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The plasma-wall transition with collisions and an oblique magnetic field: reversal of

potential drops at grazing incidences.

J. Moritz,1, a) M. Lesur, E. Faudot, S. Devaux, S. Heuraux, and J. Ledig

Institut Jean Lamour, UMR 7198 CNRS - Université de Lorraine, Campus Artem,

2 allée André Guinier, 54011 Nancy, France

(Dated: 24 September 2018)

The plasma-wall transition is studied by using 1d3V particle-in-cell (PIC) simulations

in the case of a one dimensional plasma bounded by two absorbing walls separated

by 200 Debye lengths (λd). A constant and oblique magnetic field is applied to the

system, with an amplitude such that r < λd < R, where r and R are the electron

and ion Larmor radius respectively. Collisions with neutrals are taken into account

and modelled by an energy conservative operator, which randomly reorients ion and

electron velocities. The plasma-wall transition (PWT) is shown to depend on both

the angle of incidence of the magnetic field with respect to the wall θ, and on the ion

mean-free-path to Larmor radius ratio, λci/R. In the very low collisionality regime

(λci � R) and for a large angle of incidence, the PWT consists in the classical tri-

layer structure (Debye sheath / Chodura sheath / Pre-sheath) from the wall towards

the center of the plasma. The drops of potential within the different regions are well

consistent with already published models. However, when sin θ ≤ R/λci or with the

ordering λci < R , collisions can not be neglected, leading to the disappearance of

the Chodura sheath. In these case, a collisional model yields analytic expressions

for the potential drop in the quasi-neutral region, and explains, in qualitative and

quantitative agreement with the simulation results, its reversal below a critical angle

derived in the paper, a regime possibly met in the SOL of tokamaks. It is further

shown that the potential drop in the Debye sheath slightly varies with the collision-

ality for λci � R. However, it tends to decrease with λci in the high collisionality

regime, until the Debye sheath finally vanishes.
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I. INTRODUCTION

Sheaths are space-charged regions that take place at plasma boundaries in order to bal-

ance ion and electron losses. The material surface in contact with the plasma can be an

electrode, or the wall of any reactor. It becomes negatively charged due to the high velocity

of electrons with respect to their positive counterpart. An electric field is built up at the

vicinity of the negatively charged wall then repels electrons and attracts ions, giving rise to

the non-neutral regions called ’sheaths’.

Sheath formation is of paramount importance for many applications in plasma physics,

such as Langmuir probe measurements in low temperature plasma, fabrication processes

of nano-materials, objects or thin films1, reactors in fusion plasma, where the plasma-wall

transition (PWT) can lead to prejudicial heating and erosion of the surface coating2, and

spacecrafts, where onboard instruments can be affected by surface charging3. Sheaths have

then been studied theoretically for several decades for the purpose of a better understanding

and technological uses.

In the absence of magnetic field, the plasma/wall transition is split into two main regions

i.e the non-neutral sheath and the quasi-neutral collisional pre-sheath. The sheath region

is known to scale with the Debye length λd, while the relevant characteristic length for the

pre-sheath can be for instance the collision mean-free-path with neutrals λc, or the minimum

of the various collision mean-free-paths (ionization, recombination, charge-exchange, etc.)

which are relevant to describe the physics of the pre-sheath region.

It has been shown based on a fluid model that, in order to prevent an oscillatory potential

distribution at the sheath edge, ions velocity perpendicular to the wall Vix must verify what

is known as the Bohm criterion4:

Vix > Cs =

√
Te + Ti
M

, (1)

where Cs is the ion sound velocity, Te and Ti the electron and ion temperature respectively

and M the ion mass5,6. Note that in this paper, temperatures will be expressed in energy

units only. This sound velocity is also the critical velocity at which quasi-neutrality breaks

down in the pre-sheath region7 (the plasma approximation stands as long as Vix < Cs), so

that it is usually assumed that the Debye sheath entrance is located at the sonic point S,

where Vix = Cs. Neglecting inertia for electrons (m = 0, where m is the electron mass) and
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ionization within the sheath region, assuming equal ion and electron losses at the wall and

using Eq. (1), it is possible to calculate the potential drop between the wall and the sheath

edge as:

∆φd =
Te
2e

ln

[
2π

m

M
(1 +

Ti
Te

)

]
, (2)

which is usually a negative quantity.

In the presence of a magnetic field tilted by θ with respect to the wall, another sonic point

can be derived from the fluid equations. First evidenced by Chodura8, an additional quasi-

neutral region appears between the Debye sheath and the collisional pre-sheath, where ions

are accelerated from Vix = Cs sin θ to Cs, ie. from a point C where the projection of the ion

velocity along the field line , Vi‖ = Cs, to the point S where the component perpendicularly

to the wall, Vix = Cs.

This region, usually called ’Chodura sheath’ or ’magnetic pre-sheath’ scales with the ion

Larmor radius R9. However, when the plasma is collisional enough, if the ion mean-free-path

λci is smaller than R, despite the preferential direction of the magnetic field, the plasma flow

is isotropized by frequent collisions during the ion cyclotronic period. Some authors have

shown that in such a high collisional case, the Chodura sheath disappears and overlaps with

the collisional pre-sheath, leading to a classical double layer structure for the PWT10,11.

Other studies emphasized the role of the magnetic field angle and strength on the different

regions since the original work of Chodura12,13.

The potential drop in the Chodura sheath ∆φcho, between point C and point S, can be

easily calculated by neglecting (like previously for the Debye sheath) particle source and

electron inertia, as:

∆φcho =
Te
e

ln(sin θ), (3)

which is also a negative quantity.

Interestingly, as pointed out by Stangeby14, the potential drop between the Chodura

sheath entrance (point C) and the wall, which we call ∆φT , is strictly equal to Eq. (2):

∆φT = ∆φcho + ∆φd =
Te
2e

ln

[
2π

m

M
(1 +

Ti
Te

)

]
, (4)

which is the total potential drop in the Debye and the Chodura sheaths. It is expected

to be independent on the incidence of the magnetic field as long as one can assume strongly
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FIG. 1. Sketch of the one dimensional plasma studied, depicting two extreme collisional cases.

On the left, the expected layers in the high collisionality regime are the Debye sheath and the

collisional pre-sheath. On the righ, in the low collisionality mode, three layers are expected, where

the Chodura sheath takes place between de Debye one and the pre-sheath. Each layer scale with

its proper characteristic length. The walls are located at the abscissa −L/2 and L/2 and grounded

in the PIC simulations. C and S are the sonic points locations. The electron and ion trajectories,

drawn in red and blue respectively, are not representative of the real motion of particles, specially

in the presence of collisions, where particles undergo a random-walk.

magnetized electrons (barely drifting from their field line) and neglect their inertia. Then

for a critical angle θ∗, the Debye sheath disappears (∆φd = 0). It comes from (3) and (4):

sin θ∗ =

√
2π

m

M
(1 +

Ti
Te

). (5)

Below θ∗ (of the order of 9.12, 6.43 and 4.75◦ for M/m = 500, 1000 and 1836 respectively

and assuming Ti = Te), quasi-neutrality does not break down anymore and the Bohm

criterion given by Eq. (1) is not fulfilled. Stangeby15 inferred that below θ∗ the potential

drop in the Chodura sheath still equals Eq. (4) as long as θ ≥
√
m/M , and estimated the

ion fluid velocity at the wall (at the Chodura sheath exit) as proportional to sin θ. This

4



tendency has been checked against kinetic simulations, where it was shown that charge

separation progressively vanishes for grazing incidence, with the ion flow velocity limited

to subsonic speeds16. However these kinetic simulations were performed with electrons

following a Boltzmann law, so that their inertia was not taken into account, leading to a

possible discrepancy at grazing incidences. This regime of very grazing incidence, where

θ < θ∗, despite its strong implication in tokamaks for instance, has never been deeply

investigated for inertial electrons and in the presence of collisions.

Note that in the limit of θ → 0, in a 1d/3V description of the plasma, the particle

flux at the wall is expected to cancel in the collisionless limit because particles can not

drift perpendicular to the field line. Some authors have addressed this quasi-static issue

theoretically and by using particle-in-cell (PIC) simulations17–24. They showed that the

potential drop at the vicinity of the surface is opposite, ie. ions are pushed back into the

plasma instead of being accelerated towards the walls, the space charge being negative, due

to the larger Larmor radius of the ions (vs the electrons one). Collisions can restore the

particle current perpendicularly to the field line though, for θ = 0, and the potential drop

sign will then depend on the mean-free-path to Larmor radius ratio25.

In this paper we investigate by means of PIC simulations, without assuming Boltzmann

electron response, the evolution of the different potential drops in the PWT with respect

to both the angle of incidence of the magnetic field and the charged particles vs. neutrals

collision rates. In a first part of the paper, after a description of the geometry of the studied

system and a general overview of the PIC code, potential and velocity spatial profiles,

followed by the potential drops in the PWT, are presented for a large range of the mean-

free-path to Larmor radius ratios. In a second part, we review the fluid models allowing the

derivation of points C and S ; we also include the electron inertia in order to extrapolate

potential drops at very grazing incidences and derive a modified Bohm criterion. We show

that for large θ, the simulated potential drop in the combined collisional pre-sheath and

Chodura sheath follows its expected fluid angular variation. We also show that under a

critical incidence angle given by θc = arcsin R
λci

, when λci > R, particle flows depend on

collisions just as in the high collisionality case when λci < R. Potential drops in the quasi-

neutral region, calculated by using a collisional model, reproduce fairly well the simulated

ones when θ < θc or λci < R.
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II. PIC SIMULATIONS

The studied system is in a one dimensional plasma bounded by two conductive walls,

separated by 200λd, with the origin of the x axis in the center of the plasma, as depicted in

Fig. 1. The magnetic field, of strength B, is tilted by θ with respect to the wall in the (Oz)

direction. The 1d3V PIC code used for the simulations was developed in the laboratory

by the authors24. The simulation cell size is chosen as 0.1 × min(r, λd), where r is the

electron Larmor radius, in order to describe with a sufficient accuracy the motion of both

ions and electrons. For all the simulations presented in this study we choose Ti = Te = 2eV,

M/m = 500 and B = 0.05T. With such a magnetic field, we have r/λd = 0.9, so we can

consider that electrons are strongly magnetized and barely drift from their field line.

Initially, the superparticles are uniformly distributed on the grid and their velocity chosen

randomly from Maxwellian distributions, whose nominal temperatures are Ti and Te. During

the simulations runs, the number of ions is kept constant by the following method: at each

time step, couples (ion + electron) are injected at random positions in the plasma, in order

to compensate for the number of ions lost at both walls during the previous time step.

The charged particles undergo collisions with the neutrals. We have developed a simple

operator, which conserves the total kinetic energy as well as the total momentum, assuming

particles as hard spheres, with a cross-section independent of the velocity. A complete

description of the collisional model is given in reference25. Note that within this hard sphere

model, assuming ions and neutrals of identical diameter, the ion mean-free-path λci = λce/4,

with λce the electron one. It is also important to note here that, this collisional model makes

faster particles have higher probability to collide (the cross-section being independent of

the velocity). Moreover the injection method used, which is known to distort the velocity

distribution functions26–28, induces a cooling of the plasma with respect to the nominal

loaded one. That is why the real temperature of the charged particles to which we normalize

potential drops and velocities at the end of the simulations, are extracted from the PIC

simulations via a Maxwellian fit of the velocity distribution functions.

The electron mean-free-path λce is set such as electrons are not demagnetized by collisions,

within the range 10 < λce
r
< 750. As previously explained, the ion one is 4 times smaller,

therefore, using the nominal temperatures and the mass ratio, it satisfies the ordering 0.1 <

λci
R
< 8.3. This range of the ion mean-free-path allows the study of the transition between
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a highly collisional regime, where the magnetic field effect onto ion motion is canceled by

collisions, to an anisotropic one, where the ion flow has to follow the field line. This transition

can be seen on the spatial potential and velocity profiles as depicted in Fig. 2.
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FIG. 2. Left: Normalized potential profiles for 3 different mean-free-path to Larmor radius ratios

and 8 values of the angle of incidence of the magnetic field θ. Right: corresponding ion velocity

profiles normalized to the sound velocity.

In the very high collisional case (λce/r = 10, λci/R = 0.11), the magnetic field incidence

does not change the ion velocity flow qualitatively (see Fig. 2f): the subsonic flow is isotropic

for ions and the potential in the plasma is always positive, so ions are accelerated towards
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the collecting surface for any θ as depicted in Fig. 2e. For intermediate neutral gas density,

λce/r = 50 and λci/R = 0.55, the effect of the magnetic field begins to influence ion flow

as seen in Fig. 2d. In that case, for grazing incidences of the magnetic field, when θ < 5◦,

the opposite situation than previously arises, since it is necessary to push back ions into the

plasma (the potential drop between the wall and the plasma is inverted in Fig. 2c). This

situation has already been evidenced in the case of a magnetic field parallel to the wall25.

For larger incidences though, the potential drop between the wall and the center of the

plasma column reaches −2.9Te/e for θ = 90◦ and the ion flow is supersonic for θ ≥ 20◦. The

inversion of the potential drop between the wall and the center of the plasma can also be

seen on the space charge profiles in Fig. 3a for λci/R = 0.55. The space charge amplitude

decreases with θ as already pointed out in reference16, and for θ = 0.5◦, the space charge

is alternatively positive close to the wall and negative towards the plasma, as in the case

of a perfectly aligned magnetic field25. It also leads to an inversion of the electric field E

polarity as shown in Fig. 3b, where ions are accelerated towards the wall for θ ≥ 5◦, and

pushed back into the plasma for very grazing incidences otherwise.

Finally, when both ions and electrons are magnetized (ie. λce/r = 500 and λci/R = 5.5),

there is a strong dependence of the ion velocity flow on the magnetic field incidence (Fig.

2b). It stays supersonic at the vicinity of the wall for θ > 20◦ and the velocity at the exit

of the plasma decreases slowly with θ (see also Fig. 7b). The same observation on the

potential profiles in Fig. 2a can be done as previously, although the potential drop between

the wall and the plasma center reaches −2.17Te/e for large incidences. This is slightly

smaller than for λci/R = 0.55 in Fig. 2c, which, we infer, is due to the lower collisionality

(it is more difficult to increase the velocity flow, when the friction is more important, so a

larger potential drop is required).

In order to define the potential drops in the different parts of the PWT, we use a simple

criterion that can be applied to all PIC results: we consider that the Debye sheath entrance

is located at the sonic point S, where Vix = Cs. If the ion velocity flow does not reach

the sonic point, we assume that the Debye sheath disappears and ∆φd = 0. Otherwise, the

spatial coordinate of S is obtained from Vix, for instance from Fig. 2b, and the corresponding

potential value φ(s), from the normalized potential profile (eg. Fig. 2a).

Fig. 4 shows the potential drop within the Debye sheath against θ for different mean-

free-path to Larmor radius ratios. In the very high collisionality case, for λce/r = 10 ie.
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FIG. 3. a) Space charge at the vicinity of the left wall for 3 angles of incidence and a medium

collisionality of the ions (λci = 0.55). b) Electric field profiles for the same mean-free-path to

Larmor radius ratio as in a) for 6 angles of incidence of the magnetic field.

λci/R = 0.11, the ion velocity flow does not reach Cs, and there is no Debye sheath (Fig.

4a). In this case, the whole potential drop between the wall and the center of the plasma is

in the collisional pre-sheath, which is quasi-neutral. For larger mean-free-paths in Fig. 4a

and in Fig. 4b, ∆φd increases with λce/r until its saturation for λce/r > 88 (λci/R > 0.98)

in the medium-low collisionality regime of the ions. In this case, a high space-charge electric

field is required to balance ions and electrons losses at the walls.

Using Eq. (4) with the nominal plasma parameters, it comes that for θ → π/2,
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FIG. 4. Normalized potential drop ∆φd/Te in the Debye sheath against the incidence of magnetic

field θ for different mean-free-path to Larmor radius ratios. In a), the high collisionality makes the

ion velocity flow isotropic, while in b) both ions and electrons are magnetized. The dotted line is

at the abscissa θ = θ∗ given by Eq (5). c) Density plot of ∆φd/Te vs. θ and λce/r.

e∆φd/Te → −1.84, which is comparable to the simulation results in Fig. 4b, e∆φd/Te ' −1.4
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for the lowest collisionality (as mentioned previously, the plasma temperature is usually

colder than its nominal value at the end of the simulation runs due to the particle injection

procedure: this can explain the small discrepancy between the expected value and the

simulations one; formula (4) should be used with the temperatures of each simulation run).

The dotted line in Fig. 4 represents the critical angle θ∗, given by Eq. (5), where the

Debye sheath is expected to disappear based on the fluid model. θ∗ is always a bit smaller

(in the range 3 − 5◦) than the angle at which ∆φd really vanishes, due to collisions. This

can be seen also in Fig. 4c, which is a density plot representing the potential drop in the

Debye sheath vs. θ and λce/r. The red color indicates the region where the Debye sheath

vanishes. We observe that both grazing incidence and high collisionality are responsible

of its disappearance. This density plot was obtained by an interpolation of our numerical

results, which in large part are shown in Fig. 4a and 4b.

Note that the error bars in Fig. 4, as well as in the following figures, are calculated based

on two sources of error. The potential profiles are obtained by averaging the signal in time

over several ion cyclotronic periods (just as the velocity profiles or the densities), so it is

possible to calculate the standard error of the mean, which is the first source of error. The

second one is simply based on the extraction procedure explained previously, when searching

for the Debye sheath entrance. This location can not be known at a better precision than

the grid step size, which is, with our magnetic field strength, 0.1 × r. This gives finally an

uncertainty on the potential values.

Once the sonic point S is determined, and its potential value φ(S) read, one can extract

the potential drop in the quasi-neutral region, ∆φqn as φ(S) − φ(0), where φ(0) is the

potential at the center of the plasma. If the plasma does not reach the Bohm velocity,

φ(S) = φ(−L/2) = 0 and the potential drop in the quasi-neutral region consists of the total

potential variation between the grounded wall and the center of the plasma (which happens

for high collisionality or grazing incidence such as θ < θ∗).

The quasi-neutral region can be a collisional pre-sheath only if λci < R. Otherwise it is

composed of the Chodura sheath and a collisional pre-sheath as depicted in Fig. 1. Fig. 5a

and Fig. 6a show the potential drop e∆φqn/Te with respect to the angle θ in the two extreme

cases of low and high collisionality respectively. When λce/r > 250 (ie. λci/R > 2.77), in Fig.

5a, ∆φqn does not vary anymore with the mean-free-path for θ > 20◦. For comparison we

plot in the same figure the collisionless case which does not deviate from the low collisional
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FIG. 5. a) Normalized potential drop e∆φqn/Te in the quasi-neutral region vs. the angle of

incidence of the magnetic field in the medium-low collisionality regime of the ions. b) Theoretical

e∆φqn/Te, Eq. (33), in the context of a high collisionality approximation.

ones (λce/r = 250, 500 or 750). On the other hand, below θ = 20◦, a slight difference occurs

between the various curves; more particularly, it can be seen that the change in the sign of

∆φqn appears at angles which decrease with increasing λce/r. In the high collisional case,

the potential drop in the quasi-neutral region (ie. the collisional pre-sheath) is very sensitive

to the ratio λce/r. The smaller it is, the larger both collisionality and potential drop are (see

Fig. 6a). The sign of ∆φqn also changes at grazing incidences, but for larger angles than in

the low collisional case.
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Finally, we have extracted the Chodura point location C from the velocity profiles, as we

did for the sonic point S, and calculated the total potential drop in the combined Chodura

and Debye sheaths ∆φT = ∆φd + ∆φcho, which is expected to stay constant, independent

on the angle of incidence of the magnetic field (see Eq. (4)). Fig. 7a shows ∆φT vs. θ for

different mean-free-path to Larmor radius ratios, only in the case λci ≥ R. For θ > 20◦, the

total potential drop keeps a constant value, close to the expected one. However for grazing

incidences, in contrary with Stangeby assumptions15, ∆φT varies with the magnetic field

incidence (specifically around and below θ∗), rapidly decreasing and even becoming positive

at very low incidences of the order of a few degrees.

In order to explain all these features, and more particularly the behavior of the potential

drops in the PWT for grazing incidences, we expanded the fluid models, inspired by Ahedo’s

study10, taking into account both magnetic field and collisional effects on ion fluid velocity,

as well as electron inertia.

III. FLUID MODEL FOR THE QUASI-NEUTRAL REGION

A. Velocity field in the presence of B and collisions with neutrals

The magnetic ~B and electric field ~E components are B× (sin θ, 0, cos θ) and E × (1, 0, 0)

respectively.

In the steady state, the fluid equations of momentum conservation on the x, y and z

components, denoting the derivative in x by a prime symbol, are :

nµVxV
′
x = −nqφ′ + nqVyB cos θ − n′T − nµνVx (6)

nµVxV
′
y = −nqVxB cos θ + nqVzB sin θ − nµνVy (7)

nµVxV
′
z = −nqVyB sin θ − nµνVz. (8)

This system describes both ions and electrons, where µ, n, ν and q are the mass, density,

collision frequency and electric charge of the considered species respectively. This set of

equations can be rewritten in a more convenient way, which highlights the different lengths

of the system:
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VxV
′
x

V 2
t

= −qφ
′

T
+
Vy
Vt

cos θ

λm
− n′

n
− Vx
Vt

1

λc
(9)

VxV
′
y

V 2
t

= −Vx
Vt

cos θ

λm
+
Vz
Vt

sin θ

λm
− Vy
Vt

1

λc
(10)

VxV
′
z

V 2
t

= −Vy
Vt

sin θ

λm
− Vz
Vt

1

λc
(11)

where Vt =
√

T
µ

is the thermal velocity, and λm and λc the Larmor radius and mean-free-

path of the considered species respectively. Neglecting ionization or recombination, the

conservation of particles number yields:

∂(nVx)

∂x
= 0 (12)

Extracting Vz of Eq. (11), injecting it in Eq. (10), as well as Vy from Eq. (10) and in Eq.

(9), and using Eq. (12) leads to:

V ′x
Vt
− V ′xVt

V 2
x

= −qφ
′Vt

TVx
− cos θ

λ2m
λ2c

+ sin2 θ

(
V ′y
Vt

λm
λc

+
V ′z
Vt

sin θ +
cos θ

λc

)
− 1

λc
(13)

In the case of low collisionality (λm << λc) and when sin θ >> λm
λc

, Eq. (13) can be

simplified as:

V ′x(1−
V 2
t

V 2
x

) = − qφ
′

µVx
− V ′z

tan θ
− Vt
λc sin2 θ

(14)

Using the same ordering of the characteristic lengths, one can see from Eq. (10) and (11)

that, in regions of scale λc, Vy << Vz and Vx ' Vz tan θ. Eq. (14) becomes:

µVxV
′
x(

1

sin2 θ
− V 2

t

V 2
x

) = −qφ′ − µ VxVt
λc sin2 θ

(15)

If the previous ordering is valid for both ions and electrons, then the plasma is moving

along the magnetic field line only. Equation (15) is the momentum conservation equation

along the magnetic line projected onto the x axis.

For an incidence of the magnetic field such as sin θ ' λm
λc

, a component perpendicular

to the magnetic line appears in the velocity field, and the previous approximations do not

stand anymore. It is however possible to consider, when the plasma is quasi-neutral, that
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the plasma velocity is smaller than the thermal one, so that inertial terms in Eq. (9) to

(11), quadratic in velocity, can be neglected.

Finally, in the high collisional regime where λc < λm, it comes from Eq. (10) and (11)

that Vy/Vx ' Vz/Vx << 1. Collisions overcome magnetic order and Eq. (9) describes a

diffusive motion along the x axis only.
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FIG. 6. a)Normalized potential drop e∆φqn/Te in the quasi-neutral region vs. the angle of incidence

of the magnetic field in the high collisionality regime of the ions. b) Theoretical e∆φqn/Te, Eq.

(33), for the same mean-free-path to Larmor radius ratios than in a).
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B. Bohm criterion for strongly magnetized electrons

Let us assume that ion velocity field follows Eq. (9) which stands for any collisionality.

Let us further assume sin θ >> r
λce

so that Eq. (15) describes electrons momentum con-

servation for any mean-free-path, but not necessarily ion momentum conservation, because

sin θ can be larger or smaller than R
λci

. In the plasma, far from the sheaths, the plasma

approximation stands and we have ni ' ne ' n, where ni and ne are the ion and electron

density respectively. It comes that Vex ' Vix ' Vx, where Vex is the electron velocity per-

pendicular to the wall. Injecting the electric force qφ′ from Eq. (15) into Eq. (9) and using

Eq. (12), with electrons and ions parameters for the mass, temperature, Larmor radius and

mean-free-path, yields:

M sin2 θ +m

Ti sin
2 θ

V ′x
Vx

(
V 2
x − C2

sθ

)
=
Viy cos θ

ViR
− Vx
Vi

(
Vem

ViM

1

λce sin2 θ
+

1

λci

)
, (16)

with the modified Bohm velocity:

Csθ =
Cs sin θ√

sin2 θ +m/M
(17)

The modified Bohm velocity takes into account electron inertia, that becomes important

for grazing incidences when θ '
√
m/M as already mentioned by Stangeby in reference15.

Then as long as electrons are moving along the field line (for λce >> r), even if their inertia

matters, the quasi-neutrality breaks down at the modified Bohm velocity, which is very

close to Cs for large incidences, but vanishes as θ ' 0. This result does not depend on the

collisionality of the ions, their velocity field could be isotropic for λci < R or anisotropic

when the magnetic effects overcome collisions.

C. Low collisionality λci >> R

In regions that scale with λci and when the angle of incidence of the magnetic field is

such as sin θ > R
λci

, ions also verify Eq. (15), like electrons. Combining both equations and

eliminating the electric field force gives:

m+M

sin2 θ

V ′x
Vx

(
V 2
x −

Te + Ti
m+M

sin2 θ

)
= − Vx

sin2 θ

(
mVe
λce

+
MVi
λci

)
(18)

In order to get a positive gradient of the velocity, one must have:
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Vx <

√
Te + Ti
m+M

sin θ ' Cs sin θ, (19)

which is known as the Chodura sheath entrance condition. As already pointed out by

Ahedo10, at this specific sonic point, the plasma enters a steeper region of scale R, where it

stays quasi-neutral until it enters the Debye sheath at the sonic point Vx = Csθ.

D. High collisionality λci << R or incidences such as sin θ < R
λci

When the angle of incidence of the magnetic field is smaller or of the same order of

magnitude than θc = arcsin R
λci

, it is not possible to neglect the collisional term in Eq.

(10) or Eq (11) vs. the magnetic ones. The inertial terms can be disregarded though, for

velocities smaller than the thermal one. This situation corresponds geometrically to the

interception of the ion Larmor radius with the wall at a distance λci from it along the field

line. In such a case, the Chodura sheath, which extends over some R in front of the wall,

becomes collisional, even if λci > R, and tends to disappear and merge with the collisional

pre-sheath.

For λci << R, condition (19) vanishes and so does the Chodura sheath (ions are de-

magnetized by collisions) and one can see from Eq. (10) and Eq. (11) that, as already

mentioned, Viz ' Viy << Vix.

In both situations described in this section, Eq. (16) still holds as well as the modified

Bohm criterion given by Eq. (17). The important conclusion is that the Chodura sheath

merges with the collisional pre-sheath for λci < R and for incidences such as sin θ < R
λci

.

E. Potential drop in the quasi-neutral region

1. λci >> R

For θ larger than both θc and θ∗ and low collisionality, one can neglect electron inertial

effects. Indeed dividing successively Eq. (15) for electrons by m and then by V 2
e , using Eq.

(12), yields:

VxV
′
x

V 2
e sin2 θ

+
n′

n
=
eφ′

Te
− Vx
Ve

1

sin2 θλce
(20)
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Assuming the electron fluid velocity smaller than Ve, ie. Vx/Ve << 1, and large incidences

of the magnetic field, yields the Boltzmann relation from Eq. (20):

n′

n
=
eφ′

Te
(21)

Noting the potential at the Debye and Chodura sheath entrance as φd and φc respectively,

it comes from Eq. (21) that nd
nc

= exp e(φd−φc)
Te

, with nd and nc the plasma density at the

latter entrances. Knowing the velocity at both sonic points, it is straightforward to calculate

the well-known potential drop in the Chodura region using Eq. (12) as:

∆φcho = φd − φc =
Te
e

log(sin θ). (22)

In order to get the total potential drop in the quasi-neutral region ∆φqn, one has to

evaluate the potential at the Chodura point, assuming φ(0) = 0 and Vx(0) = 0. As explained

previously, for such an ordering of the different characteristic lengths, the plasma flows

parallel to the field line (ions and electrons). So for every angle, the plasma has to be

accelerated from an expected null velocity at x = 0 to Cs at x = C along the field line (or

Cs sin θ in the x direction).

Using Eq. (15) for ions and Eq. (12) and neglecting the collisional drag, we have:

n′

n
= −eφ

′

Ti
− MVxV

′
x

Ti sin
2 θ
, (23)

that can be injected in Eq. (21). After integration between the Chodura sheath entrance

and the plasma center, it comes that φc − φ(0) = −0.5Te, which is independent of the

magnetic field incidence.

The total potential drop in the quasi-neutral region is then, for θ > θ∗ and θ > θc:

∆φqn =
Te
e

(log(sin θ)− 0.5) (24)

In Fig. 5a, we observe that Eq. (24) fits qualitatively the PIC simulations results for

incidences larger than 20◦ as long as λce/r ≥ 250. Note that the values of θc = arcsin R
λci

for

λce/r = 250, 500 and 750 are 20.96, 10.3 and 6.8◦ respectively. Below this threshold value

of the incidence of the magnetic field, the collisional model is expected to apply.
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FIG. 7. a) Normalized potential drop e∆φT /Te in the combined Debye and Chodura sheaths vs.

the angle of incidence of the magnetic field in the medium-low collisionality regime of the ions. b)

Variation of the velocity at the exit of the quasi-neutral region, that can be the Bohm velocity Cs

or the velocity at the wall Vx(−L/2), normalized to Cs. c) Density plot of the potential drop in

the quasi-neutral region vs. θ and the mean-free-path to larmor radius ratio for grazing incidences

only. The straight line is the critical angle θp plotted using Eq. (35)
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2. λci << R or sin θ < R
λci

In such a case, as explained previously, the Chodura sheath disappears, and the entire

potential drop in the quasi-neutral region occurs between the sonic point defined by Eq.

(17) and the center of the plasma, where it is assumed Vx ' 0. In order to evaluate this

potential drop, we have to neglect the inertial terms in the set of Eqs. (9)-(11) for both ions

and electrons and to assume a source term in the plasma. This procedure yields:

Vix =
µi
Ci
E − Di

Ci

n′

n
, (25)

with,

Ci =
ν2i + ω2

ci

ν2i + ω2
ci sin

2 θ
, (26)

and νi and ωci the ion collision and cyclotron frequencies respectively.

If θ → π/2, one recovers the classical result without the magnetic field effect with the

mobility µi = |e|
νiM

and the diffusion coefficient Di = Ti
νiM

. Applying the same reasoning to

electrons, with their own coefficients Ce, µe and De, assuming in the context of the plasma

approximation that Vix ' Vex, it is possible to solve E as:

E =
Di

Ce
Ci
−De

µi
Ce
Ci

+ µe

n′

n
. (27)

Now the conservation of particle number is:

∂(nVx)

∂x
= S. (28)

As explained previously, the ions number is kept constant during the simulations: each

time one comes across the walls, a (ion , electron) couple is injected randomly in the plasma

so that S = 2Γw/L with Γw the particle flux at a single wall.

Replacing Eq. (27) in (25) gives the particle flux Γ(x) = nVx(x):

Γ = −Deµi +Diµe
µiCe + µeCi

n′ = −Dθ
an
′, (29)

withDθ
a the ambipolar diffusion coefficient which depends on the incidence of the magnetic

field line with respect to the wall. Substituting in Eq. (28) yields:

n′′(x) = − 2Γw
LDθ

a

. (30)
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The previous differential equation can be solved assuming the boundary conditions

n(L/2) ' n(−L/2) ' 0 as:

n(x) =
ΓwL

4Dθ
a

(
1− 4x2

L2

)
(31)

In the steady state, we necessarily have n(0) = n0, so that Γw = 4Dθan0

L
. The quasi-neutral

regions ends at the sonic point S when the Debye sheath exists, otherwise at the walls if the

quasi-neutrality does not break down within the plasma. Let us call Vout the velocity at the

exit of the quasi-neutral region, such as Vout = |max(−Cs, Vx(−L/2))|, assuming Vx < 0 at

the vicinity of the left wall as depicted in Fig. 1. Then when the plasma becomes supersonic

before reaching the wall, Vout = Cs (the velocity at the wall is necessarily |Vx(−L/2)| > Cs);

else, Vout = |Vx(−L/2)|.
If we neglect the source term in the region separating the wall from the sonic point S, we

can approximate Γw = noutVout, with nout the density at the considered point (sonic point S

or the wall), which yields:
nout
n0

=
4Dθ

a

LVout
(32)

Integrating Eq. (27) between the point (nout, Vout) and the center of the plasma gives finally:

∆φqn = −DiCe −DeCi
µiCe + µeCi

ln
4Dθ

a

L|Vout|
(33)

Fig. 7b shows the angular variation of the normalized velocity at the exit of the quasi-

neutral region as explained above. For incidences larger than 15◦, a space-charge field forms

and the quasi-neutrality breaks down at the Bohm velocity. For grazing incidences, the exit

velocity becomes Vx(−L/2), which considerably decreases with θ for all mean-free-paths. In

the same figure, we plot the modified Bohm velocity Csθ (Eq. 17), which is in a qualitative

agreement with the simulations results. Other authors have derived a similar variation of the

velocity as Csθ at the exit of the plasma from fluid considerations or kinetic simulations15,16.

In the following, we will then assume that |Vout| = Csθ in the collisional model.

Fig. 6b shows that in the high collisionality case (λci < R), the collisional model (Eq.

(33)) is in good agreement with the PIC simulation results, apart from the very grazing

incidences, below 2◦, where the calculated potential drop is twice the simulated one. In Fig.

5b, it can be seen that the collisional model is also in good agreement with the simulated

result in the lower collisionality case (λci > R) for incidences smaller than 20◦, ie. smaller
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than θc. The model also reproduces very well the slope of ∆φqn vs. θ for the range of mean-

free-paths we investigated, and can explain the change of polarity of the potential drop in

the quasi-neutral region. However, just like in Fig. 6b, the model gives a larger potential

drop than the simulation results below 2◦, although the discrepancy is smaller than in Fig.

6b.

In fact, for such a small incidence, the potential drop ∆φqn is found to be opposite to the

usual one, ie. this is a regime where ions are pushed back into the plasma. The ambipolarity

is maintained within the plasma, thanks to the ambipolar electric field, as shown in Fig.

3b. However, at the proximity of the wall, over a distance ' r, a small positive charge

arises because electrons are still the fastest species in this non-collisional limited region of

the plasma (see Fig. 3a for θ = 0.5◦). There is obviously a potential drop associated to

this region scaling with r, that we do not treat in a fluid model, and that can explain the

discrepancy observed for θ < 2◦.

3. Ambipolar field transition

In the collisional pre-sheath, which separates the plasma from the Debye (point S) or the

Chodura sheath (point C), particles are accelerated via an ambipolar field from a null veloc-

ity to the corresponding sonic point. Depending on the angle of incidence of the magnetic

field, mean-free-path to Larmor radius ratios, the ambipolar field can be either negative and

accelerate ions towards the wall, or positive and push back ions into the plasma as seen in

Fig. 3b for instance. The transition between both regimes can be evaluated by using Eq.

(27). The sign of the ambipolar field changes when:

DiCe = DeCi. (34)

We assume for the sake of generality that λci = γλce. For a given electron mean-free-path

to Larmor radius ratio λce/r = α, we can derive from Eq. (34) a critical angle θp under

which the ambipolar field is positive as:

sin2 θp =
1− A+ α2(β2 − A)

α2 (Aβ2 − 1 + α2β2(A− 1))
, (35)

where β2 = γ2 Tem
TiM

and A2 = γ2 Tim
TeM

. Note that this expression stands for any mean-free-

path, for any collisional regime of both ions and electrons. Indeed, it is possible to assume
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that in the center of the plasma, the velocity gradient is very small and that all left members

of the set of equations (9) to (11) can be neglected for each species.

Fig. 7c is a density plot, interpolated from our simulations results as explained previously,

which depicts the normalized potential drop in the quasi-neutral region with respect to θ

and the ratio λce/r, the white contrast in the figure being associated with a null potential

drop. For such a null ∆φqn, the ambipolar field is expected to change its direction. The

critical angle θp = f(λce/r) from Eq. (35) is also plotted in the figure and it appears that

it follows fairly well the white contrast of the density plot. This shows that the collisional

model explains the transition in the ambipolarity, which is seen in Fig. 3b. Note that this

unexpected regime, where ions have to be slowed down with respect to electrons, appears

at very grazing incidences or high collisionality; it does not coexist with a Debye sheath as

seen in the density plot of Fig. 4c.

IV. CONCLUSION

In this paper, we studied by mean of PIC simulations the evolution of the potential

drops in the different layers constituting the PWT, in the presence of a magnetic field

tilted by θ with respect to the wall, and of collisions with neutrals. We investigated a

large range of collisionality for the ions, from λci/R = 0.11 to 8.3, which was large enough

to study the transition between two opposite regimes: one where the magnetic order was

destroyed by collisions, to another one, where both ions and electrons were moving along

the field line in the plasma. We showed that both the collisionality and the incidence of

the magnetic field have important influences on the PWT characteristics, from the non-

neutral Debye sheath to the quasi-neutral region. We evidenced that in the high collisional

regime, the Debye sheath disappears, the plasma being subsonic for any incidence, because

the potential drop in the collisional pre-sheath is large enough to balance ions and electrons

losses at the walls. When the ion mean-free-path increases and collisions with neutral

become less and less frequent, the potential drop in the Debye sheath increases, because a

space-charge field is needed to accelerate ions and slow down electrons. However when the

incidence decreases, ion mobility towards the wall increases with respect to electrons, due

to collisions. That is why the potential drop in the Debye sheath decreases with θ, which

is expected in the collisionless limit because of the particle flux reduction at the wall; here
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the effect is exacerbated by collisions. Concerning the quasi-neutral region, we evidence two

trends: when the ion mean-free-path is very large with respect to the ion Larmor radius

(λci >> R), the plasma flows parallel to the magnetic field line in the pre-sheath, which

scales with λci, until it enters the Chodura region. At the exit of the Chodura sheath,

the quasi-neutrality breaks down, and the total potential drop between the Debye sheath

entrance and the center of the plasma follows the variation e∆φqn/Te = ln(sin θ) − 0.5.

When the angle of incidence of the magnetic field is such as θ ≤ θc = arcsinR/λci, and

although the ion mean-free-path is quite larger than the Larmor radius, the Chodura sheath

disappears and merges with the collisional pre-sheath. For such incidences, the potential

drop in the quasi-neutral region follows a collisional law, where inertia of both ions and

electrons is neglected. The same collisional law successfully models ∆φqn when λci < R, in

the regime of high collisionality of the ions. In a plasma reactor such as ALINE29, with an

hydrogen plasma such as Te = Ti = 2eV and B = 0.1T, and an expected elastic collisional

frequency for electrons with neutrals of the order of νe = 45MHz, we have λce/r = 276 or

λci/R = 1.6, assuming λce = 4 × λci. In the conditions met in the scrape-off layers (SOL)

of tokamaks14,30, with Te = 20eV and B = 2T, we have λce/r = 5525 or λci/R = 32 for

hydrogen. The critical angle θc below which collisions make the Chodura sheath disappear

and merge with the collisional pre-sheath is of the order of 38◦ for ALINE and 1.78◦ for

the SOL of tokamaks. This is respectively quite larger and of the same order of magnitude

than θ∗ = 4.74◦, the theoretical angle at which the Debye sheath is expected to vanish in

the collisionless limit. Moreover, the critical angle θp below which the potential drop in the

pre-sheath is expected to reverse, and push-back ions into the plasma, is of θp = 2.31◦ for a

reactor such as ALINE and of 0.136◦ for the SOL of tokamaks. Collisions with neutrals, and

other phenomenons inducing a similar drift of the particles perpendicularly to the field line

(turbulence, anomalous transport, electron-ion collisions, shear velocity...) may then affect

significantly the potential drops in the PWT, in both the Debye sheath and the quasi-neutral

region, for relative large angles, in plasma reactors with the characteristics of ALINE. The

effect would be more subtle for warmer and strongly magnetized plasmas.
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