basics
	3 Related Works
	4 FastCPA
	4.1 Algorithm
	4.2 Rationale

	5 Experimental Evaluation
	5.1 Execution Time
	5.2 Method Accuracy
	5.3 Plain Text Sensitivity

	6 Conclusion
	References

