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The plasma-wall transition is studied by mean of a particle-in-cell (PIC) simulations

in the configuration of a parallel to the wall magnetic field (B), with collisions between

charged particles vs. neutral atoms taken into account. The investigated system

consists in a plasma bounded by two absorbing walls separated by 200 electron Debye

lengths (λd). The strength of the magnetic field is chosen such as the ratio λd/rl,

with rl the electron Larmor radius, is smaller or larger than the unity. Collisions

are modelled with a simple operator that reorients randomly ion or electron velocity,

keeping constant the total kinetic energy of both the neutral atom (target) and the

incident charged particle. The PIC simulations show that the plasma-wall transition

consists in a quasi-neutral region (pre-sheath), from the center of the plasma towards

the walls, where the electric potential or electric field profiles are well described by an

ambipolar diffusion model, and in a second region at the vicinity of the walls, called

the sheath, where the quasi-neutrality breaks down. In this peculiar geometry of B

and for a certain range of the mean-free-path, the sheath is found to be composed by

two charged layers, a first, positive, close to the walls, and a second one, negative,

towards the plasma and before the neutral pre-sheath. Depending on the amplitude

of B, the spatial variation of the electric potential can be non-monotonic and presents

a maximum within the sheath region. More generally, the sheath extent as well as

the potential drop within the sheath and the pre-sheath are studied with respect to

B, the mean-free-path and the ion and electron temperature.
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I. INTRODUCTION

Sheaths are encountered when a plasma is in contact with a surface, that can be an

electrode, the wall of a laboratory reactor, or the wall of a spacecraft. Sheaths are one of

the most well-known features of plasma physics, studied for decades, not only because of

their theoretical interest, but because they are critical for many industrial and technological

applications. In low temperature plasma for instance, they are of great importance in the

context of directional etching, a key technology that has allowed the miniaturisation of semi-

conductor devices and the recent progresses of nano-technologies1. In fusion plasma physics,

sheaths are also investigated because of their role in the heating and erosion issues of the

plasma facing components.

Plasma sheaths forms because of the large difference between ions and electrons ther-

mal velocities. Electron’s one being usually larger, during a transient regime, the surface

contacting the plasma becomes negatively charged and a depletion in the electron density

appears at its vicinity. Consequently, a space charge builds up in front of the wall, in a

region called ”sheath”, whose width is of several Debye length (λd). A large electric field,

due to the space charge, accelerates ions towards the wall and slows down electrons. In the

steady state, this space charge field allows the equality of both ion and electron current Γi

and Γe at the wall, such as Γi = Γi = Γw. It has also been demonstrated that the stability

of such a charged layer depends on a criterion on the ion velocity: ions have to enter the

sheath with a supersonic velocity (the Bohm criterion2–4).

In the region connecting the sheath to the plasma, where the density can drop by a

factor 2 or more5, the quasi-neutrality does not breakdown (ni ' ne with ni and ne the

ion and electron density respectively). In this region, called the pre-sheath, an ambipolar

electric field maintains the current equality Γi = Γe at any position as long as the velocity

towards the wall is subsonic (otherwise quasi-neutrality breaks down and the particles enter

the sheath). Models calculating the potential drop in the pre-sheath has been derived, in

the limiting cases of collisionless and high density plasma, taking into account ionization

(a source term)6,7. Note that in this paper, and in its state of the art, we assume floating

conditions for the walls, thus ambipolarity, but it is not mandatory for the existence of

sheaths and a similar analysis could be carried out with non floating conditions.

In the presence of a magnetic field B tilted by an angle ψ with respect to the wall, another
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region appears between the Debye sheath and the pre-sheath. Ions are first accelerated along

the magnetic line in the pre-sheath and then enter the new layer called magnetic pre-sheath

or Chodura layer8. There, their velocity is reoriented towards the wall in order to satisfy

the Bohm criterion at the Debye sheath entrance. The role of the magnetic field angle and

strength on the different regions have been investigated by several authors since the original

work of Chodura9–12.

When B is not connected to the collecting surface (ψ = 0), without collision or turbulence,

the particle flux at the wall should vanish. Some authors have studied this limiting case

of perfect confinement and given scaling variation of the sheath size s with the ion Larmor

radius Rl and showed that the potential drop within the sheath ∆φs is positive (∆φs =

φw − φs where φw and φs are the electric potential at the wall and at the sheath entrance

respectively) and of the order of Ti/e with Ti the ion temperature expressed in energy units

and e the electron charge13–15. In a previous study, we derived a simple law connecting both

s and ∆φs with the plasma parameters (both ion and electron temperature Ti and Te, the

plasma density n0 and the ion cyclotron to plasma pulsation ratio ωci/ωpi), that has been

checked against PIC simulations16. In this specific case of perfect alignment of the magnetic

field with the wall, the space charge at the vicinity of the collecting surface is negative

because the ion Larmor radius is larger than the electron one ; it leads to a positive electric

field that pushes back ions into the plasma while accelerating electrons towards the wall.

This geometry eventually leads to a quasi-static situation where the flux at the wall in the

steady state vanishes; it can be restored by turbulence or collisions.

Theilhaber and Birdsall showed in the context of bi-dimensional PIC simulations that

Kelvin-Helmholtz instability due to the velocity shear within the sheath allows a particles

drift across the magnetic field lines. They evidenced that the potential drop within the

sheath keeps a positive value and that the sheath extent reaches 5Rl
17–19. When collisions

are taken into account, both ions and electrons diffuse through the field line at a different

rate. For high collisional plasma, when the ordering λd < λe ≤ rl < Rl (λe and rl are

the electron mean-free-path and Larmor radius respectively) is respected, both ions and

electrons are demagnetized by collisions: this almost leads to the classical situation where

B = 0, ie. a negative potential drop within the sheath as well as in the pre-sheath20.

However, this scheme does not describe all possible situations that can arise from collision

events and from the different orderings of the characteristic lengths.
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It exists a mean-free-path threshold above which ions migrate faster across the field

line than electrons, assuming that they are always magnetized (λe ≥ rl). In such a case,

focussing on charged particle vs. neutral atoms collisions only, the ion motion towards the

wall is ruled by a random walk whose step can be either the ion mean-free-path λi (λi does

not necessarily equal to λe) or the ion Larmor radius Rl, whereas the electron random step is

always rl (see Fig. 1 for a geometric description of the problem). When λi ≤ Rl, neglecting

the electric field effect, the characteristic time needed by a thermal ion to travel a distance d

is (d/λi)
2×λi/vti while it is of about (d/rl)

2×λe/vte for a thermal electron, with vti and vte

the ion and electron thermal velocity respectively. We can derive the following expression :

λeλi ≥
vte
vti
r2
l , (1)

that gives the mean-free-path threshold above which ions are faster than electrons. If ions

are magnetized (λi ≥ Rl), their characteristic time is (d/Rl)
2×λi/vti and the mean-free-path

threshold becomes:
λe
λi
≥ vte
vti

(
rl
Rl

)2

. (2)

Assuming both mean-free-paths of the same order of magnitude (λe ' λi), Eq. 1 becomes:

λe
rl
≥

(
Temi

Time

)0.25

, (3)

while Eq. 2 is always true as long as Te ' Ti for λe ' λi. Then, above the critical mean-

free-path given by Eq. 3, ions are expected to drift faster than electrons towards the wall.

However, at a characteristic distance of rl from the collecting surface, although the condition

given by Eq. 3 is satisfied in the plasma, collisionless electrons travel faster than ions across

the magnetic field line (see Fig. 1). This situation can eventuality lead to a double charged

layer close to the wall, from a positive to a negative polarity towards the plasma.

In this paper we investigate thanks to PIC simulations the transition expected between

the two different regimes, where ions are faster than electron, and reciprocally, with respect

to the mean-free-path. A charged particle vs. neutral atoms collision operator has been

developed and integrated to the PIC code allowing for the determination of the electric

potential and field, as well as for the charged layer(s) at the vicinity of the walls, with

respect to the mean-free-path. In the first part of the paper, the complete details of the

simulations and the studied system are given; the results are presented in the second part.

We focus on the evolution of both potential polarity in the sheath and the pre-sheath,
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that can be opposite under a specific ordering of the characteristic lengths. An ambipolar

diffusion model is also used to predict the potential drop amplitude in the pre-sheath and to

determine the sheath extent in an original manner. Finally, our simulations and results give

an overview of the transition between the two regimes, both independently studied in the

literature for extreme values of the mean-free-path. It is important to notice also that the

Debye sheath, defined as the sonic point location, where the plasma solution ni ' ne breaks

away, is expected to disappear below a critical angle ψ∗ calculated by Stangeby21, which is

of ' (me/mi)
0.5. Indeed, according to Stangeby hypothesis, for such a shallow angle, the

Debye sheath is no longer required to achieve an ambipolar plasma flow to the wall, the

quasi-neutrality holds everywhere in the plasma, and the flow perpendicular-to-the wall is

sub-sonic. In our specific geometry of the magnetic field, the Larmor radii define the area

where the particles, ions and electrons, intercept the surface. In such a condition, a kinetic

treatment, instead of a fluid one, is necessary to describe precisely the mechanisms arising

in the sheath, extending over some Larmor radii. As it will be shown in this paper, thanks

to the PIC simulations, the Bohm condition may not be verified, and the quasi-neutrality

still breaks away. Then we will only refer to the sheath as the non-neutral area in front of

the wall (positive, negative or both), that has to be distinguished to the ”standard” Debye

sheath whose edge is located at the sonic point. The different potential drops derived in

this paper, in the sheath and in the pre-sheath, are then dependent on the method used to

determine the sheath edge.

II. PIC SIMULATIONS

The simulations have been carried out using a 1D3V PIC code developed in the laboratory

by the authors16. The studied system is a one-dimensional plasma bounded by two grounded

absorbing walls separated of L = 200λd. The geometry of the studied plasma as well as the

orientation of the magnetic field parallel to the wall are shown in Fig. 1.

The simulation cell size is chosen such as 0.1×min(rL, λd); such a small cell size allows

an accurate description of both electron and ion motions in the range of magnetic field

investigated. Initially, the superparticles are uniformly distributed on the grid (∼ 10 to

100 per cell) and their velocity randomly chosen from a Maxwellian distribution whose

temperature are set by the user. Both Ti and Te are chosen within the range 1 to 4 eV in
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FIG. 1. Sketch of half of the studied plasma (left wall only). Schematic ion and electron trajectories

are shown in the figure, assuming some collision events. Close to the wall, electrons do not suffer

collision over a distance rl, while ions are collisionless over a distance di varying between the ion

mean-free-path (λe/4) and the ion Larmor radius (Rl).

the different simulation runs, which is representative of the electron temperature in plasma

discharges5.

At each time step, the particles are moved under the action of both magnetic and electric

field. While the former is set and kept constant in space and time, the latter depends on

the ion and electron density and has to be calculated solving the Poisson equation by the

finite difference method. The electric field on the particles position is then interpolated at

the first order by using its value on the closest grid nodes. The Boris pusher method22 is

used next to update the position of all the particles and then time can be incremented. In

order to reach a steady state, the number of ions in the simulation is kept constant ; at each

time step the same exact amount of ions expelled out the plasma via both walls during the

previous iteration are injected into the system at a random position. In order to preserve

the neutrality of the plasma, an electron is also injected at the same random position. The

velocity of the source particles is randomly set in the original Maxwellian distribution for

both ions and electrons.
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At the thermodynamic equilibrium, the plasma density and velocity distribution function

are in a steady state, which means ionization and excitation processes are perfectly balanced,

so that they can be replaced by simple elastic collisions. We are focussing here on elastic

collisions with neutrals, as expected in plasma discharges. They are taken into account by

using a simple hard sphere model, where the cross-section σ is independent of the velocity

of the charged species and is only related to the spherical section of both incident and target

particles. Within this description, assuming ions and neutrals of identical diameter, the

mean-free-path defined as λe = 1
σnn

, where nn is the neutral density, is four times smaller

for ions than for electrons. We express in our study the electron mean-free-path λe in terms

of electron larmor radius number in order to be able to compare the different characteristic

lengths more easily and we assume the ion mean-free-path λi = 1/4 × λe. The collision

operator in the code picks randomly within a Maxwellian distribution the neutral velocity

components Vnx, Vny and Vnz. It is well known, because of the conversation of the total

momentum, that the velocity of the center of mass
−→
Vg is conserved:

−→
Vg =

−→
V ∗g =

mn

−→
Vn +mp

−→
Vp

mn +mp

, (4)

where the ∗ denotes the different quantities after the collision,
−→
Vp is the velocity of the

incident particle (ion or electron), mp its mass, and mn the mass of the neutral atom. It is

possible to express
−→
Vp (resp.

−→
V ∗p ) as a function of

−→
Vg and of the relative velocity between the

incident and the target particles
−→
Vr =

−→
Vp −

−→
Vn (resp.

−→
V ∗r ):

−→
Vp =

−→
Vg +

mn

mn +mp

−→
Vr . (5)

One can show, using the previous equation and the similar one connecting
−→
Vn to

−→
Vr ,

that the conversation of the total energy leads to a conversation of the magnitude of the

relative velocity |−→Vr | = |−→V ∗r |. Moreover, for hard sphere collisions, all directions for
−→
V ∗p are

equiprobable as they are for
−→
V ∗r . Picking randomly a direction for

−→
V ∗r can be achieved by

choosing both polar and azimuthal angles θ and φ such as:

cos θ = 1− 2ε

φ = 2πε

sin θ =
√

1− cos2 θ

, (6)
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with ε randomly chosen in [0 : 1]. The relative velocity after the collision is now:

−→
V ∗r = |−→Vr | × (cos θ, sin θ cosφ, sin θ sinφ) (7)

Eq. 5, 6 and 7 allows the complete determination of the velocity of the charged particle

after the collision
−→
V ∗p . In case of electron vs. neutral collision, the velocity of the target

−→
Vn

can be assumed as negligible with respect to the incident particle one23 ; in that case, the

electron velocity magnitude is conserved after the collision and its direction is changed using

Eq. 6. Finally a Monte Carlo sequence is used to determine which particle will collide with

a neutral atom as detailed in reference24.

It is important to notice that such a hard sphere model for the charged particles vs

neutrals collision is a crude approximation of the real collisional processes. We point out

though that the aim of our study is not to give a complete physical description of these

processes but to understand how the restored fluxes (collision enables particles drift across

the magnetic field lines) change the potential drop in both the pre-sheath and the sheath

and impact the sheath extent as well as the polarity of the space charge.

As the motion of the particles is expected to be driven by collisions through the magnetic

field line, the time needed by ions to cross the system can be quite large, especially when

λe >> Rl. That is why, in order to run the simulations in an acceptable time, we used

reduced ion-to-electron mass ratio mi/me from 50 to 100. Finally, the approximation used

in the collision model making fastest particles have a higher probability to collide and then

to migrate towards the walls (the cross-section being independent of the velocity25), and

the injection method we used (the effect of the particle injection on the velocity distribu-

tion functions is discussed for instance in reference26,27) can induce a relative cooling of the

plasma with respect to the nominal loaded one. This cooling may occur together with a

distortion of the velocity distribution function as shown in Fig. 7 of ref.28. It can be avoided

by heating the plasma, reinitializing the velocity just as simulating Coulomb collisions29,

or by changing the injected velocity distribution function as explained in ref.26. We did

not observe in our simulations a significant difference between the ideal Gaussian distribu-

tion and the calculated one for electrons, and the difference for ions was relatively small, the

root-mean-square deviation between the Gaussian estimator and the PIC calculated velocity

distribution being of the order of 0.01. Then, actual ions and electrons temperatures, esti-

mated by a numerical Gaussian fit from the PIC simulated velocity distribution functions,
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have been used to normalized potential drops and velocities.

III. RESULTS

A. Space charge and electric field vs. λe

The different diagnostics (electric potential, electric field, densities, velocity distribution

functions...) are averaged on several tens of ion cyclotronic periods after the system has

reached its steady state, ie. when the particles fluxes at the wall as well as the electric

potential do not drift any more around their averaged values. As mentioned, the time

needed to reach the steady state can be large, depending on the characteristic lengths of the

system. In Fig. 2a is shown the particle flux at the wall vs. the simulation time for different

mean-free-path to electron larmor radius ratios (λe/rl).

The particle flux at the wall Γw decreases slowly with t, until it stabilizes around 100 ion

gyroperiods, which is the waiting time before beginning the averaging of the different desired

quantities. As a matter of fact, the time needed to reach the steady state increases with B:

the number of steps statistically required to travel across the studied plasma increases with

(L/rl)
2 or (L/Rl)

2, depending on the slowest charged particle (L = 200λd does not vary

with B). The amplitude of Γw depends on the ratio λe/rl: it first increases up to λe/rl = 10

and then decreases constantly; this trend will be explained in the following sections.

In Fig. 3 are depicted the space charge at the vicinity of the left wall (x = 0) as well as the

electric field for 3 different λe/rl ratios and a magnetic field such as λd/Rl = 0.1×λd/rl = 0.03

(both electrons and ions are weakly magnetized, mi = 100me and Ti = Te = 2 eV). The

situation evolves from a classical situation where the space charge is typically positive on 5

to 10λd (highly collisional plasma with λe/rl = 1 in Fig. 3a) to a situation where a bilayer,

whose charge varies from positive (close to the wall) to negative (towards the plasma), takes

place for a weakly collisional system (λe/rl = 250 in Fig. 3e). For that collisionality, the

spatial variation of the ion and electron density are shown in Fig. 2b, with a zoom close to

the wall, exhibiting the charged bilayer. The electric field presents the same characteristics:

strictly negative in Fig.3b, it becomes positive in Fig. 3f. For intermediate mean-free-

path values (λe/rl = 10 in Fig. 3b), the electric field is initially negative close to the

wall, accelerating ions in its direction. It then becomes positive for x = 4.3λd, whereas
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FIG. 2. a) Particle flux at the wall Γw normalized to the Bohm flux (ΓB = 0.5n0Cs) for different

mean-free-path to electron larmor radius ratio (λe/rl) with respect to the simulation time. The

parameters of the PIC simulations are mi/me = 100, Ti = Te = 2 eV, λd/Rl = 0.1× λd/rl = 0.03

(corresponding to an applied magnetic field of B = 0.01 T). b) Spatial variation of the particles

density for λd/Rl = 0.03 and λe/rl = 250. Inset: zoom close to the wall showing the double

charged layer relatively to Fig. 3e.

no negative space charge is clearly visible in Fig. 3c, pushing back ions into the plasma.

There is obviously in this case a positive ambipolar field in the pre-sheath region where the
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FIG. 3. a), c) and e) Space charge (ni − ne) vs x/λd at the vicinity of the left wall for λe/rl = 1,

10 and 250. In e) is also shown the smoothed curve calculated via the LOESS method ; the dashed

area correspond a confidence interval of the smoothed data. The sheath extent s is determined

arbitrary at %50 of the maximum signal h. b), d) and f) Electric field extracted from the PIC

simulation and ambipolar field plotted using Eq. 9 for the same λe/rl ratios.

quasi-neutrality stands, while an opposite space charge field exists within the sheath.

The same evolution of the electric potential can be seen in Fig. 4a for λe/rl = 10: the

potential drop within the sheath is negative, while it is positive in the pre-sheath, leading

to a non monotonic variation of φ(x). Below this threshold value, the total potential drop
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is negative for highly collisional plasma (as in Ref.20) ; it becomes positive when the system

is weakly collisional (larger λe/rl ratio). In this situation, the particle flux at the wall is 10

times smaller than the one for intermediate value of the mean-free-path (see Fig. 2a) and

would vanish for infinite mean-free-path. It would be close to the quasi-static situation that

we previously studied assuming a null particle flux at the wall16.
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FIG. 4. Spatial variation of the electric potential φ for different values of the mean-free-path

normalized to the electron Larmor radius λe/rl. In a) λd/Rl = 0.1 × λd/rl = 0.03 while in b)

λd/Rl = 0.1× λd/rl = 0.78 ; the mass ratio is mi/me = 100 and Ti = Te = 2 eV.

When the magnetic field is increased toB = 0.25, leading to strongly magnetized electrons

(λd/rl = 7.8) and an in-between situation for ions (λd/Rl = 0.78), the total potential drop

presents the same variation than previously with an increasing λe/rl ratio (see Fig. 4b),

although we did not evidence a non monotonic variation of φ(x) for intermediate mean-free-
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path value. Indeed, electrons are always faster than ions over a characteristic distance rl

from the wall, that induces, for a specific range of λe/rl, the double charged layer. When

the magnetic field increases, the positive space charge is confined closer to the collecting

surface because of a less efficient screening (electron become less sensitive to the electric

field as λd < rl). Added to the fact that rl is reduced when B increases, the positive space

charge thickness decreases in absolute value (see the next section and Fig. 5 eventually).

The situation depicted in Fig. 3d where E changes from a negative polarity to a positive

one towards the center of the plasma does not arise. As E does not take a null value in the

sheath region, the situation of non monotonic variation of φ(x) disappears for the strongly

magnetized electron case.

In order to study more accurately both potential drops within the sheath and the pre-

sheath, one has to determine the sheath size. Basically, two possibilities can be foreseen.

The first is to use the space charge calculated by the PIC code and to apply smoothing

procedures for finally using an arbitrary criterion (eg. a percentage of the maximum space

charge value) that would give the sheath extent. The second is to derive a suitable model for

the electric field or potential in the pre-sheath and to quantify (with an arbitrary criterion

as well), the spread between the PIC results and the expected variation (that will give the

sheath size when the quasi-neutrality breaks down). We discuss the use of an ambipolar

diffusion model applied to our simulations and our assumptions in the next section.

B. Modelling the pre-sheath

In floating wall conditions, an electric field must arise in the plasma in order to equalize

electron and ion current and maintain the quasi-neutrality at any position. Close to the

walls, a space charge field appears in the sheath because of the difference of velocity between

the charged particles. From the center of the plasma (x = L/2) to the sheath edge x = s

(resp. x = L− s), where ni ' ne, an ambipolar electric field allows the equality of ion and

electron fluxes. Since both particles undergo collisions (L is always larger than rl or Rl)

and since collisions are at the origin of the current perpendicular to the magnetic field line,

the ambipolar diffusion model can be used to analyse our numerical results. Note that in

this particular geometry of the magnetic field, because the magnetic lines are infinite, the

particles can only diffuse across B. In most practical situations though, the diffusion in
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the perpendicular direction is not ambipolar, ions and electrons diffusing at their intrinsic

classical rate. Quasi-neutrality is then usually maintained by electron flows along the field

line (the short-circuit effect)30.

One can write in this specific case, for each specie, the continuity and momentum equa-

tions in the steady state. For ions, it comes (the derivatives are related to the spatial

coordinate x only in the following equations):

∂Γi

∂x
= S

nimiVixV
′
ix = nieE + nieViyB − Tin′i − niνimiVix

nimiVixV
′
iy = −nieVixB − niνimiViy

, (8)

where Γi stands for the ion flux per unit area and S is a source term that has to be expressed

relatively to our numerical model,
−→
Vi is the ion fluid velocity and νi the ion-neutral collision

frequency. The system of coordinate and the orientation of the E and B fields are shown

in Fig. 1. Neglecting the inertia terms, one can extract the electric field E from Eq. 8 and

from the identical set of equations for electrons. It comes:

E =
CeDin

′
i − CiDen

′
e

Ceniµi + Cineµe
, (9)

where µ = |e|
νm

is the mobility, D = T
νm

the diffusion coefficient and C = 1+ ω2
c

ν2
, the subscript

i or e stands for ion or electron with their own mass and temperature. In the ambipolar

field region, where E = EA, we have ni ' ne ' n, so that:

EA =
CeDi − CiDe

Ceµi + Ciµe

n′

n
, (10)

Replacing EA in Eq. 8, assuming the ion and electron current such as Γi = Γe = Γ, it comes:

Γ = −µiDe + µeDi

µeCi + µiCe
n′ = −D⊥a n′ (11)

with D⊥a the ambipolar diffusion coefficient perpendicular to the magnetic field line. Now the

continuity equation can be solved in the ambipolar region taking into account the geometry

and the specificity of our system. As explained previously, the ions number is kept constant

during the simulations: each time one reaches the walls, a couple (ion , electron) is injected

randomly between 0 and L. The source term S is then |Γw|/L with Γw the ion (electron)

current collected by both walls. Then using Eq. 8 and Eq. 11, we can write n′′ = − Γw

LD⊥
a

,

that can be solved by assuming n(0) ' n(L) ' 0 as:
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n(x) =
x|Γw|
2D⊥a

(
1− x

L

)
, (12)

that is coherent with the quadratic dependence of the density in the central region of the

plasma shown in Fig. 2b. The ions number being constant in the simulation so is the particle

density at the center ie. n(L/2) = n0. This steady state criterion allows the calculation of

Γw using Eq. 12 as:

|Γw| =
8D⊥a n0

L
(13)

The sheath size s is expected to be smaller than L, which implies that the source term

within the sheath is almost zero. Hence the particle flux coming from the plasma at the

sheath edge Γs equals the particle flux leaving the plasma at the two walls Γw. Then we have

Γs = ns|Vs| = |Γw|/2, with ns and Vs the density and the velocity at the sheath entrance

respectively, which gives using Eq. 13:

ns
n0

=
4D⊥a
|Vs|L

(14)

The electric potential φ(x) in the ambipolar region can be calculated integrating Eq. 10:

φ(x)− φ(L/2) = −CeDi − CiDe

Ceµi + Ciµe
ln

(
n(x)

n0

)
= −Λ ln

(
n(x)

n0

)
(15)

Using Eq. 14 and Eq. 15, the potential drop ∆φp between the sheath edge and the center

of the plasma is:

∆φp = −Λ ln

(
4D⊥a
VsL

)
(16)

The sign of the potential drop in the pre-sheath region depends on the parameter Λ.

If Λ < 0, ∆φs < 0 and the ambipolar field accelerates the positive charges along the

magnetic field lines as in the classical ambipolar diffusion case. On the other hand, if Λ > 0,

the positive electric field within the pre-sheath slows down the ions. Solving Λ = 0, ie.

CeDi − CiDe > 0, assuming ωci/νi << 1 and ωce/νe >> 1, it comes:

λe
rl
> 2

(
Temi

Time

)0.25

= θc, (17)

which is the same expression that we inferred (Eq. 3) assuming a simple random walk

for both ions and electrons (the factor 2 in Eq. 17 comes from the fact that the ion mean-

free-path is four times smaller than the electron one in the model considered here). With
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the parameters used in the simulations, for an ion-to-electron mass ratio of 100 and Ti =

Te = 2 eV, the change in the ambipolar regime is expected to be of λe
rl
' 6.32.

We can also verify our assumptions concerning the fact that the inertia term in Eq. 8

can be neglected with respect to the other terms by using the form of the velocity derived

in Eq. 11, ie. Vx = −D⊥a n′

n
, and injecting it in Eq. 8 normalized to nmi. In the case of high

collisionality where λe << Rl, it comes that D⊥a ' 2Di, the electric field term (from Eq.

10) neEA

nmi
' −v2

ti
Te
Ti

n′

n
, the pressure term −v2

ti
n′

n
and the collisional one 2v2

ti
n′

n
. They have to

be compared with VxV
′
x ' 4D2

i
n′

n

(
n′′

n
− (n

′

n
)2
)
. Normalizing the distance x to the mean-free-

path λe, it comes VxV
′
x ' v2ti

4
n′

n

(
n′′

n
− (n

′

n
)2
)
. It appears that n′

n
is necessarily smaller than 1

because the density can not drop by n0 over λe and so 1
4

(
n′′

n
− (n

′

n
)2
)
<< n′

n
< 1. The same

comparison can be made in the low collisionality regime where λe >> Rl, with D⊥a ' 2De

Ce
and

neEA

nmi
' v2

ti
n′

n
, normalizing the space coordinate x to Rl with the same conclusion. It is finally

important to notice that in this particular geometry of the magnetic field, collisions allow

particles to drift perpendicularly to the wall over distances larger than the Larmor radius

and so, participate as a matter of fact to the screening of electric fields. When λe >> Rl,

even if λe > L, collisions still occur in the plasma as the particles motion takes place parallel

to the wall and the mean-free-path projection perpendicular to collecting surface is almost

zero.

C. Sheath Size and Electric Potential

The procedure to determine the sheath extents with Eq. 10 is as follow: the n′/n ratio is

calculated using the ion density that the PIC code has averaged over tens of ion cyclotronic

periods; then the best agreement is searched between the electric field EPIC averaged by

the PIC code and EA from Eq. 10, i.e the coefficient Λ has to be determined in the center

of the plasma by minimizing the difference ∆ = |EPIC − EA|. In Fig. 3b, d and f are

shown the electric field fits realized for different λe/rl ratio using Eq. 10. A very good

agreement is found in each case from the center of the plasma down to 10 or 20 λd of the

walls, depending on λe/rl. The standard deviation σ∆ is then calculated at the center of

the plasma on 100× λd and the sheath extent determined on both sides (close to 0 and L)

when ∆ > 5σ∆. The same procedure was applied to the electric potential profiles from the

PIC simulations using Eq. 15 and gives comparable results. Another method based on the
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space charge ni − ne calculated by the PIC code has also been developed: the curve is first

smoothed by using a locally weighted scatterplot smoother (LOESS) method31; then the

maximum h of the ni−ne is searched as shown in Fig. 3e and the sheath extent s arbitrary

determined when ni(s)− ne(s) = 0.5× h.
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FIG. 6. a) Variation of the potential drop in the sheath ∆φs with respect to the mean-free-path to

the electron Larmor radius ratio λe/rl for two different values of the magnetic field. b) Variation

of the potential drop in the pre-sheath ∆φp vs. λe/rl. The curve labelled ’model’ refers to Eq. 16.

The potential drops have been normalized to the real temperature measured during the simulations.
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In Fig. 5a is shown the sheath extent s vs. λe/rl extracted from both methods. A

similar variation of s is found, but with a different amplitude. This is due to the arbitrary

criteria used in the determination methods. The space charge method leads to a jump in

the sheath extent between λe/rl = 10 and 25, while the field method gives a smoother and

continuous result. For instance, for λe/rl = 10, the space charge is just positive and extends

over ' 7.5λd (see Fig. 3c): the space charge method gives logically a value for s that is of

about 2.5λd. Now the electric field in Fig. 3d varies from a negative to a positive polarity

and keeps a significant value over 10 to 20λd, whereas no space charge is visible in Fig. 3c

at such an abscissa; the fit of the electric field gives for the sheath extent a larger value

than the charge method (see Fig. 3d). When the ratio λe/rl reaches 25, a negative charge

is detected by the charge method between the plasma and the positively charged sheath

(similarly to Fig. 3e), which gives a rapid increase of s. Hence the method based on the

pre-sheath model gives a smoother result for the sheath extent, and is, in our opinion, a

more reliable way of determining s. This method is used in the rest of this paper in Fig. 5b

and c.

For all the considered values of the magnetic field, the sheath extent increases with λe/rl,

until it reaches a plateau when λe/rl is above 10 to 50. This threshold range corresponds

to the transition between demagnetized / magnetized ions due to collisions (the ion mean-

free-path to the ion Larmor radius ratio is 1/40 of λe/rl for mi/me = 100 ). This increasing

evolution of the sheath extent is due to the apparition of a second negatively charged layer

between the positively charged sheath and the plasma (see Fig. 1). Moreover when the

magnetic field increases, the sheath size decreases as shown in Fig. 5b. For high magnetic

fields, the flux at the wall Γw tends to vanish because of the higher confinement of the

particles as seen in Fig. 7a, which in turn explains the reduction of s with B. Note that the

evolution of the particle flux at the walls in the permanent regime Γw vs. λe/rl in Fig. 7a

is proportional to D⊥a (see Eq. 13). Finally, the sheath extent on the plateau (large λe/rl

ratio) scales with λd for weakly magnetized ions (ωci/ωpi = 0.03) and with Rl for magnetized

ones (ωci/ωpi = 0.78).

Using the previous value of s, the potential at the sheath edge φ(s) and consequently the

potential drops within both the sheath and the pre-sheath (respectively ∆φs and ∆φp ) have

been determined from the PIC simulations. In Fig. 6a is shown the evolution of ∆φs with

λe/rl for two values of the magnetic field. As expected, the potential drop within the sheath
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The expected particle flux at the wall using the ambipolar diffusion coefficient D⊥a (Eq. 13) is

plotted for a magnetic field such as λd/Rl = 0.03. b) Variation of the velocity at the sheath

entrance Vs extracted from the PIC simulation using the sheath extent s given in Fig. 5 and

normalized to the ion acoustic velocity Cs. Inset : distribution function of the electron velocity on

the x axis in the beginning (continuous black) and at the end (dashed blue) of the simulation for

λe/rl = 1 and λd/Rl = 0.03. c) Spatial variation of the ion velocity close to the wall at x = 0 for

3 different collisionalities.

changes from a negative to a positive value with the mean-free-path. It is also reduced
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in absolute value with the magnetic field amplitude in both regimes because B limits the

diffusion towards the wall.

Note that for λe/rl = 1, ions are demagnetized by collisions and electrons experience in

average one collision per rotation around the magnetic field. It can be interesting to compare

the potential drop within the sheath to the non-magnetized plasma case which is given by21:
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∆φs =
Te

2e
ln

[
2π
me

mi

(
1 +

Ti
Te

)]
(18)

In order to properly evaluate Eq. (18) with our plasma parameters, it is important to take

into account the actual temperature of both ions and electrons in the simulations. Indeed,

as explained previously, our injection and collisional models induce a numerical cooling of

the plasma associated with a possible distortion of the velocity distributions. That is why Ti

and Te may be different from the initial 2 eV. For instance, in the inset of Fig. 7b are shown

the electron velocity distributions at the beginning and at the end of the PIC simulations

for λe/rl = 1. A clear cooling of the electrons is visible as the temperature decreases from

2 eV to 0.74 eV. Taking also into account the cooling of the ions (Ti = 1.02 eV), Eq. (18)

gives a potential drop of e∆φs/Te = −0.95. This has to be compared to e∆φs/Te = −1.65

for λd/Rl = 0.03 and λe/rl = 1 (see Fig. 6a). The ordering of the characteristic distances

in this case is such as λd < rl = λe. In Fig. 5c, it can be seen that the sheath size

extrapolated from the PIC results, in the same conditions of collisionality and magnetic

field, is of s = 0.245× Rl = 2.45× rl. Electrons experience then a few collisions within the

sheath (λe < s), and much more for ions because λi = 0.25×λe. We infer that the difference

between the expected potential drop given by Eq. 18 and our simulations arises for the most

part of it from the collisions within the sheath. Indeed, it has be shown that potential drops

increase with collisionality in previous studies10,32. The residual effects of the magnetic field

onto electrons motion (λe/rl = 1) can not be neglected neither, since the sheath (of 2.45×rl)
is still magnetized. Finally one particularity of this geometry of the magnetic field is the

collisionality of the sheath: when the field line intercepts the surface, if the projection of the

mean-free-path on the perpendicular-to-the wall direction is larger than the sheath extent

(ie. some λd), the collisionless approximation holds. In our specific conditions, the particles

are drifting parallel to the wall between collisions and, even if λe,i > s, the collisionality has

to be taken into account when modelling the sheath. Note that the potential drops in Fig.

6 (and in following figures) have been normalized to the electron temperature when they

are negative and to the ion temperature otherwise, both temperatures being determined for

each simulations independently.

In Fig. 6b is shown the potential drop in the pre-sheath for the same two values of the

22



magnetic field than previously. The transition between the two regimes (ions faster than

electrons) arises for λe/rl = 5, which is coherent with our theoretical assumptions (Eq. 17).

For weakly magnetized ions and electrons (λd/Rl = 0.03) at λe/rl = 1, e∆φs/Te = −1.11

which decreases to 3.02 when electrons are strongly magnetized. The same tendency to an

increase of the absolute value of the potential drop in the pre-sheath can be observed for

the highest λe/rl ratio in ”the ion regime” with the magnetic field. Using Eq. 12, one can

evaluate n′(s)/n(s) ' 1/s, assuming the sheath extent s << L. With Eq. 11 and Eq. 13,

and using the fact that |Γw|/2 = |Γs|, it comes that n′(s) ' 4n0/s. Then, ∆φp is found to

scale with s as:

∆φp ' −Λ ln

(
4s

L

)
(19)

As the sheath extent decreases with an increasing B for the whole range of λe/rl inves-

tigated (see Fig. 5), the potential drop in the pre-sheath is also expected to increase in

absolute value (Eq. 19 ), just as we evidenced it in our PIC simulations (Fig. 6b).

The spatial variation of the velocity perpendicular-to-the wall has been averaged over

several ion gyroperiods during the simulations and shows a dependence on the collisionality

as depicted in Fig. 7c. We have then extracted the velocity Vs at the sheath entrance from

the velocity profiles; it is shown in Fig. 7b and its evolution is very similar to Γw vs. λe/rl

(Fig. 7a). Both the ambipolar flow (∝ D⊥a ) and the velocity are ruled by the slowest specie.

When λe
rl
< θc, D

⊥
a ' 2Di, and ions dominate the diffusion towards the walls. In this

regime, an increase of λe leads to an increase of the average velocity (note that this trend

is possible because λe < Rl), until λe
rl

= θc. In this particular situation, De/Ce = Di/Ci,

the ambipolar flow (∝ D⊥a ) is maximum and the potential drop in the pre-sheath vanishes

because both particle types have the same diffusion coefficient. Above the critical λe/rl ratio,

D⊥a ' 2De

Ce
and the velocity towards the wall decreases continuously with λe/rl because the

ambipolar regime is dominated by electrons (when the mean-free-path increases, electrons

stick longer to their field line before undergoing a collision so the average electron velocity

decreases). Also, using the extracted values of Vs and Eq. 16, we found a very good

agreement between the expected ∆φp as given by the collision model and the simulated

one in Fig. 6b. Finally, an equivalent ionization collision length λiz can also be deduced

from our model and compared to the mean-free-path. The considered source term in our

simulations being Γw/L, it can be compared to an equivalent ionization given by n0vte/λiz.
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Using Eq. 13, it comes that λiz = vteL
2/8D⊥a . Taking the maximum of the ambipolar

diffusion coefficient in our calculations (see Fig. 7a), for λd/Rl = 0.03 and λe/rl = 25, the

equivalent ionization collision length is of about 100 λe.

D. Sheath properties vs. Te/Ti ratio

In Fig. 8 is shown the evolution of the sheath size and of the potential drops in the sheath

and the pre-sheath, ∆φs and ∆φp respectively, for two different initial electron temperature,

Te = 1 eV and 4 eV, keeping Ti = 2 eV, and a mass ratio mi/me = 50.

The sheath size slightly increases with Te in the electron regime (λe/rl < 6) because of

the augmentation of the relative velocity between ions and electrons (electrons diffuse with

a higher rate towards the walls). The opposite tendency is logically observed in the ion

regime. The potential drop within the sheath follows the same evolution than the sheath

extent for the same reasons, ie. in the electron regime, ∆φs appears to increase with Te/Ti

and with Ti/Te otherwise for larger λe/rl ratios (see Fig. 8b). Concerning the potential

drop in the quasi-neutral pre-sheath (Fig. 8c), it increases in both regimes when the ratio

Ti/Te decreases. The size L of the studied system depends on the electron temperature

(L = 200λd) in this case and ∆φp is expected to increase with L (see Eq. 16). Finally, as

evidenced in Fig. 4 and 6 for another Te and mass ratio, both ∆φs and ∆φp can have opposite

signs for a given λe/rl, which leads to a non monotonic profile of the electric potential and

opposite effects on ions velocity within the sheath (compare potential drops in Fig. 8b and

c for λe/rl = 1 to 10).

IV. CONCLUSION

In this paper, we studied by mean of PIC simulations how evolve the different layers

existing in a one-dimensional magnetized plasma with respect to the collision rate, when

the magnetic field is applied parallel to the walls. We showed that the space charge close

to the wall is strictly positive for high collision rates. The sheath splits into two charged

regions when the mean-free-path λe increases, positively charged at the vicinity of the wall

and negatively charged towards the plasma, this last sheath region expanding with λe. This

evolution of the sheath structure leads to a potential drop in the sheath that is first negative
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in order to accelerate ions towards the wall and that becomes positive for larger λe. For all

values of the collision rate or of the magnetic field strength, a pre-sheath exists, adjacent to

the sheath, and where quasi-neutrality stands. The potential drop in the pre-sheath, which

is well described by a diffusion ambipolar model, can be opposite, for a certain range of the

λe/rl ratio, to the potential drop in the sheath. This particular situation can lead to a non-

monotonic spatial variation of the electric potential within the sheath for weakly magnetized

electrons (λd < rl). The sheath extent, ie. the total spatial extension of the non-neutral area

in front of the wall, is found to decrease with the magnetic field strength B, scaling with

λd for weakly magnetized electrons and ions, and with Rl for strongly magnetized electrons.

The sheath size also increases with the mean-free-path, for any value of the magnetic field,

until it almost stabilizes. This behaviour is due to the apparition of the negative charged

layer towards the plasma for the lowest collision rates. We have not investigated a regime

of strongly magnetized ions (Rl < λd) because of calculation time issues. However, the

flux at the wall, following the variation of the ambipolar diffusion coefficient D⊥a , decreases

dramatically with B. That would eventually lead to a quasi-static situation, where the

flux at the wall vanishes, that we have studied in a previous work. Finally, this particular

situation of a magnetic field strictly parallel to the wall is, of course, very restrictive and

unlikely to happen with experimental devices, although it presents a theoretical appeal that

deserves to be addressed. Moreover, as we pointed out in the third part of the paper, the

infinite character of the magnetic lines leads to the impossibility for electrons to leave the

plasma along them. Plasma neutrality is usually conserved by this electron short-circuit

effect in most experiments, although this question is still being debated (see discussions and

references inside33). But the perfect alignment case of the magnetic field with the wall is the

limiting case of the grazing incidence one, met in the scrape-off layers (SOL) of tokamaks34,

or in linear machines such as ALINE35. Double sheaths structure and similar effects due to

the finite size of both ion and electron Larmor radius, and evidenced in our study, may then

arise in specific collision rate conditions, more specially when ions migrate faster towards

the walls with collision and the associated random walk than following the tilted field line36.

In a grazing incidence of the magnetic field, the critical mean-free-path to electron Larmor

radius ratio θc derived in this paper may be valid (Eq. 17), and a change in the ambipolar

regime occur. Applied to the case of the SOL of tokamaks (Te = 20 eV and Ti = 40 eV),

it comes, for a DT gas θc = 2
(
Temi

Time

)0.25

' 13, and in linear machines such as ALINE with
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a gas of He at Te = 2 eV and Ti = 0.026 eV, θc ' 55, which are reasonable and accessible

values.
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