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Abstract: The development and application of marine current energy are attracting more and more
attention around the world. Due to the hardness of its working environment, it is important
and difficult to study the fault diagnosis of a marine current generation system. In this paper,
an underwater image is chosen as the fault-diagnosing signal, after different sensors are compared.
This paper proposes a diagnosis method based on the sparse autoencoder (SA) and softmax regression
(SR). The SA is used to extract the features and SR is used to classify them. Images are used to monitor
whether the blade is attached by benthos and to determine its corresponding degree of attachment.
Compared with other methods, the experiment results show that the proposed method can diagnose
the blade attachment with higher accuracy.

Keywords: marine current turbine; blade attachment; sparse autoencoder; softmax regression

1. Introduction

To date, reducing carbon emissions has become a consensus around the world. It is urgent to
adjust the energy structure, reduce the dependence on fossil energy, and increase the use of sustainable
energy, which makes the wind, solar, and marine current energies [1–3] more and more attractive.
The system of wind and solar energies is greatly affected by the environment, which occupies a lot of
land resources, and brings noise and visual pollution to surrounding residents. The marine current
energy can avoid these problems. The marine current mainly refers to the steady flow in the submarine
channel, and the regular flow of water caused by the tides [4]. The flow of the marine current is
stable, and the flow rate is kept within a certain range all year round [5], therefore power can be
continuously generated [6,7]. Marine current energy is an inexhaustible green energy resource and the
marine current turbine (MCT) is mainly independent of weather conditions [8]. However, compared
with the terrestrial environment, the undersea working environment is more complex. In addition
to the traditional generator faults, the MCT system is also influenced by the marine environment,
such as attachment, biofouling [9,10], etc., affecting the normal operation of the electrical equipment.
On the other hand, the marine current generation system is affect by the sun, lunar gravity and the
surge. The resulting instability of the current flow rate [11,12] makes the MCT work in a complicated
environment for a long time, which means that the detection and diagnosis of the faults of the MCT
are more difficult. The faults can cause great damage to the whole system, if not found and dealt with
in time. The conventional faults caused by attachment include rotor asymmetries, increased surface
roughness and the deformation of blade [13]. In addition, the metal parts are much easier corroded
by attachment [8]. When sea creatures attach the blades, the blade imbalance and hydrodynamic will
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affect the results of the output power imbalance. The amplitude and frequency of the output voltage
reduce while the blade is affected by the attachment. The attachment reduces the efficiency of the
absorption of kinetic energy from the flow and reduces the rotational speed of the blades. At the same
time, a small change of the flow rate has a greater influence on the output voltage [14]. If the blade
attachment is not found in time and cleaned up immediately, the situation of biological deposition
becomes serious and its output voltage waveform will be distorted.

At present, there is little research on the fault diagnosis of MCT. Reference [15] proposes a fault
detection method, based on the empirical mode decomposition (EMD) and the spectral analysis for
MCT under the conditions of waves and turbulence. A mode-correlation principal component analysis
method is proposed to monitor MCT under the random occurrence of turbulence and waves [16].
Reference [17] uses the time domain, time-frequency domain and angle domain features to detect
faults that achieve good performance for MCT under complex conditions. However, those methods
only detect the imbalance fault. Particularly in reference [17], only two categories of faults (imbalance
fault 1% and 3%) are considered, which means that the even-distributed attachment cannot be detected.
Meanwhile, these methods still need humans to analyze the observed results. Reference [18] proposes
a modified extended Kalman filter (MEKF) fault detection strategy, but this method needs an extra
electric circuit, which is a challenge in an undersea environment.

On the other hand, electrical and mechanical signals are not always enough to diagnose faults in
the environment with strong currents and complex spatiotemporal variability [19,20]. The undersea
radio signals cannot travel far due to absorption losses [21] and many acoustic signals are lost due
to partial band interference [21]. So, images of underwater camera are used as the fault-diagnosing
signal in this paper. This provides an effective nondestructive means for underwater measurement
in various scenarios [22]. In reference [23], a lithium polymer battery of 10,000 mAh capacity is
used for the camera battery and the camera can work for up to 10 days, if it is controlled to record
60 seconds of video every two-hours under the sea with a depth between 1000 m and 1800 m.
Traditional image classification methods include the BP neural network [24], support vector machine
(SVM) [25], and principal component analysis [26], etc. The BP neural network and SVM require
a great number of parameters when the dimension of the input is large. The CNN (Convolutional
Neural Network), a more recent classification method, achieves high accuracy in image classification
by stacking convolutional layers or blocks [27,28]. This also means a large number of parameters and
very high computational complexity [29]. Some of the recent methods for image recognition are that
the convolutional kernels and the softmax’s parameters, and the number of convolutional layers is
greater than one. The mentioned method could extract abundant features by trained convolutional
kernels for an image with complex features. However, a network with less convolutional layers
also shows good performance in some image classifications. For instance, reference [30] uses two
convolutional layers to classify different numbers. This paper tries to use one convolutional layer,
and asynchronously trains convolutional kernels and softmax’s parameters. Convolutional kernels are
trained by a sparse autoencoder (SA). A diagnosis method based on a sparse autoencoder and softmax
regression (SR) is proposed to diagnose whether the blade of the MCT is attached by benthos and to
determine its corresponding degree of attachment. Theoretical analysis and experimental results show
the effectiveness of the proposed method.

This paper is an extended version of the method in reference [31] and the rest of paper is
organized as follows. Section 2 introduces the problems of blade attachment. Section 3 describes
the proposed method. Section 4 presents the platform and gives some experimental results and
comparison. The conclusions are drawn in Section 5.

2. Problem Description on Blade Attachment of MCT

At present, MCT fault detection mainly focuses on imbalance faults, which are based on electrical
signals. However, the electrical signal is affected by the complex environment, which results in
difficulties to diagnose the attachment with similar degrees. In reference [17], two attachment
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degrees are set, which can be explicitly distinguished under waves, but cannot be distinguished
under conditions of turbulence.

The increased surface roughness and the deformation of the blade are also important, in addition
to the rotor asymmetries caused by the imbalance attachment. These two kinds of faults are mainly
caused by symmetrical or uniform attachment. For example, the output voltage signals are sampled
under health conditions and uniform attachment; FFT (Fast Fourier Transformation) is used to analyze
the sampled signal. The results are shown in Figure 1. Because it is difficult to distinguish between
a health condition and uniform attachment condition for the amplitude and main frequency in the
output voltage. This leads to the challenge of an accurate diagnosis based on the electrical signal under
the increased surface roughness, and the deformation of blade. An acoustic signal is also used to
diagnose faults under the increased surface roughness of the blade for the wind turbine [13]. However,
many acoustic signals are lost in the undersea environment [21].
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Figure 1. The output voltage of the marine current turbine (MCT) under different conditions:
(a) The output voltage under a health condition; (b) The output voltage with uniform attachment.

MCT’s image is used as the fault-diagnosing signal in this paper. The undersea environment is
different from that on land, as there is no source of light. Underwater imaging systems have to rely
on artificial light to provide illumination, which produces problems due to light absorption, light
reflection, bending, light scattering and poor visibility [32]. Therefore, the image feature extraction
method is a key point for diagnosing faults based on image classification.

The MCT is salvaged from undersea with a thin attachment [8]. In addition, real biofilms were
not able to be grown on a rotating turbine, or tested in the towing tank [33]. Blades were fouled with a
1.1 mm thick layer of lithium grease in reference [33]. Ropes used to simulate attachment in this paper
are shown in Figure 2. Marine biofouling is a process from being attached to biological reproduction
and takes about three-weeks [9]. By analyzing the images, and the degree of attachment, consequently,
the degree of fault could be estimated in time. This kind of diagnosis method has been applied in
cancer-image processing and has achieved promising results, such as the diagnosis of breast cancer [34].
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3. The Sparse Autoencoder and Softmax Regression Based Diagnosis Method

The diagnosis method proposed in this paper is divided into four steps as shown in Figure 3.
Step 1, preprocessing the unlabeled images to pre-train the convolution kernels; Step 2, making the
convolution between the labeled images and the convolution kernels to obtain the convolved features
of each image in the labeled samples; Step 3, transforming the convolved features into the pooled
features by using a pooling operation; and finally, Step 4, putting the pooled features into the softmax
classifier to diagnose the faults category.
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3.1. Image Data Preprocessing

The MCT images are used to extract patches for effectively extracting features. We extracted
500 patches of 20 × 20 pixels per channel (3 channels for each patch) from each image as the unlabeled
learning samples, which are arranged in matrix Xunlabel =

[
x1

unlabel , . . . , xk
unlabel , . . .

]
,where xk

unlabel is
the kth column of Xunlabel . Then we used the zero mean and zero-phase component (ZCA) whitening
technique [35] to calculate matrix Xwhitening. The row images of MCT are effectively reduced by
preprocessing of ZCA so as to sparse autoencoder’s input with low correlation.

x∗kunlabel = xk
unlabel −

1
m

m

∑
i=1

xi
unlabel (1)

CX =
1
m

X∗unlabel(X
∗
unlabel)

T (2)

Xwhitening = U(S + I)−
1
2 X∗unlabel (3)

where x∗kunlabel is the kth column of X∗unlabel ; CX the covariance matrix of X∗unlabel ; m the number
of samples; S is the eigenvalues of diagonal matrix and U is the eigenvectors of CX, and ε is the
regularization parameter.

3.2. Pre-Training Convolutional Kernels Based on Sparse Autoencoder

In classical CNN training, convolutional kernels and softmax’s parameters are simultaneously
trained. In this paper, convolutional kernels are trained before training softmax’s parameters. Since the
convolutional kernels and softmax’s parameters are trained asynchronously, SA is used to train the
convolutional kernels.

Figure 4 shows the structure of the SA neural network. It has three layers: the input layer (L1),
the hidden layer (L2) and the output layer (L3), where “+1” is the bias coefficient. SA is an unsupervised
learning algorithm because its ideal output equals to its input, which means that it can learn features
from training data by itself. Assuming the preprocessed input matrix Xwhitening =

[
x1, . . . , x80000],

where xk is the kth column of Xwhitening, xk ∈ Rn, n = 1200 is the number of pixels of each patch.

W(1)
ji , for i = 1, . . . , s1, j = 1, . . . , s2, denotes the weight connecting the ith neuron from the input

layer to the jth neuron of the hidden layer. The input threshold of the hidden layer is b(1). W(2)
ij ,

for i = 1, . . . , s3, j = 1, . . . , s2, which denotes the weight connecting the jth neuron from the hidden
layer to the ith neuron of the output layer; where s1 = 1200 is the number of neurons in the input
layer, s2 = 800 the number of neurons in the hidden layer, s3 = 1200 the number of neurons in the
output layer. The threshold of the output layers b(2). W(1)

ji , W(2)
ij , b(1) and b(2) are trainable parameters,

which are trained by the forward and backward propagation method. The activation function of the
hidden layer is the sigmoid function and the output layer is the proportional function. The optimal
values of parameters are calculated by using L-BFGS algorithm [36]. Finally, the weights of the hidden
layer are the learned features. After pretraining based on SA, the weights between input layer and
hidden layer are reshaped for extracting the convolution features as convolutional kernels.

z(2)j =
S1

∑
i=1

W(1)
ji xi + b(1)j (4)

a(2)
j = f1

(
z(2)j

)
=

1

1 + exp
(
−z(2)j

) (5)

z(3)i =
S2

∑
j=1

W(2)
ij a(2)

j + b(2)i (6)
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a(3)
i = f2

(
z(3)i

)
= tz(3)i (7)

where, xi is the ith component of vector x, z(2)j and a(2)
j correspond to the input and output of the

activation function in the jth neurons of the hidden layer respectively, z(3)i and a(3)
i correspond to the

input and output of the activation function in the ith neuron of the output layer respectively, t is the
proportionality coefficient.
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3.3. Features Extraction Based on Convolution and Pooling

Local connection and weight sharing are the characteristics of the convolution layer, so using
convolution can reduce the number of parameters and training complexity. In addition,
the convolutional and pooling architecture can learn invariant features and reduce over-fitting [37].
Firstly, the convolved features will be extracted from each image, and then the pooled features will be
obtained by aggregating the convolved features.

Different features activation value is obtained at each location in the image by convolving each
image with the convolution kernels pre-trained in the previous step. Specifically, if the number of pixels
of one image is Dimage × Dimage and the number of pixels of the convolution kernels is Dpatch × Dpatch,

the dimension of the convolved features is
(

Dimage − Dpatch + 1
)
×
(

Dimage − Dpatch + 1
)

[30].
Assuming the number of kernels for the hidden layer is equal to nh, the dimension of a convolved
feature is

(
Dimage − Dpatch + 1

)
×
(

Dimage − Dpatch + 1
)
× nh.

The pooling operation is then introduced to reduce the dimension of the convolved features,
while maintaining the invariant information and to improve the results of less over-fitting. Since the
features of each category are not complex, the mean pooling is used in this paper [30].

3.4. Faults Classification Based on Softmax Classifier

After Step 3, the pooling features are obtained for the training classifier. According to the different
attachment degrees, the different categories and labels are set. The pooling features are the input
of softmax. Suppose θ is a parameter matrix, the L-BFGS iterative algorithm can be used to obtain
parameter θ.
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hθ

(
x(i)
)
=


p(y(i) = 1

∣∣∣x(i); θ)

p(y(i) = 2
∣∣∣x(i); θ)

...

p(y(i) = k
∣∣∣x(i); θ)

 =
1

∑k
j=1 eθjx(i)


eθ1x(i)

eθ2x(i)

...
eθkx(i)

 (8)

4. Experimental Analysis

4.1. Experimental Platform

In order to get a rich diversity of samples, the state of each category will be sampled from the blade
in four different configurations to extract data, as shown in Figure 5. In this experiment, the speed
of the water current is set to 0.6 m/s. 860 images with RGB channels collected by the underwater
camera. The camera has 1.2 million pixels. The sampling frequency is 1 Hz. The luminous flux of
fluorescent lamp is 1700 lm. After the remote transmission, each channel is represented by a matrix of
size (320 × 320). Among them, 160 images are selected as unlabeled pre-training samples, 420 images
as labeled training samples, and the remaining 280 images, as testing samples. The detail information
is shown in Tables 1 and 2.

In this paper, for simplicity and without losing generality, we defined eight categories according
to the proportion of the area covered by attachment, as shown in Figure 6.
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Figure 7 shows the experiment platform of MCT, it is a 230 W direct-drive permanent magnet
synchronous motor prototype. The whole system mainly consists of three parts: (1) the permanent
magnet synchronous generator (PMSG) prototype; (2) the marine current simulation system (adjustable
flow rate from 0.2 m/s to 1.5 m/s); (3) the data monitoring and collection system. This platform can
simulate stationary current, waves and turbulence. Table 3 gives the main parameters of the system.

Table 1. Diagnostic category label.

Percentage of Area Occupied
by Attachment (%) (0,1] (1,5] (5,10] (10,20] (20,30] 60 (two blades, with each

30 attachment)
90 (three blades,

with each 30 attachment)

Classifier Labels 1 2 3 4 5 6 7

Table 2. Detail of dataset.

Dataset’s Name Number

Unlabeled pre-training sample 160
Labeled training sample 420

Testing sample 280

Table 3. Parameters of the MCT.

PMSG SAP 71

Rated power 230 W
Rated voltage 37 V
Rated current 21 A

Pole-pair number 8
Airfoil Naca0018

Chord length 0.19 m–0.32 m
Blade diameter 0.6 m
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4.2. Experimental Results and Comparison

Besides using the SA neural network and softmax classifier for features extracting and classifying,
this paper also uses CNN for features of extraction and classification. The PCA (Principal Component
Analysis) algorithm [38,39] for features extraction and BP neural network for classification [40],
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compares the results of different methods. The PCA algorithm is used to produce kernels from
Xwhitening and the BP neural network is used to classify the faults, so the combination of the PCA
algorithm with the BP neural network can produce kernels and classify faults, as seen in Table 4.
Meanwhile, compared to CNN’s, the weights are different for this proposed method because the
kernels and softmax’s parameters are simultaneously trained. Table 5 shows all the parameters of SA
in training step and Figure 8 shows a flow chart for all of the steps. The parameters of the compared
methods are shown in Table 4. It is just the training of the softmax’s parameters and convolution
kernels of CNN that varies, the architecture of it is the same throughout.
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Table 4. The parameters of mentioned methods.

Mentioned Methods Parameters’ Name Parameters

PCA Cumulative percent variance 95% or 99%

BP (classifier)
Number of layers 2

Loss function Mean-square error

CNN
Number of convolutional layers 1

Number of pooling layers 1
Loss function Cross entropy loss

Convolutional kernels and softmax’s parameters have been retrained. Meanwhile, white noise
were added in the training sample and the test sample. The test has been repeated 20 times.
Experimental results show that all the classifier method’s results are very good, under the same method
of features extraction as shown in Table 6. That means the representational characteristics are obtained
by the proposed method. As a result, the softmax classifier presents better performance than BP
classifier. In addition, the softmax classifier shows a more stable diagnosis accuracy. The experimental
results also show that the extraction ability of SA is better than that of PCA whatever its value of CPV
(95% or 99%).
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Table 5. The parameters of the whole system.

Parameters Significance Value

ε Whitening parameter 0.1
m Number of training samples 80,000
λ1 Weight attenuation parameter for SA 0.003
β Weight of the sparsity penalty term 3
ρ Sparsity parameter 0.1

λ2 Weight attenuation parameter for softmax 0.0001
Hidden size Number of neurons in the hidden layer 400

t Proportionality coefficient 1

Table 6. Experimental results based on different methods.

Diagnosis Method Average

PCA + BP
CPV = 95% 89.286%
CPV = 99% 83.214%

PCA + softmax
CPV = 95% 93.929%
CPV = 99% 96.429%

SA+BP 97.345%
SA+softmax 98.214%

CNN 97.500%

5. Conclusions

Due to the hardness of MCT’s working environment, underwater image is chosen as the fault
diagnosing signal to classify the different degrees of MCT’s biological attachment. This paper proposes
a diagnosis method based on a sparse autoencoder and softmax regression, which consists of four
parts. (1) Preprocessing the unlabeled images to pre-train the convolution kernels; (2) making the
convolution between the labeled images and convolution kernels to obtain the convolved features
of each image in the labeled samples; (3) transforming the convolved features into the pooled
features by using pooling operation; (4) putting the pooled features into the softmax classifier to
diagnose the faults category. The SA is used to create kernels and the SR is used to classify them.
Images are used to monitor whether the blade is attached by benthos and then to determine its
corresponding degree of attachment. Also, this paper compares the simultaneous training method
(CNN) with other asynchronous training methods (PCA for kernel production and BP for classification).
The experimental results and comparison with other methods show that the proposed method is useful
to classify the different degrees of biological attachment. The proposed method can also be applied
to other fields [41–46]. However, the percentage of the area occupied by attachment is diagnosed
in this paper. The types of attachment are not considered. In addition, the training time of the
proposed method is too long. In the future work, we will think about the color and the thickness of the
attachment, and we will simplify the algorithm to speed up the training time in the future research.
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