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Abstract

Self-triggered control is an improvement on event-triggered control methods. Unlike
the latter, self-triggered control does not require monitoring the behavior of the sys-
tem constantly. Instead, self-triggered algorithms predict the events at which the
control law has to be updated before they happen, relying on system model and past
information.
In this work, we present a self-triggered version of an event-triggered control method
in which events are generated when a pseudo-Lyapunov function (PLF) associated
with the system increases up to a certain limit. This approach has been shown to con-
siderably decrease the communications between the controller and the plant, while
maintaining system stability. To predict the intersections between the PLF and the
upper limit, we use a simple and fast root-finding algorithm. The algorithmmixes the
global convergence properties of the bisection and the fast convergence properties of
the Newton-Raphson method.
Moreover, to ensure the convergence of themethod, the initial iterate of the algorithm
is found through a minimization algorithm.
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1 INTRODUCTION

For a long time, the implementation of continuous-time control tasks on digital hardware has been tied to the so-called
Shannon-Nyquist theorem. This condition requires the sampling frequency of the continuous control signal to be relatively
high in order to avoid aliasing phenomena. This in turn requires the sensors, controller and actuators to communicate at high
speed, tasks that can be straining on communication channels, energy sources and processing units. With the establishment
of event-triggered control, researchers and engineers alike realized the possibility of taking samples at a lower pace, provided
the samples are non-uniformly distributed over time. Less samples means less interactions between the different blocks of the
system, less demand on the communication channels and computation resources.

Event-triggered control, however, only half-solves the problem. Event-triggered control works by updating the control law
only when the controlled system violates predefined conditions on its states or output. This implies monitoring the state of the
system continuously, thus inducing the high frequency exchanges that we were trying to avoid. Monitoring the event-triggering
conditions might also require extra circuitry that is often difficult, if not impossible to build into existing plants.
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One way to cancel the need for constant monitoring of the state is to predict in advance the time instants at which the conditions
on system behavior are infringed. For this, we use the system’s model to predict the evolution of its states. Control strategies in
which the times of the control update are known beforehand are the topic of self-triggered control, a variant of event-triggered
control. Self-triggered control is most often encountered in the framework of discrete-time systems [2], [3] [4]. In [5], the event-
triggering conditions are developed in continuous-time, whereas the next execution time is found by setting a time horizon
that is divided in sub-intervals. An event is then determined by checking the event-triggering conditions in each sub-interval.
Continuous-time systems have also been studied in [6], where the problem is treated as an optimal control problem, with the
next sampling instant as a decision variable. The result is a non-convex quadratic programming problem which is then approx-
imated by a convex problem. In [7] and [8] the authors suggest a self-triggered control method that preserves the 2 stability
of the system in the presence of disturbances. Furthermore, self-triggered control schemes have often been coupled with model
predictive control, as both use the model to project the behavior of the system up to some future time [9], [10].

In this work, we design a self-triggered control algorithm for continuous-time linear time-invariant (LTI) systems. The algorithm
predicts the times at which the system’s behavior will infringe some predefined performance measures. We consider that the
system is functioning properly when a pseudo-Lyapunov function (PLF) of its states is below a predefined upper bound. The
control law is updated when the PLF reaches this upper bound. Predicting the events analytically is a difficult task, and thus,
the self-triggered control algorithm computes an approximation of the event times via a minimization algorithm followed by
a root-finding algorithm. The root-finding algorithm detects the intersections between the PLF and the upper limit, but needs
to be properly initialized to converge to the right value. To do this, we take advantage of the shape of the PLF between two
events; after the control is updated, the PLF decreases for some time, reaches a minimum and then increases again. This local
minimum is easily computed via a minimization algorithm, and provides a good initial iterate for the root-finding algorithm.

This paper is divided as follows. In Section 2, we present the problem that we are solving and establish the mathematical
formalism necessary to expose our method. Section 3 is divided into two parts. In the first part, we present the minimization
algorithm and explain the motivation behind why we need this stage. In the second part, we give the details of the root-finding
algorithm. Finally, in Section 4, we validate the method through a numerical example.

2 PROBLEM FORMULATION

In this section, we first summarize the event-triggered control algorithm introduced in [1] Then we introduce a self-triggered
algorithm that predicts the events generated by this event-triggered algorithm.

Consider the following LTI system

ẋ(t) = Ax(t) + Bu(t),
x(t0) = x0.

(1)

We want to stabilize System (1) with the following control sequence

u(tk) = −Kx(tk),
u(t) = u(tk), ∀t ∈ [tk, tk+1),

(2)

where K is the feedback gain, selected such that the matrix A − BK is Hurwitz. The time instants tk represent the instants at
which the control law has to be updated to satisfy predefined stability or performance criteria. The objective of a self-triggered
control implementation is to predict the time sequence tk, k = 0, 1, 2, ... at which the value of the control is updated.

The closed-loop form of System (1) can be written in an augmented form, with augmented state �k(t) = [x(t), ek(t)]T ∈ ℝ2n in
[tk, tk+1), with ek(t) = x(t) − x(tk)

�̇k(t) =
[

A − BK BK
A − BK BK

]

�k(t) =∶ Ψ �k(t), (3)

where 0n is the vector of zeros in ℝn. The system of equations (3) admits a unique solution on the interval [tk, tk+1)

�k(t) = eΨ(t−tk)�k(tk), (4)
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where �k(tk) =
[

x(tk) 0Tn
]T .

We define Ik(t) as the indicator function

Ik(t) =
{

1, t ∈ [tk, tk+1),
0, otherwise. (5)

Then, for all t, the state of the augmented system is given by

�(t) =
∑

k
�k(t) Ik(t), (6)

with initial state
�(t0) =

[

x0 0Tn
]T =∶ �0, (7)

In what follows, we designate �k(t) as �(t) when the two can be distinguished from the context.

Remark 1. When t ∈ [tk, tk+1), System (1) is written in closed-loop form as ẋ(t) = Ax(t) − BKx(tk), with a solution x(t) =
(eA(t−tk) − A−1(eA(t−tk) − I)BK)x(tk), which requires A to be non-singular. For this reason, we have chosen to work with the
augmented system (3), which admits a solution for all A and does not exclude any class of systems. The proposed approached
is then applicable to all stabilizable systems.

To determine the control sequence, we first need to define the performance criteria that we impose on the system. For this, we
associate to the system a positive definite, energy-like function of the state, that we refer to as a pseudo-Lyapunov function or
PLF and which takes the following form

V (�(t)) = �(t)T
[

P 0n×n
0n×n 0n×n

]

�(t) ≡ �(t)T  �(t), (8)

where 0n×n is the n × n matrix of zeros, and P is a positive definite matrix that satisfies the following inequality

(A − BK)TP + P (A − BK) ≤ −�P , (9)

where � > 0.

For the control sequence given by Equation (2) to stabilize the system, the PLF associated with the system has to decrease along
the trajectories of the system. In this work, however, we relax this condition and only require from the PLF to remain upper
bounded by a user-defined strictly decreasing threshold. Let the function W (t) be such an upper bound, then, the PLF has to
satisfy

V (�(t)) ≤ W (t). (10)

The upper bound W (t) has to satisfy a few conditions. It has to be positive, strictly decreasing in time, and to ultimately tend
toward zero. One suitable candidate is the exponentially decaying function of the form

W (t) = W0e
−�(t−t0), (11)

whereW0 ≥ V (�(t0)) and � > 0. The behaviors of V (�(t)) andW (t) are depicted in Figure 1.
Furthermore, since we want to drive the system trajectory to equilibrium as fast as possible, and since the evolution of V (�(t))
is determined by the evolution of W (t), we want W (t) to decay to zero as fast as possible as well. The fastest possible rate of
change ofW (t) is the largest scalar �, that can be achieved from Inequality (9), as shown in [1] The largest possible value of �
is the solution of the following generalized eigenvalue problem,

maximize �
subject to (A − BK)TP + P (A − BK) ≤ −�P , P > 0.

(12)

Let �max denote the solution of Problem (12). The rate of decay ofW (t) can be chosen as 0 < � < �max.

Then, we can define the time instants tk as

tk+1 = inf{t > tk | V (�(t)) = W (t)}. (13)
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FIGURE 1 The pseudo-Lyapunov function and the upper limit.

with t0 = 0.

In the next section, we detail the procedure used to predict the lower bounds of the entries of the time sequence t1, t2, ...,
knowing t0.

3 SELF-TRIGGERED ALGORITHM

Let Z(t) denote the difference W (t) − V (�(t)). From Equation (13), to determine tk+1, it suffices to determine the successive
time instants at which the following equation is verified

Z(t) = 0. (14)

Equation (14) depends on time and implicitly on the state �(t) which depends on time through a transition matrix as seen from
Equation (4). This configuration renders Equation (14) extremely difficult, if not impossible, to solve analytically. For this
reason, we propose a numerical solution to Equation (14), where the instant tk+1 is computed through a root-finding algorithm.

A numerical scheme needs an initial value, and our first guess would be to initialize the root-finding algorithm at instant tk in
order to predict the instant tk+1. However, the instant tk is itself a root, and as a result, the algorithm fails to converge to tk+1
and finds tk as a solution again. Therefore, we have to initialize our algorithm at a later time instant. Let �k denote the first time
instant at which the PLF reaches a local minimum after the time tk. The instant �k is a good candidate for an initial value, and
in what follows, we further justify its use in the root-finding algorithm.

To do this, we classify the evolution of the PLF between two triggering instants, tk and tk+1, into two categories. The first case,
shown in Figure 2a, the minimum of the PLF occurs in between two consecutive triggering instants so that tk < �k < tk+1. In
this case, we can see that it is better to initialize our algorithm at time �k, which when combined with the global properties of
the bisection method, avoids a convergence toward the time tk. In the second case, the PLF intersects with the threshold before
reaching a local minimum (see Figure 2b). In this case the instant �k offers an upper bound on tk+1 from which we can work
our way backwards to recover the instant tk+1.

Therefore, we need to precede the root-finding algorithm by a minimization stage, aimed at identifying the time instants at which
V (�(t)) reaches a local minimum.

3.1 Minimization Stage
Once again, the complexity of the problem makes it impossible to synthesize a closed form analytical solution, and we suggest
a numerical solution instead. The minimization algorithm is a modified Newton algorithm that uses tk as an initial guess to
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FIGURE 2 Shape of the PLF for different choices of �.

locate the minimum of V (�(t)) for t > tk.

At each iteration, we compute the Newton step denoted by Δ�. Let ∇tV and ∇2t V denote the first and second time derivatives
of V (�(t)). Then, the Newton step is computed as

Δ� =
−∇tV
|∇2t V |

. (15)

The expressions of ∇tV and ∇2t V are given by

∇tV = �(t)T
[

M L
LT 0n×n

]

�(t), (16)

∇2t V = �(t)T
[

Λ Γ
ΓT 

]

�(t), (17)

where �(t) is given by Equation (4) and

M = (A − BK)TP + P (A − BK),
L = PBK,
Λ = (A − BK)TM +M(A − BK) + (A − BK)TLT + L(A − BK),
Γ = (A − BK)TL +MBK + LBK,
 = LTBK +KTBTL.

The minimization procedure is given in Algorithm 1. The current iterate is denoted as � while the Newton step is represented by
Δ�. The number of iterations is bounded by the parameterMaxIter for safety, in case the algorithm fails to converge. The pro-
cedure starts by computing a Newton step as given by Equation (15). Then, a line search is performed to scale the Newton step.
The Newton step is scaled such that the function V decreases enough in the search direction. This step is needed because New-
ton’s method for minimization is an algorithm that computes the roots of the first derivative of the function to be minimized. In
our case, we have observed that the first derivative may contain an extremum near the root. Taking the tangent of ∇tV at these
points yields unreasonable Newton steps [11] that need to be damped. For this reason, this method is sometimes referred to as
the damped Newton’s method [12]. Once the scaling factor is found, the damped Newton step is taken and a new iterate is found.

Lines 5 through 8 of Algorithm 1 correspond to a backtracking line search. The line search works as follows: a Taylor series
approximation of V (�(t)) is computed, then the line search variable is decreased until a suitable reduction in V (�(t)) is achieved.
The parameter �1 indicates the percentage by which V (�(t)) has to decrease along the search direction. The final value of s is
the quantity by which the Newton step is scaled, and � is the fraction by which s is decreased in each line search iteration.

Algorithm 1 terminates when the change in � from one iteration to the next becomes negligible. The algorithm’s convergence
can be very fast, first, because many time consuming operations can be carried out offline. This is the case for matricesM , L, Γ,
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Algorithm 1Minimization Algorithm
1: functionMINIMIZATION(tk)
2: �← tk
3: while iter ≤ MaxIter do
4: Δ�← −∇tV ∕|∇2t V |
5: s← 1
6: while V (�(� + sΔ�)) − V (�(�)) ≥ �1 ∇tV s Δ� do
7: s← �s, � ∈ (0, 1), �1 ∈ (0, 0.5)
8: end while
9: tmp ← �
10: �← � + sΔ�
11: if |tmp − �| < tol then
12: return �k = �
13: end if
14: iter + +
15: end while
16: return �k
17: end function

Λ and  . Even the introduction of a backtracking line search, which is usually a time consuming procedure, does not slow down
the algorithm. This is due to the fact that the line search is only performed when we are far from the minimizer, but becomes
unnecessary as we approach the minimal value. Therefore, we noticed through our experiments that the algorithm’s execution
time is negligible compared to the length of the interval tk+1 − tk.

Remark 2. In the case of one-dimensional systems, the times at which the local minima of V (�) occur can be found analytically.
The analytical expression for finding �k and its derivation are given in the Appendix.
When tested on numerical examples, the analytical expression and the numerical approach return the same time sequence.

3.2 Root-finding Algorithm
Since we want our root-finding algorithm to be both fast and precise, we select an algorithm that combines Newton’s method
and the bisection method. The bisection method is a globally convergent method that acts as a safeguard against failures of the
algorithm when we are far from the root. Newton’s algorithm, on the other hand, has a quadratic convergence rate near the root
and is used to speed up the algorithm.

To be able to use the bisection, we need to locate the root within an interval, that we denote [tmin, tmax]. This is a simple enough
task once we know the time instant �k. As explained earlier, tk+1 can occur either before or after the time instant �k. Either case
is identified by computing Z(�k); if Z(�k) > 0, then tk+1 > �k, whereas if Z(�k) < 0, tk+1 < �k. We then define two time
instants t1 and t2, we set t1 = �k and we follow the appropriate procedure

• Case tk+1 > �k:
We pick a parameter � > 0. We suggest to scale the value of � on the time lapse �k − tk. The scaling factor �2 is chosen
between 0 and 0.5, depending on how crude we want the search to be, resulting in � = �2(�k − tk). Then, starting from
t2 = t1 + �, we keep increasing t2 by a value � until Z(t2) < 0. This procedure is depicted in Figure 3a. Finally, we find
tmin = t1 and tmax = t2.

• Case tk+1 < �k:
In this case, we pick � = −�2(�k − tk). Starting from t2 = t1 + �, and while Z(t2) < 0, � is decreased by a factor of 2
and t2 is decreased by a value �. This procedure is depicted in Figure 3b. We keep dividing � by 2 to avoid the situation
t2 < tk when the search is too crude. Then, we set tmin = t2 and tmax = t1.

The pre-processing stage is synthesized in Algorithm 2.
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tk+1 > �k
tk �k

� > 0

(a) Case �k < tk+1
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(b) Case �k > tk+1

FIGURE 3 Locating the root inside an interval.

Algorithm 2 Interval Finding
1: function PRE-PROCESSING(tk)
2: t1 ← �k
3: if Z(t1) < 0 then
4: � ← −�2(�k − tk), 0 < �2 ≤ 0.5
5: else
6: � ← �2(�k − tk)
7: end if
8: t2 ← �k + �
9: while Z(t1)Z(t2) ≥ 0 do
10: t2 ← t2 + �
11: if t2 ≤ tk then
12: t2 ← t2 − �, � ← �∕2
13: t2 ← t2 + �
14: end if
15: end while
16: tmax ← max(t1, t2)
17: tmin ← tmax − |�|
18: return tmin, tmax
19: end function

The root-finding algorithm can only find approximate event times tk, and so at t = tk, we only haveW (tk) ≈ V (�(tk)). For this
reason, to ensure the convergence of the algorithm, at t = tk, we make the correctionW (tk) = V (�(tk)). If we letW (tk) = Wk,
the expression ofW (t) on the interval [tk, tk+1) becomes

W (t) = Wke
−�(t−tk), (18)

The function Z(t), on [tk, tk+1), is then given by the

Z(t) = Wke
−�(t−tk) − �(t)T  �(t), (19)

where �(t) is given by equation (4).
The first derivative with respect to time, along the trajectories of �(t) is

dZ(t)
dt

= −Wk�e
−�(t−tk) − ∇tV . (20)

To decide whether to take a Newton step or a bisection step, we first compute an iterate with Newton’s method. If the new
iterate is located within the previously identified interval [tmin, tmax], it is accepted. Otherwise, the Newton iterate is rejected and
instead a bisection iterate (the mid-point of the search interval) is computed. The interval [tmin, tmax] is then updated.
Algorithm 3 describes the root-finding procedure in details. It is a slightly modified version of the hybrid Newton-bisection
algorithm found in [13]. To make the notations shorter, from now on we refer to dZ(t)∕dt as ∇tZ(t).

The algorithm starts by making sure that neither tmin nor tmax are the root, the procedure is exited if it is the case. Checking
whether tmin is a root or not should be performed before the pre-processing, but for the sake of separation, we include it in the
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Algorithm 3 Root-Finding Algorithm
1: function NEWTON-BISECTION(tmin, tmax)
2: if Z(tmin) == 0 then
3: return tmin
4: end if
5: if Z(tmax) == 0 then
6: return tmax
7: end if
8: t← (tmin + tmax)∕2
9: Δt← tmax − tmin, Δtold ← Δt
10: compute Z(t), ∇tZ(t)
11: while iter ≤ MaxIter do
12: step ← Z(t)

∇tZ(t)

13: if tmin ≥ t − step or tmax ≤ t − step or |Δtold|
2

< |step| then
14: Δtold ← Δt
15: Δt← (tmax − tmin)∕2
16: t← tmin + Δt
17: else
18: Δtold ← Δt
19: Δt← step
20: t← t − Δt
21: end if
22: if |Δt| < tol2 then return t
23: end if
24: if Z(t) > 0 then tmin ← t
25: else tmax ← t
26: end if
27: end while
28: return tk+1
29: end function

root-finding algorithm at this stage. The iterate t is initialized as the midpoint of the interval [tmin, tmax].

The variables Δt and Δtold store the current and the former step lengths, respectively. We compute Z(t) and ∇tZ(t) in order to
compute the Newton step. The condition on line 13 of Algorithm 3 decides whether a Newton step is taken or rejected. If by
taking the Newton step we exceed tmax or regress below tmin or if Newton’s algorithm is too slow, the Newton step is rejected,
and a bisection step is taken instead. Lines 14 to 16 represent a bisection step, whereas lines 18 to 20 represent the case where
the Newton step is taken.

After the new iterate is computed, we evaluate Z(t) at that point. If Z(t) is positive, the new iterate is located before the root,
and it becomes tmin. Otherwise, the current iterate become tmax. The algorithm terminates when the change in t between two
consecutive iterates is too small, i.e. when the step length becomes smaller than a tolerance tol2.

3.3 Summary of the Self-Triggered Algorithm
The three steps of the self-triggered algorithm, described separately so far, are grouped in the order in which they are called, in
Algorithm 4.
The main contribution of this paper about the design of self-triggered stabilizing controllers is introduced in the following
proposition
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Algorithm 4 Self-Triggered Algorithm
1: procedure SELF-TRIGGERED
2: �k =MINIMIZATION (tk)
3: if Z(�k) == 0 then
4: tk+1 = �k
5: end if
6: [tmin, tmax] = PRE-PROCESSING (�k)
7: tk+1 = NEWTON-BISECTION(tmin, tmax)
8: end procedure

Proposition 1. Let �max be the solution to problem (12). If we choose � between 0 and |�max|, Algorithm 4 provides update
instants tk for the control law u(t), given by Equation (2), such that System (1) is asymptotically stable.

The proof for Proposition 1 is given in details in [1]. In what follows, a brief summary of the proof is given. SinceW (t) decreases
exponentially toward zero, we need to show that V (�(t)) < W (t) for all t (or equivalently that Z(t) > 0 for all t) to prove that
System (1) is asymptotically stable. We know that in the interval (tk−1, tk), k ≥ 1, Z(t) > 0. And since Algorithm 4 predicts the
time tk when Z(t) approaches zero from above, at t = tk, the control law u(t) is updated so that Z(t) becomes strictly positive
again. Therefore, Z(t) > 0 for all t.

4 NUMERICAL SIMULATION

Consider the following third order LTI system [14],

ẋ(t) =
⎡

⎢

⎢

⎣

1 1 0
−2 0 4
5 4 −7

⎤

⎥

⎥

⎦

x(t) +
⎡

⎢

⎢

⎣

−1
0
1

⎤

⎥

⎥

⎦

u(t),

with initial state x0 = [−2 3 5]T .
The system is unstable with poles at −8.58, 0.58, 2.00. We stabilize the system with a state-feedback control law with feedback
gain

K =
[

8.38 26.36 10.38
]

,

that places the poles at −1.14 ± 1.35i, −5.71. Solving the generalized eigenvalue problem (12) yields �max = 2.28 and

P =
⎡

⎢

⎢

⎣

275.7 1025.5 577.9
1025.5 3840.1 2173.5
577.9 2173.5 1234.1

⎤

⎥

⎥

⎦

. (21)

We select � = 2.18 s−1 andW0 = 1.3V (x0).
We simulate the system’s operation for 7 s, with a sampling period Ts = 10−3.

The values of the parameters required by the minimization algorithm and the root-finding algorithm are given in Table 1.

TABLE 1 Values of the parameters needed in the self-triggered control algorithm

Parameter Value
MaxIter 50
� 0.35
�1 0.01
tol1 10−5

�2 0.25
tol2 10−5 at t = 0
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The tolerance tol2, at which the root-finding algorithm terminates, is set dynamically. Such a choice is motivated by the expo-
nential decrease of W (t), which tends to zero as time tends to infinity. If tol2 is constant, at some point, W (t) can decrease
below this tolerance, and so does V (�(t)), leading to a small Z(t) that could be mistaken for the root, when there is actually no
intersection. Therefore, we index the value of tol2 onWk. As long asWk > 1, tol2 = 10−5 as given, but W=whenWk < 1, then
tol2 is decreased according to the following equation

tol2 = 10−5−�, with � = ⌈| log10(Wk)|⌉.

At t = 0, we apply the control law u(t0) = −Kx0 and we compute the instant t1 using the self-triggered algorithm. The system
is then on an open-loop configuration, only maintaining a control value of u(t0), until the clock signal displays the time t1. At
this point, the operation is repeated.

Figure 4a shows the time evolution of the functions V (�(t)) and W (t). It shows that V (�(t)) remains below W (t) at all times,
which proves that the algorithm manages to identify correctly the times at which events occur, inducing an update of the control
law. Even when the two functions approach zero, the intersections are still detected as shown on Figure 4b, which singles out
an event at t = 6.476 s andW (t) = 0.0948.

The zoom on the event at t = 6.476 s shows that the update of the control law is carried out one time step before the intersection
occurs. This is due to the fact that the control can only be updated at multiples of the simulation sampling period Ts. For this
reason, when an intersection is predicted somewhere between sampling instants t = 6.476 s and t = 6.477 s, we update the
control law at the earlier instant, t = 6.476 s, to prevent the PLF from crossing the threshold. By contrast, in the event-triggered
control algorithm on which this approach is based, the event is detected one time step after it occurs. From this point of view,
the self-triggered control algorithm represents another improvement on event-triggered control.

The three state variables, shown on Figure 4c, tend to equilibrium and the ‖x(t)‖ stabilizes below 0.05 within 6.94 s. The
stabilizing control law is shown on Figure 4d. This figure shows the uneven distribution of updates in time. Figure 4d also
includes a zoom on the control in the time interval [4 s, 7 s], which emphasizes the asynchronous nature of the updates, and
which is not visible on the larger figure.

Table 2 lists the first six event times with the corresponding inter-event times tk − tk+1 and running times of the self-triggered
control algorithm. We notice that for our experimental conditions, the algorithm’s running time is much smaller than the cor-
responding inter-event time, allowing the online use of the algorithm. Moreover, the running time decreases as we go further
in time, the highest running time being the first call of the algorithm, but this call can be made offline. Eventually, the running
time settles around 0.002 s. Additionally, matricesM , L, Λ, Γ and  are computed offline, and thus do not affect running time.
Figure 5 further illustrates the disparity between the running times of the algorithm and the inter-event times.

TABLE 2 The first 6 events

Update time Inter-event time Running time
0.453 0.453 0.0481
0.691 0.238 0.0081
1.228 0.537 0.0043
1.403 0.175 0.0029
1.641 0.238 0.0089
2.328 0.687 0.0030
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FIGURE 4 Simulation results of self-triggered control.

FIGURE 5 The running times of the self-triggered algorithm versus the inter-event times.

5 CONCLUSION

We presented a self-triggered control algorithm for linear time-invariant systems. The approach approximately predicts the
times at which a pseudo-Lyapunov function associated to the system reaches an upper limit, which are the times at which the
system ceases to be stable and the control needs to be updated. These time instants are approximated using numerical methods
in two stages. In the first stage, a minimization algorithm locates the time �k at which the pseudo-Lyapunov function reaches a
minimum value in the interval between two events. In the second stage, a root-finding algorithm initialized at �k approximates
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the time of the next event.

The strength of this root-finding method is that it combines a globally convergent method with a locally convergent method.
The globally convergent method ensures convergence to the right solution while the locally convergent method speeds up the
convergence. Additionally, the minimization stage guarantees that the algorithm is initialized with a value close to the region
of attraction of the actual root. The convergence and speed properties of this method make it suitable for both offline and online
implementations.

To further validate this approach, the next step would be to apply the self-triggered control algorithm on a real system. This
would allow us to test its efficiency against the uncertainties encountered in practical application.
Another perspective would be to extend this method to solve the problem of reference tracking, as this involves, in addition to
stabilizing the system, the difficulty of detecting the changes in the reference trajectory.
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APPENDIX

A ONE-DIMENSIONAL SYSTEMS

In the case of one-dimensional systems, the local minimum of V (�(t)) can be found analytically. In what follows, we give a
detailed procedure to determine �k analytically. We consider the first order LTI system described as

ẋ(t) = ax(t) + bu(t),
y(t) = cx(t),

(A1)

where x(t), u(t) ∈ ℝ, and a, b, c ∈ ℝ∗, ∀t > 0.

Let xk denote x(tk). The event-triggered control law is given by u(t) = −Kxk and System (A1) in its closed-loop form is
given by

ẋ(t) = ax(t) − bKxk, ∀t ∈ [tk, tk+1), (A2)

Sincewe assumed that a ≠ 0, the augmented system described by Equation (3) is not needed for the scalar case. The differential
equation (A2) admits a unique solution for t > tk, given by

x(t) =
(bK
a
+
(

1 − bK
a

)

ea(t−tk)
)

xk. (A3)

To System (A1), we associate a Lyapunov-like function of the form

V (x(t)) = px(t)2, (A4)

where p > 0 is a solution to the Lyapunov inequality

2p(a − bK) ≤ −q, (A5)

where q > 0 is a user-defined design parameter.

The minimum of V (x(t)) corresponds to

0 =
dV (x(t))

dt
= 2p(ax(t) − bKxk)x(t). (A6)
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Equation (A6) admits two solutions, x(t) = 0, and x(t) = bKxk∕a. However, the solution x(t) = bKxk∕a is impossible as it
is equivalent to

(bK
a
+
(

1 − bK
a

)

ea(t−tk)
)

xk =
bKxk
a

,

ea(t−tk)
(

1 − bK
a

)

= 0.

We know that ea(t−tk) ≠ 0 and we cannot choose K such that bK∕a = 1 or else we would destabilize the system. Therefore, in
the scalar case, dV ∕dt = 0, if and only if x(t) = 0.

Consequently, the local minima of V (x(t)) occur only when x(t) = 0 and �k can be directly computed from Equation (A3)
((

1 − bK
a

)

ea(�k−tk) + bK
a

)

xk = 0.

We know that xk ≠ 0, because at t = tk, V (xk) = px2k = W (tk) ≠ 0, hence xk ≠ 0. Therefore, the times �k are given by the
expression

�k = tk +
1
a
log

( bK
bK − a

)

. (A7)

We can always take the logarithm of bK∕(bK − a) because this is always a positive quantity, as can be seen from the following
proof.

• Case a > 0 :
The feedback gain is chosen such that a − bK < 0. Then, bK − a > 0, and bK > a > 0. Since the numerator and
denominator are both positive, then bK∕(bK − a) > 0. Moreover, bK∕(bK − a) > 1, proving that the �k computed by
Equation (A7) occurs indeed after tk.

• Case a < 0 :
If the open-loop system is already stable, the objective of the control is certainly to place the pole further to the left. Then,
the feedback gain is chosen such that a−bK < a < 0. Then, we must have bK > 0 and bK−a > 0. Consequently, as in the
previous case, bK∕(bK−a) > 0. Even if in this case bK∕(bK−a) < 1, the �k given by Equation (A7) still occurs after tk.

Equation (A7) is independent of xk, indicating that the interval [tk, �k] has the same length for all k.
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