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Abstract 

Four fibroblast growth factor receptors (FGFR1-4) constitute a family of 

transmembrane tyrosine kinases that serve as high affinity receptors for at least 

22 FGF ligands. Gene targeting in mice has yielded valuable insights into the 

functions of this important gene family in multiple biological processes. These 

include mesoderm induction and patterning, cell growth, migration and 

differentiation, organ formation and maintenance, neuronal differentiation and 

survival, would healing and malignant transformation. Furthermore, discoveries 

that mutations in three of the four receptors result in more than a dozen human 

congenital diseases highlight the importance of these genes in skeletal 

development.  In this review, we will discuss recent progress on the roles of FGF 

receptors in mammalian development and congenital diseases with an emphasis 

on signal transduction pathways. 
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Introduction 

Properties of the FGF family 

The first fibroblast growth factor (FGF) was identified in 1974 

(Gospodarowicz, 1974). Since that date, 22 distinct FGFs have been characterized 

in various invertebrates and vertebrates (Coulier et al., 1997; Ornitz and Itoh, 

2001). They are notably involved in development and homeostasis.  

Most orthologous FGFs are highly conserved. Their gene locations on the 

chromosomes indicate that the different members have been generated by 

genome-duplication and gene-translocation mechanisms that occurred during 

the emergence of vertebrates (Coulier et al., 1997). The FGFs can be classified in 

subgroups depending on their amino acid sequence homology (for example in 

humans: FGF9, 16 and 20 or FGF8, 17 and 18 display more than 70% identity) 

(Ornitz and Itoh, 2001).  

Almost all tissues express FGFs. The profile of expression is often similar 

within the same subgroup (Maruoka et al., 1998). Their mode of action is highly 

variable: most FGFs are secreted even if some of them lack signal sequences (FGF 

9, 16, 20). Some FGFs remain intracellular (FGF 11-14) or are sequestered by the 

extracellular matrix (FGF 1-2). FGF 2 and 3 contain nuclear-localization signals 

but no function of these proteins in the nucleus has been found. Timing of 

expression also varies; for instance, some FGFs are only expressed during 

embryonic development, such as FGF 3, 4, 8, 15, 17 and 19. 

The molecular weight of vertebrate FGFs is comprised between 17 and 34 

kDa. They form polypeptides with a dominance of b-strands forming b-sheets 

(Eriksson et al., 1991). Notably, they all share a core domain containing 
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conserved structural motifs implicated in interaction with their high affinity 

receptors (FGFRs), (membrane protein tyrosine kinases) (Martin, 1998; Plotnikov 

et al., 2000; Xu et al., 1999) 

 

Properties of FGF Receptors 

Since the first identification of a FGF receptor in the mid-80s (Lee et al., 

1989; Olwin et al., 1986), four FGF receptors (FGFR 1-4) have been characterized1. 

They contain two or three immunoglobin-like (Ig) domains and a heparin-

binding sequence (Fig. 1). Alternative splicing of FGFR1, FGFR2 and FGFR3 

generates several isoforms due to the alternative splicing event in the exons 

encoding the carboxyl-terminal half of IgIII. The most well studied isoforms are 

FGFR2b and FGFR2c, which exhibit exquisitely specific ligand-binding 

properties, and are also regulated in a tissue-specific manner. FGFR2b expression 

is restricted to epithelial lineages and FGFR2c expression is mainly in 

mesenchymal lineages (Orr-Urtreger et al., 1993; Xu et al., 1998; Yu et al., 2000). It 

has been shown that FGF ligands and receptors interact in a paracrine fashion, 

i.e. the mesenchymally expressed ligands, FGF7 and FGF10, can activate only 

FGFR2b, whereas the epithelium based ligands, FGF2, FGF4, FGF6, FGF8, and 

FGF9 are specific for FGFR2c (Orr-Urtreger et al., 1993; Xu et al., 1998; Yu et al., 

2000).  

The heparin-binding domains of the receptors are responsible for the 

formation of a complex between low affinity receptor, heparin or heparan 

sulfate, and ligands (FGF). Heparin or heparan sulfate is essential for a complete 
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activation of FGF pathways (Ornitz, 2000). After stimulation, FGF-FGFR 

complexes internalize and could trigger other transduction pathways in the 

nucleus and perinuclear structures. This mechanism could involve a delivery of 

FGF to other intracellular targets (Maher, 1996; Peng et al., 2001; Reilly and 

Maher, 2001; Stachowiak et al., 1997; Stachowiak et al., 1996; Stachowiak et al., 

1996; Wiedlocha et al., 1994; Wiedlocha et al., 1995) but none of them have been 

identified. 

The pattern of expression of the receptors during development is 

important in regard to mediating FGF actions in a tissue specific fashion (Orr-

Urtreger et al., 1991): 

� Fgfr1, which is expressed almost exclusively in the mesenchyme2, plays an 

essential role during early stages of development (for instance, mesoderm 

patterning and cell migration during gastrulation) and at several levels 

during organogenesis. 

• On the contrary, Fgfr2 is mainly detected in the epithelial lineages during 

early gastrulation. During organogenesis and later development, it is 

expressed in both epithelial and mesenchymal cells, mediating a paracrine 

loop between mesenchyme and epithelium based FGF ligands. For 

instance, a mutation of this receptor uncoupled the reciprocal regulation 

loop between FGF8 and FGF10, leading to the failure of limb induction 

(see below).   

� Fgfr3 is mostly expressed in the central nervous system and bone 

                                                                                                                                            
1 A potential FGF receptor, FGFR5, was described by two independent studies (Kim et al., 2001; 
Sleeman et al., 2001). Because the characterization is still preliminary, it will not be reviewed 
here). This receptor lacks intracellular kinase domain. 
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rudiments. As a consequence, mutations of human FGFR3 (and also 

FGF23, a potential ligand) affect growth of the limb bones (leading to 

syndromes called achondroplasia, hypochondroplasia, thanatophoric 

dysplasia or SADDAN syndromes (see below). Mouse models have 

shown that Fgfr3 is a negative regulator of bone growth and development.  

� Finally, Fgfr4 is detected in the definitive endoderm and the somatic 

myotome and cooperates with Fgfr3 to control postnatal lung 

development and liver functions. 

The importance of FGFRs is detailed below in regard of their roles in 

embryogenesis, development and organogenesis: 

 

Roles of FGFRs in mammalian development revealed by loss 

of function mutations 

In order to study functions of FGF receptors, mouse strains carrying many 

different types of mutations, null, hypomorphic, isoform or conditional, have 

been introduced into FGF receptors using gene targeting (Table 1). Analysis of 

these mutant mice has provided valuable information about FGF receptors in 

various aspects of mammalian development.  

 

Gastrulation 

Targeted disruption of Fgfr1 in mouse resulted in recessive embryonic 

lethality during gastrulation (Deng et al., 1994; Yamaguchi et al., 1994). Mutant 
                                                                                                                                            
2 Mesenchyme: embryonic tissue that is composed of loosely organized unpolarized cells of both 
mesodermal and ectodermal origin, with a proteoglycan-rich extracellular matrix 
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embryos were developmentally retarded, exhibiting disorganization of axial 

mesoderm and defective development of the posterior structures (Deng et al., 

1994; Yamaguchi et al., 1994). Analysis of chimeric embryos formed between 

wild type embryos and mutant embryonic stem (ES) cells revealed accumulation 

of mutant cells in the posterior regions, presumably due to retarded migration of 

mesoderm precursors across the primitive streak (Ciruna et al., 1997; Deng et al., 

1997), a process that may involve relay-proteins like Shp2 and Src (Liu et al., 

1999; Saxton et al., 2000) and the MAPK pathway (Curran and Grainger, 2000). In 

wild type embryos, mesodermal cells at the primitive streak undergo epithelial-

mesenchymal transformation (EMT), which correlates with downregulation of E-

cadherin. This process, however, is not observed in Fgfr1-/- embryos. Their 

further analysis indicated that the prolonged expression of E-cadherin (due to 

the lack of mSnail, an E-cadherin repressor) sequestered membrane bound b-

catenin, and attenuated Wnt3a signaling and T-box transcription factor 

expression, leading to the reduction of several mesodermal structures and 

formation of ectopic neural tubes (Ciruna and Rossant, 2001). 

 
 

Organogenesis 

Limb induction and morphogenesis  

The roles of FGF/FGFR signaling in limb formation have been most 

intensively studied. Several FGFs are expressed at varying phases of limb 

development with distinct patterns (Capdevila and Izpisua Belmonte, 2001; 

Martin, 1998; Niswander, 2002; Tickle and Munsterberg, 2001). During early 

stages prior to apical ectodermal ridge (AER) induction, Fgfr1 is expressed in the 

limb mesenchyme whereas Fgfr2 is present in the limb ectoderm and the 
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underlying mesenchyme. After induction, Fgf4, 8, 9, 19 and Fgfr2b are expressed 

in AER whereas Fgf10 and Fgfr2c are detected in the underlying mesenchyme. It 

was shown that excision of the AER resulted in truncation of limb. This defect 

could be overcome by embedding beads containing Fgf2 and Fgf4 in 

mesenchyme of the limb bud (Martin, 1998; Niswander and Martin, 1992; Tickle 

and Munsterberg, 2001). This observation indicates an essential role of the AER-

secreted FGFs in limb bud outgrowth. 

Because Fgfr1-null embryos died at stages prior to limb induction, chimeric 

embryos were used to assess its role during limb development (Deng et al., 1997). 

This study revealed that Fgfr1 deficiency might not block limb bud initiation, as 

even high degree chimeric embryos could initiate limb formation. However, at 

E10.5, FGFR1-deficient cells were excluded from the distal mesenchyme and 

preferably populated ectoderm and AER. At E11.5-E12.5, all chimeric limb buds 

were developmentally retarded, and exhibited abnormal shape and rough 

surface. Their further study in embryos deficient for the full-length isoform of 

Fgfr1 confirmed essential roles of this gene in distal mesoderm patterning and 

digit formation (Xu et al., 1999).  

To study a role of Fgfr2 in limb development, Xu et al. (1998) deleted both 

Fgfr2b and Fgfr2c isoforms and found that the mutant embryos Fgfr2DIII/DIII 

embryos (rescued by a tetraploid embryo fusion approach) were limbless due to 

a failure in limb induction (Xu et al., 1998). The presumptive limb territory 

showed initial thickening but Fgf8 was not detected in the ectoderm and Fgf10, 

which was initially expressed in the mesenchyme, gradually disappeared. Based 

on their findings, they proposed that limb induction is dependent on a positive 
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regulatory loop involving several Fgfs and the two isoforms of Fgfr2. According 

to this model, Fgf10 secreted by the underlying distal mesenchyme activates 

Fgfr2b, the ectodermal isoform. This leads locally to an increase expression of 

Fgf8, which, after diffusion to the underlying mesenchyme, increases the 

expression of Fgf10 by activating the mesenchymal Fgfr2c (Xu et al., 1998).  

Fgfr2b and Fgfr2c were also disrupted separately by gene targeting. The 

absence of Fgfr2b or Fgfr2c alone did not block limb bud initiation 

(Eswarakumar et al., 2002; Revest et al., 2001). Fgfr2b deficient limb bud still 

expressed Fgf8 at initiating stages, and number of other genes important for limb 

bud outgrowth, such as Bmp4 and Msx1, however, it failed to express Sonic 

Hedgehog (Shh) and Fgf4. Moreover, in the absence of FgfR2b, extensive 

apoptosis of the limb bud ectoderm and mesenchyme occurred between E10 and 

E10.5, providing evidence that Fgfr2b-mediated Fgf signals act primarily as 

survival factors for limb bud maintenance and growth (Revest et al., 2001). In 

contrast, disruption of Fgfr2c alone did not have an obvious effect on limb 

development (Eswarakumar et al., 2002), suggesting its absence could be 

compensated, perhaps by other unidentified mesenchymal based splicing 

isoforms of Fgfr2 and/or Fgfr1.  

 

Epidermal development 

FGF signaling is important for epidermal development and wound 

healing. They serve as mitogenic stimulators of epidermal keratinocytes, dermal 

fibroblasts and endothelial cells (Clement-Lacroix et al., 1991; Ristow and 

Messmer, 1988; Suhardja and Hoffman, 2003). A number of FGFs and their 
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receptors are differentially expressed in the ectoderm and underlying 

mesenchyme and function in a reciprocal interacting loop that specifies skin 

development (Werner et al., 1992; Werner et al., 1993). It was shown that both 

Fgfr2b-/- and Fgfr2�III/�III deficient embryos displayed abnormal skin (De 

Moerlooze et al., 2000; Li et al., 2001). Analyzing Fgfr2DIII/DIII embryos, Li et al. 

(2001) demonstrated that the Fgfr2DIII/DIII mutation blocked skin formation during 

early stages of skin development due to inhibiting keratinocyte proliferation 

(E11-E13) (Li et al., 2001). However, Fgfr2-independent skin formation occurred 

in E14.5 mutant embryos, resulting in a much thinner, yet well-differentiated 

epidermis. Mutant skin remained thin with decreased hair density after 

transplantation to wild-type recipients. These observations reveal an essential 

role of Fgfr2 in skin formation and patterning. Their data also revealed that FGFs 

and receptors have a similar pattern of expression during eye lid development 

and the Fgfr2DIII/DIII mutation blocked eye lid formation (Li et al., 2001). 

 

Lung development  

Expression studies revealed that all four receptors are expressed in lung 

with Fgfr1 primarily in mesenchyme and Fgfr2 mainly restricted in epithelium 

(Orr-Urtreger et al., 1991; Peters et al., 1992; Weinstein et al., 1998). Fgfr2DIII/DIII 

mouse embryos did not have a lung when analyzed at the earliest stages of lung 

formation, indicating that this receptor is responsible for lung induction (Li et al., 

2001). In contrast, targeted disruption of the full length isoform of Fgfr1 did not 

block lung initiation although mutant lung was significantly smaller than control 
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(Xu et al., 1999; and our unpublished data). Embryos missing each of Fgfr3 or 

Fgfr4 displayed no lung phenotype during all stages of development (Deng et al., 

1996; Weinstein et al., 1998). However, in the Fgfr3 and Fgfr4 double mutants, 

even if the lungs were perfectly normal at birth, the alveogenesis process was 

impaired in later development, lending to breathing difficulty and death of these 

mutant mice. Surfactant expression was normal but postnatal downregulation of 

elastin was impaired. Thus, these two receptors cooperate to direct alveogenesis 

in murine lung (Weinstein et al., 1998).  

 

Central nervous system (CNS) 

FGF signaling plays an important role in CNS development and is 

involved in numerous processes including proliferation, migration and survival 

of neurons and glial cells. The four FGFRs are expressed in the CNS with FGF2, 

8, 15 and 17 among their most important ligands (Ford-Perriss et al., 2001). 

Mouse and chick models have shown that FGFR1 is broadly expressed whereas 

FGFR2 and FGFR3 are also detected in specific regions (Mason et al., 2000; 

Walshe and Mason, 2000). FGFR4 is not present in adult mouse brain analyzed 

by northern blot analysis (Weinstein et al., 1998). 

FGFRs play an important role during neural induction, as shown by 

experiments with dominant negative forms in Xenopus (Launay et al., 1996). 

During early and mid-phases of neurogenesis, Fgfr1 and Fgfr2 are expressed at 

high levels. In chimeric mouse embryos, Fgfr1-/- progenitor cells could form 

neural tubes; however they exhibited defects in neural tube closure, leading to 

spina bifida in mutant embryos (Deng et al., 1997; Xu et al., 1999). Specific 
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deletion of Fgfr1 in later CNS development has also shown its involvement in 

midbrain and hindbrain development (Trokovic et al., 2003). 

New data about Fgfr3 and its role in CNS formation have recently been 

published. Among growth factors, FGF2 regulates oligodendrocyte development 

(Oh and Yong, 1996). Fgfr1 is expressed at all stages of oligodendrocyte 

development, Fgfr2 in differentiated oligodendrocytes and Fgfr3 in pro- 

oligodendrocytes, and is downregulated when cells enter terminal differentiation 

(Bansal et al., 1996; Bansal et al., 1996). In situ hybridization using 

oligodendrocyte markers has shown that Fgfr3-/- mice exhibit a delay in 

appearance of terminal differentiated oligodendrocytes, a phenomenon not 

linked to survival or proliferation defects. As a consequence, myelination is also 

delayed in those animals. Increased expression of GFAP, an astrocytic marker, in 

Fgfr3-/- has been reported (Oh et al., 2003; Pringle et al., 2003).  Those data 

suggest that Fgfr3 is involved in regulation of differentiation of oligodendrocytes 

and astrocytes in the CNS (Oh et al., 2003; Pringle et al., 2003).  

 

Mammary gland development 

Several FGFs and FGFRs are involved in mammary gland development 

(Dickson et al., 2000). For example, FGF2 stimulates growth and inhibits 

differentiation of the normal mouse mammary gland epithelial cells (Lavandero 

et al., 1998). The highest mRNA levels of FGFR and their ligands are detected 

during involution in heifers (virgin bovine female) (Plath et al., 1998). FGFR1, 

FGFR2b and FGFR4 have also been detected in mammary cells (Bange et al., 

2002; Jackson et al., 1997; Jackson et al., 1997; Marsh et al., 1999).  
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Recently, use of an inducible drug-activated Fgfr1 in transgenic mice has 

revealed that this receptor is likely involved in positive regulation of lateral 

budding of the mammary ductal epithelium. The MAPK and Akt pathways are 

activated during this process. If treatment (and so subsequent activation of Fgfr1) 

is continuously performed, invasive lesions and hyperplasia are observed, 

suggesting that a prolonged activation of Fgfr1 could be involved in 

tumorigenesis (Welm et al., 2002). Moreover, Fgf8 expression levels have been 

linked to breast malignancy and the authors suggested that Fgfr1 and Fgfr4 may 

relay the signal (Marsh et al., 1999).  

Utilization of dominant negative form of Fgfr2 in mice has shown that 

Fgfr2b positively regulates the mammary gland lobuloalveolar development 

during pregnancy. Those females cannot feed their pups even if a lactational 

response is observed (Jackson et al., 1997; Jackson et al., 1997). In wild-type mice, 

Fgfr2b is expressed only in the mammary gland epithelium, while its ligand, 

FGF7 originates in the stroma. Recently, a study showed that development of 

each mammary placode in mice involves different mechanisms. Compared to 

others, the fourth placode is not developmentally regulated by Fgfr2b mediated 

signals (Mailleux et al., 2002), suggesting a special feature for these glands.  

Interestingly, the level of Fgfr2b and Fgf7 expression in the mammary 

gland is regulated by estradiol and progesterone; Fgf7 is upregulated by 

estradiol while progesterone has no effects. On the contrary in peripubertal and 

mature virgin mice, estradiol decreased the levels of the receptor while 

progesterone stimulated it. Thus, it appears that mammary gland development 

may be regulated by ovarian hormones through regulation of expression of 

Fgf7/Fgfr2b signaling (Imagawa and Pedchenko, 2001). 
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Ear development 

FGFR1, FGFR2 and FGFR3 have been detected during inner ear 

development (Bermingham-McDonogh et al., 2001; Pickles and Chir, 2002; 

Pirvola et al., 2002). During mouse embryogenesis, Fgfr2b is heavily expressed in 

early developing structures before E10.5. During organogenesis after E10.5, Fgfr2 

and Fgfr3 are predominantly expressed with an apparent bias towards the “c” 

isoforms (Pickles, 2001). Nevertheless, Fgfr2b is still detected in nonsensory 

epithelium of the developing ear and is implicated in the development of walls 

of the cochlear spaces (Pickles and Chir, 2002; Pirvola et al., 2002). Targeted 

disruption of Fgfr2b leads notably to a severe dysgenesis of the cochleovestibular 

membranous labyrinth. Interestingly, the same study has suggested that Fgfr2b 

activation could depend on paracrine signals, a different model than the one 

proposed for limb development involving epithelial-mesenchymal interactions 

(Pirvola et al., 2000; Xu et al., 1998). Consistent with its pattern of expression, 

targeted disruption of Fgfr3 leads to inner ear defects. Indeed, it appears that 

Fgfr3 is involved in the differentiation of the pillar cells of the organ of Corti 

(Colvin et al., 1996; Pickles and Chir, 2002).  

After birth, high levels of Fgfr3c, Fgfr1b and Fgfr2b have been detected in 

the neural/sensory region in some strains of mouse (Pickles, 2001; Pickles et al., 

1998). On the contrary, the lateral walls of the cochlea express high levels of 

Fgfr1c (Pickles, 2001). Inactivation of Fgfr1 in the inner ear epithelium reduces 

dramatically the number of auditory hair cells, an event probably linked to a 

decreased number of progenitor cells (Pirvola et al., 2002).  
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Hepatic function 

FGFR4 is expressed in mature hepatocytes. Its disruption leads to defects 

of the liver function especially depleted gallbladders, an elevated bile acid pool 

and elevated excretion of bile acids (Yu et al., 2000). Indeed, the level of 

cholesterol 7alpha-hydroxylase, the limiting enzyme for bile acid synthesis, is 

elevated, a phenomenon that authors linked to upregulation of the Liver X 

Receptor (LXR) function due to downregulation of its corepressor RIP140. The 

authors suggested that Fgfr4 controls RIP140 levels. 

Moreover, cytotoxic studies have shown that Fgfr4-/- mice appeared to be 

very sensitive to CCl4, as reflected by increased liver mass, delayed 

hepatolobular repair and increased fibrosis. This phenomenon is linked to the 

downregulation of cytochrome P450 2E1 (CYP2E1) mRNA and protein, the 

enzyme responsible for normal liver detoxification of the CCl4 (Yu et al., 2002).  

Some hypotheses about the regulation of these genes could be proposed. 

For example, activation of FGFR4, in addition to FGFR1 and FGFR3, can induce 

cellular transformation through stimulation of different Stat (1 & 3) and PI3 

kinase pathways (Hart et al., 2000). It is possible that these two pathways 

increased the expression of RIP140 and the CYP2E1. 

 

Roles of FGFRs in bone formation and human congenital 

diseases 

Important roles of FGF receptors in mammalian development and bone 

formation have been underscored by findings that missense mutations in FGFR1-

3 resulted in more than 15 human disorders (McIntosh et al., 2000; Muenke and 
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Wilkie, 2000). Most of them lead to skeletal dysplasias with craniosynostosis, 

limb abnormalities and short stature. Deafness, dermatological disorders and 

increase of cancer incidence are the other characterized symptoms. Table 2 is a 

collection of most mutations of the FGF receptors that are associated with 

skeletal dysplasias. Classification could be difficult because some mutations do 

not lead to the same symptoms depending on individuals.  

 

Craniosynostosis 

Craniosynostosis, premature fusion of one or several sutures of the skull, 

occurs with a frequency of approximately 1 in 2500 individuals (reviewed in 

(Katzen and McCarthy, 2000; Muenke and Wilkie, 2000; Renier et al., 2000)). So 

far, over sixty mutations, with a majority in FGFR2, have been found to be 

associated with nine clinically distinct craniosynostosis syndromes. These 

include Antley-Bixler-Like syndrome (ABS), Apert syndrome (AS), Beare-

Stevenson syndrome (BSS), Crouzon syndrome (CS), Crouzon and Acanthosis 

Nigricans syndrome (CAN), Jackson-Weiss syndrome (JWS), Muenke syndrome 

(MS), and Pfeiffer syndrome (PS). The detailed characterization of these diseases 

can be found in a number of excellent reviews (Hehr and Muenke, 1999; Katzen 

and McCarthy, 2000; McIntosh et al., 2000; Muenke and Wilkie, 2000). All the 

mutations are dominant and all the syndromes exhibit craniofacial abnormalities 

with varying severity. The premature suture fusion may increase the intracranial 

pressure and, if no surgery is performed in early infancy, lead to further 

neurological impairments.  

At the molecular level, a majority of mutations are localized in the Ig-like 
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domains II and III, which bind to ligands (Plotnikov et al., 2000; Schlessinger et 

al., 2000). Many of these mutations caused loss or gain of a cysteine residue, 

leading to ligand independent activation of the receptors. Interestingly, some 

mutations display variable expressivity, in different individuals, which suggests 

involvement of genetic background factors in manifestation of the symptoms. 

Also, some mutations in other genes can reproduce an FGFR2 mutation 

phenotype; PAX6, JAGGED1, RIEG, FKHL7 mutations reproduce the FGFR2-

Ser351Cys missense mutation leading to a severe Crouzon/Pfeiffer syndrome 

associated with a Peters anomaly with ocular anterior chamber deficiency (Hehr 

and Muenke, 1999; Okajima et al., 1999). The common phenotypes suggest 

involvement of these genes downstream or upstream of the FGFR2 signaling 

pathway. Interestingly, mutation rates in some FGFR2 and FGFR3 associated 

craniosynostoses appear higher in male than female gametes and often increase 

with paternal age (Crow, 2000; Li et al., 2002). Recently, an investigation has 

suggested that mutations leading to FGFR2-S252W substitution are paradoxically 

enriched in human spermatogonial cells conferring a selective advantage to those 

cells (Goriely et al., 2003), providing a basis for the observed sex and age biases. 

In order to create animal models for the FGF receptor-related inherited 

skeletal disorders, and to study the underlying mechanisms, a number of 

mutations, which correspond to human mutations, have been introduced into 

mice (Table 3). Zhou et al. (2000) introduced a P250R mutation (which 

corresponds to the P252R mutation found in Pfeiffer syndrome, PS) into the 

mouse Fgfr1 using gene targeting. The resulting animal exhibited 

craniosynostosis and skull malformations that mimic the conditions found in 

Pfeiffer patients characterized by premature fusion of coronal suture, and 
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anterior-posteriorly shortened, laterally widened and vertically heightened 

neurocraniums (Figure 2A, B).  Histologic analysis of early postnatal mutant 

mice revealed premature fusion of both sagittal and coronal sutures (Fig. 2C, D). 

The sutures of mutant mice had accelerated osteoblast proliferation and 

increased expression of genes related to osteoblast differentiation (Fig. 2E, F). 

Interestingly, their data also showed dramatically increased expression of Cbfa1 

in the mutant sutures (Fig. 2E, F), suggesting that Cbfa1 may be a downstream 

target of Fgf/Fgfr1 signals (Zhou et al., 2000).   

Using a similar strategy, Chen and Co-workers (2003) introduced, in the 

mouse genome, an Fgfr2-S250W mutation (which corresponds to human FGFR2-

S252W mutation that was found in AS syndrome, one of the most severe 

craniosynostosis syndromes). The resulting mice also showed some features that 

mimic the conditions found in AS patients (Chen et al., 2003).  Unlike the PS 

model caused by Fgfr1-P250R mutation, the mutant mice carrying Fgfr2-S250W 

mutation only showed premature fusion of the coronal suture while the sagittal 

suture is normal (Fig. 3A). They also did not show apparent changes in 

proliferation or differentiation of osteoblast cells. Expression studies failed to 

detect obvious alterations of genes that are over expressed in PS mouse model, 

such as osteocalcin and Cbfa1. These observations may suggest that the PS and 

AP are caused by distinct mechanisms. Surprisingly, Chen et al. (2003) showed 

that the craniosynostosis is accompanied by decreased bone formation as 

measured by a calcein double-labeling assay (Fig. 3B, C), which is accompanied 

by increased apoptosis (Fig. 3D, F) and Bax expression (Fig. 3G, H) (Chen et al., 

2003). This observation suggests that cell death triggered by the altered Fgfr2-

mediated signals is a primary reason for the defects.  
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Suture development involves a coordinated process of mesenchymal cell 

condensation, proliferation, and differentiation to mature osteoblasts. 

Theoretically, increased osteoblast cell proliferation can increase overlapping 

areas of osteogenetic fronts and, therefore, result in premature closure. On the 

other hand, the increased differentiation can result in craniosynostosis due to 

accelerated bone formation. The abnormal increase in apoptosis may result in a 

decrease of the number of cells in the suture and hence in the distance between 

the overlapping bones, there by allowing physical contact and eventually leading 

to premature closure. However, it is less clear how Fgfr1-P250R and Fgfr2-S250W 

mutations result in craniosynostosis with distinctive features. It has been shown 

that expression of Fgfr1 is associated with increased osteogenic differentiation, 

and, consistently, activation of Fgfr1 dramatically enhances bone formation 

through up-regulation of a number of genes that promote osteoblast 

differentiation (Iseki et al., 1999; Zhou et al., 2000). On the other hand, Fgfr2 is 

only expressed in the periosteum of flat bones and at high levels in proliferating 

osteoprogenitor cells, where Fgfr1 transcripts are not detected (Chen et al., 2003; 

Iseki et al., 1999) Thus, the differential spatial expression of these two receptors 

plays an essential role in maintaining the cell proliferation-differentiation-cell 

death balance in the developing skull vault.  

Because the FGFR2-S252W mutation caused loss of a cysteine residue in 

the highly conserved linker region between IgII and III, it was generally believed 

that the mutation would result in dimerization of the receptor through 

interaction of the unpaired cysteines, leading to ligand independent activation. 

However, it has been demonstrated that the FGFR2-S252W does not result in 

constitutive activation of the receptor, but instead, binds ligands tighter 



 

Xavier and Deng 20 

(Anderson et al., 1998). It was also demonstrated in another study that FGFR2-

S252W mutation altered the specificity of FGFR2 for its ligands (Yu et al., 2000). 

In this study, Yu et al. (2000) demonstrated that the FGFR2-S252W mutation 

allows the mesenchymal splice form, FGFR2c, to bind and be activated by the 

mesenchymally expressed ligands FGF7 and FGF10, and the epithelial splice 

form, FGFR2b, to be activated by the epithelial based FGF2, FGF6, and FGF9, 

allowing autocrine signaling in tissues that express these ligands (Yu et al., 2000). 

These data suggest that the severe phenotypes of AS likely result from ectopic 

ligand-dependent activation of FGFR2. 

 

Short-limbed dwarfisms  

Missense mutations in FGFR3 result in short-limbed dwarfisms, including 

achondroplasia (ACH), thanatophoric dysplasia (TD), Severe Achondroplasia 

with Developmental Delay with Acanthosis Nigricans (SADDAN) and 

hypochondroplasia (HCH) (Table 2). Unlike the craniosynostosis syndromes, 

these short-limbed dwarfisms are primarily caused by abnormalities of long 

bones, which are formed by endochondral ossification. ACH is the most common 

form of human dwarfism with a frequency of approximately 1 in 20,000 live 

births. ACH patients display a characteristic phenotype of rhizomelic dwarfism 

(most pronounced in the proximal portion of the limbs), relative macrocephaly, 

exaggerated lumbar lordosis and minimal proliferation of growth plate cartilage 

of long bones (Oberklaid et al., 1979; Rousseau et al., 1994; Shiang et al., 1994). 

ACH is most frequently (approximately 90%, G380R & G375C) (Rousseau et al., 

1994; Shiang et al., 1994; Superti-Furga et al., 1995).  
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TD is common, but associated with more severe neonatal lethal skeletal 

dysplasia (Orioli et al., 1986; Tavormina et al., 1995). Based on their clinic 

features, TD are sub-grouped into TD-I, which exhibit straight femurs and severe 

cloverleaf skull, and TD-II, which display curved femurs and mild or lacking 

cloverleaf skull changes in TD-I. All cases of TD-II are caused by a K650E 

mutation in the tyrosine kinase domain, whereas several different point 

mutations, including R248C, S249C, S371C, Stop807G, Stop807R, and Stop807C, 

have been shown to give rise to TD-I (Bonaventure et al., 1996; Rousseau et al., 

1996; Rousseau et al., 1996; Rousseau et al., 1996; Rousseau et al., 1996; Rousseau 

et al., 1996; Rousseau et al., 1995). Most individuals with TD-I harbor the R248C 

mutation, with the other mutations occurring less frequently (Rousseau et al., 

1996; Rousseau et al., 1996; Rousseau et al., 1996; Rousseau et al., 1996; Rousseau 

et al., 1996; Rousseau et al., 1995; Tavormina et al., 1995). 

Interestingly, the amino acid K650 (which causes TDII when mutated into 

E650) could be mutated on two additional manners leading to two distinct 

diseases. When mutated to M650 (found in four unrelated individuals), it causes 

SADDAN (Bellus et al., 1999; Tavormina et al., 1999). The SADDAN patients 

exhibit skeletal dysplasia and survive the perinatal period. In addition, 

acanthosis nigricans and central nervous system structural anomalies and 

functional neurologic impairments, such as hearing loss, are observed in the 

surviving SADDAN patients. When the K650 is mutated to N650, it causes HCH 

(Rousseau et al., 1996), a short-limbed syndrome with similar, but milder skeletal 

dysplasia than ACH, TD and SADDAN. HCH can also result from a number of 

mutations at other domains of FGFR3 (Table 2). 

The similarities of skeletal dysplasia with graded severity in HCH, ACH, 
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TD and SADDAN suggest a common basis underlying these diseases. Several 

lines of evidence indicate that the graded severity is of a quantitative nature 

rather than a qualitative one. First, patients heterozygous for both ACH and 

HCH alleles have a stronger phenotype than that seen with each allele alone 

(Hecht et al., 1987). Second, patients who are homozygous for the ACH alleles 

exhibit phenotypes similar to that of the TD patients (McKusick et al., 1973). 

Third, when K644E mutation (corresponds to K650E in human) was introduced 

into mouse Fgfr3 using a cDNA knock-in approach, it was expressed at 10% of 

the wild-type Fgfr3 level. The homozygous mice carrying this markedly 

attenuated TDII allele displayed features resembling ACH, while the 

heterozygous mice displayed mild skeletal dysplasia, mimicking HCH condition 

(Li et al., 1999). However, when the same mutation was expressed at a level 

equivalent to the wild-type allele, it generated phenotypes mimicking TD (Iwata 

et al., 2000). Consistently, in vitro analyses indicate that FGFR3 cDNAs carrying 

mutations for ACH and TD exhibited a graded activation of their tyrosine kinase 

activities with wild type<ACH<TD (Chen et al., 1999; Iwata et al., 2001; Naski et 

al., 1996). 

So far a dozen animal models carrying various mutations in Fgfr3 have 

been generated (Table 3). These mice, different extents, exhibit features 

mimicking the corresponding human conditions (reviewed in Brodie et al., 2003). 

Studies of these mice indicated that Fgfr3 signals play an essential role in 

inhibiting proliferation and differentiation of chondrocytes. Consequently, the 

ligand independent activation of Fgfr3 results in remarkably decreased 

chondrogenesis and bone growth, leading to dwarfism. Conversely, mutant mice 

carrying Fgfr3-null mutations exhibited increased proliferation of chondrocytes 
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in the proliferation zone of growth plate, resulting in faster and prolonged 

endochondral bone growth (Colvin et al., 1996; Deng et al., 1996). This 

observation leads to the conclusion that FGFR3 is a negative regulator of bone 

growth. Further analyses revealed involvement of many downstream molecules 

in multiple signal transduction pathways, including Stats (Chen et al., 1999; Chen 

et al., 2001; Su et al., 1997), cell cycle inhibitors (Li et al., 1999; Su et al., 1997), 

PTHrP (Chen et al., 2001) (discussed further below). 

Of note, most analyses of these mice were performed at perinatal and 

early postnatal stages, as many models did not exhibit obvious skeletal defects 

until after birth (Chen et al., 1999; Chen et al., 2001; Li et al., 1999). Nonetheless, 

the most extensive analyses were performed using the model for TDII mutation 

(Fgfr3-K644E), which die at birth (Iwata et al., 2000). Interestingly, the mutant 

embryos exhibited enhanced proliferation of growth plate chondrocytes during a 

limited time in early stages of endochondral ossification (embryonic day 14-15). 

However, at a later gestational age (E18), the mutant chondrocytes proliferate at 

a rate similar to controls. In contrast, decreased differentiation of chondrocytes 

continued to be observed throughout the period during which long bone 

development was studied. The significance of this observation is that the 

suppression of differentiation alone during embryonic stages of development 

could retard endochondral bone growth, while the effective inhibition of long 

bone growth at postnatal stages requires both impaired proliferation and 

differentiation. Alternatively, it argues that the cause of the shortened limbs in 

the TD model may be different from other models of activating Fgfr3, in which 

the phenotype becomes obvious in the postnatal stage (Chen et al., 1999; Chen et 

al., 2001; Li et al., 1999; Wang et al., 1999).  
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Cancer 

Mutations that activate FGF receptors, most frequently FGFR3, have also 

been found in many forms of cancers. Jang et al. (2001) reported two mutations 

in FGFR2, S267P in IgIIIa and a splice site mutation (940-2AàG) in IgIIIc, in 

gastric cancer patients (Jang et al., 2001). Interestingly, these heterozygous 

somatic mutations are identical to the germinal activating mutations that are 

responsible for CS, AS and PS. Activating mutations of FGFR3 previously 

identified in lethal (Cappellen et al., 1999; Kimura et al., 2001) and non-lethal 

skeletal dysplasias were also found in bladder cancers (van Rhijn et al., 2002). 

Screening for FGFR3 mutations in human colorectal carcinomas, Jang et al. (2000) 

found novel mutant transcripts by aberrant splicing and activation of cryptic 

splice sequences with high frequency, i.e. 50% of 36 primary tumors and 60% of 

10 colorectal cancer cell lines (Jang et al., 2001). More missense mutations of 

FGFR3 have also been found in cervical carcinomas (Cappellen et al., 1999), and 

in urothelial papilloma (van Rhijn et al., 2002; van Rhijn et al., 2002).  

In addition, chromosome translocation leading to the activation of FGFR1 

or FGFR3 has been reported in a number of cancers. Translocation of the 

immunoglobulin heavy chain locus at chromosome 14q32 close to the FGFR3 

gene (50-120 kb centromeric) in myeloma is a common process (Chesi et al., 1997; 

Richelda et al., 1997). FGFR3 is expressed at high levels in these tumors. Some of 

these cancers also bear somatic mutations (Y373C, K650E and K650M), which are 

responsible for short-limbed skeletal dysplasias. Chromosome translocation 

involving FGFR1 was reported in a clinical syndrome, stem-cell 
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myeloproliferative disorder (B-or T-cell lymphoblastic leukemia/lymphoma 

with myeloid hyperplasia and peripheral blood eosinophilia) (Pebusque et al., 

2000). The predicted fusion proteins, FOP-FGFR1, ECP1-FGFR1, and FIM-FGFR1, 

are putatively oncogenic due to constitutive kinase activity triggered by 

dimerization mediated by the protein-protein interaction motifs of the FGFR1 

(Pebusque et al., 2000). A study using cultured cell line Ba/F3 indicated that the 

FOP-FGFR1 induces cell survival mediated by mitogen-activated protein kinase 

and phosphatidylinositol 3-kinase/Akt/mTOR pathways (Guasch et al., 2001). 

 

Signaling through FGFR  

Membrane events linked to activation of FGFRs 

FGF receptors normally exist as inactivate monomers and are activated by 

their ligands through a classical multi-step pathway (Ullrich and Schlessinger, 

1990). Theoretically, two FGF molecules (and heparin) bind to the extracellular 

IgII and IgIII of the receptor, leading to its homodimerization (Schlessinger et al., 

2000). Crystal structures of FGF2 and FGFR1 have revealed the importance of the 

Cys residues in formation of a stable complex. The IgII interacts with the ligand 

through hydrophobic interactions whereas the IgIII interacts through polar as 

well as hydrophobic interactions (Stauber et al., 2000). The dimerization brings 

together the intracellular domains of the receptor leading to trans 

autophosphorylation of several critical tyrosine residues3. This, in turn, allows 

                                                
3 There are also reports that FGF-FGFR complexes internalize and trigger other transduction 
pathways in the nucleus and perinuclear structures. This mechanism could deliver FGF to other 
intracellular targets (Maher, 1996; Peng et al., 2001; Reilly and Maher, 2001; Stachowiak et al., 
1997; Wiedlocha et al., 1994; Wiedlocha et al., 1995) but none of them have been identified. 
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binding of FRS2 (FGFR Stimulated 2 Grb2 binding protein) through SH2 (Src 

Homology 2) domains and sequential recruitment of Grb2 (growth factor 

receptor-bound protein 2), Sos (son of sevenless nucleotide exchange factor), 

SHP2 (Src Homology 2 Phosphatase 2) and Shc. Those membrane-closed 

complexes allow activation of Ras, Raf, PLCg1 and MEK/ERK signaling (Blaikie 

et al., 1994; Goldfarb, 1996; Kouhara et al., 1997; Mohammadi et al., 1991; Xu et 

al., 1998). Activation of different protein kinases or transcription factors, such as 

PLCg1, PI3K, STAT, Cbfa1, Sox9, Src and so on, has also been described (Liu et 

al., 1999; Ong et al., 2001; Xu and Goldfarb, 2001). 

 

The MAPK, PLCg1 and PI3K pathways 

Different systems have provided evidence of MAPK, PLCg1 and PI3K 

activation by FGF signaling: 

In the mouse embryo, it was recently demonstrated that known or 

suspected regions of FGFR signaling overlap (but don’t completely coincide) 

with the strongest domains of ERK activation. Furthermore, a brief incubation 

with an inhibitor of FGF receptor specifically decreased the phospho-ERK 

staining (Corson et al., 2003).  

Several cell culture experiments have also provided evidence of activation 

of the PI3K and PLCg1 pathways; for example, stimulation by FGF2-FGFR1 of 

adrenal cortex capillary endothelial (ACE) cells activate the MAPK and PI3K 

pathways, respectively by ERK and Akt phosphorylation (Sulpice et al., 2002). 

Using smooth muscle cells (SMCs), Hayashi et al. showed that FGF2 stimulates 

p38 MAPK-ERK pathway that is involved in the dedifferentiation of these cells, 
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although no activation of PI3K signaling is observed (Hayashi et al., 1999).   

Kay et al. showed that FGF2 treatment induced corneal endothelial cells to 

undergo EMT, which is characterized by proliferation and change of cell shape. 

Using specific inhibitors, they were able to link the PI3K pathway to both events 

and the PLCg1 pathway only to cell mitosis activation (Kay et al., 1998). Like the 

PI3K action on Ras, the PLCg1 protein is also important for FGF1-FGFR1-ERK2 

activation as shown by G2/S transition experiments in Xenopus oocytes 

expressing human FGFR1 (Browaeys-Poly et al., 2000; Browaeys-Poly et al., 

2001). These studies provide additional evidence that distinct FGF-activated 

pathways can act together or independently.  

Other studies have implicated the FGF activated MAPK and PI3K 

pathways in inhibition of apoptosis or survival. It was shown that all-trans 

retinoic acid treatment of P19 embryonic carcinoma cells resulted in activation of 

caspase 3, leading to apoptosis. The presence of FGF2 inhibited 90% of the 

caspase-3-like activity due to increased phosphorylation of Bad, an anti-apoptotic 

member of the Bcl-2 family. These events have been directly associated with 

PI3K activation as illustrated by using specific inhibitors (Miho et al., 1999). 

Recently, one study has shown that survival of dopaminergic neurons, whose 

degeneration has been linked to appearance of Parkinson’s disease, is enhanced 

through stimulation of Fgfr1c and MAPK by FGF20 (Ohmachi et al., 2003). 

FGF signaling and its downstream pathways has also been involved in 

differentiation processes. Chen et al (Chen et al., 2000) have shown that Fgfr2 

through the PI3K/PKB/Akt pathway is required for ES cells differentiation. A 

dominant mutant form of Fgfr2 suppresses the expression of several extracellular 
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matrix proteins (laminin a1, b1 and g1)(collagen IV a1 and a2). A hypothesis is 

that FGF signaling through Fgfr2/PI3K induces expression of basal membrane 

components, a process involved in epithelial differentiation (Chen et al., 2000; Li 

et al., 2001; Li et al., 2001). 

Recently, a number of FGF-induced inhibitors of FGFR signaling, Sprouty, 

Sef and Pyst proteins, have been identified (negative feedback). Those proteins 

inhibit specifically the MAPK pathway. Briefly, Sef interacts with Fgfr1 inhibiting 

the phosphorylation associated with activation of the receptor. Sprouty2 is 

tyrosine-phosphorylated following FGFR or EGF stimulation, a phenomenon 

that increases its affinity for c-Cbl, a down regulator of receptor-tyrosine kinase 

pathway. Finally, Pyst1 expression is increased by FGF signaling (in chicken 

neural plate) and following a negative feedback loop, Pyst1 activity decreases the 

levels of phospho-MAPK (Eblaghie et al., 2003; Fong et al., 2003; Kovalenko et al., 

2003). 

 

Cbfa1 (core-binding transcription factor alpha subunit type 1) 

It was shown recently that activation of FGFR2 by FGF2 or FGF4 

stimulates expression and activation of Cbfa1 and this process is most likely 

mediated by MAPK and PKC signaling pathway (Bodo et al., 2002; Kim et al., 

2003; Xiao et al., 2002). Cbfa1 is a transcription factor that controls differentiation 

of hypertrophic chondrocytes and osteoblasts. Mice missing Cbfa1 have no 

osteoblasts and show deficits of chondrocyte maturation (Ducy et al., 1997). 

Human patients heterozygous for mutations or deletions of CBFA1 develop 

cleidocranial dysplasia (Mundlos et al., 1997).  
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The first in vivo evidence demonstrating that FGF/FGFR signaling acts 

upstream of Cbfa1 came from analysis of mutant mice carrying the Fgfr1-P250R 

mutation (Zhou et al., 2000). As mentioned earlier, Fgfr1-P250R mutant mice 

exhibited features mimicking CS patients including premature fusion of both 

coronal and sagittal sutures. Expression studies revealed that mutant osteoblasts 

expressed Cbfa1 at much higher levels than wild-type cells. This observation 

suggests that Cbfa1 may be a downstream target of Fgf/Fgfr1 signals. 

Consistently, transfection of C3H10T1/2 cells with wild type or mutant Fgfr1 

cDNA, or treating these cells with Fgf2 or Fgf8 could induce Cbfa1 expression. 

Their data also demonstrated that the increased Cbfa1 subsequently activates its 

downstream transcription targets, including osteocalcin and bone sialoprotein 

(Zhou et al., 2000), ultimately leading to accelerated differentiation of osteoblasts. 

Conversely, the retarded ossification was correlated with decreased expression 

of Cbfa1in Fgfr2c-/- embryos (Eswarakumar et al., 2002). However, no obvious 

alterations in expression of Cbfa1, osteocalcin and bone sialoprotein was found 

in mutant mice carrying Fgfr2-S250W mutation (Chen et al., 2003), which 

corresponds to human AS, suggesting distinct mechanisms underlying these 

syndromes.  

 

STAT (Signal transdcution and activator of transcription) 

proteins 

Several lines of evidence indicate that the activating mutations of FGFR3 

cause skeletal dysplasias, in part, through the activation of STAT proteins. It was 

first demonstrated that expression of FGFR3-K650E in cultured cells could 
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activate STAT1, which in turn up-regulated p21, a cell cycle regulator. Consistent 

with this finding, growth plate chondrocytes of human TDII patients exhibited 

high levels of activated STAT1 and p21. It was therefore proposed that STAT1 

might act as a mediator of growth retardation in bone development through 

regulation of cell-cycle inhibitors (Su et al., 1997). Activation of STAT proteins 

was also observed in most animal models for short-limb dwarfism (Chen et al., 

1999; Chen et al., 2001; Li et al., 1999). Importantly, studies using transgenic mice 

over expressing FGF indicated that the absence of STAT1 could override the 

inhibition of FGF signals on chondrocyte proliferation in cultured bones (Sahni et 

al., 1999) and in adult animals (Sahni et al., 2001). 

 Interestingly, analyses of animal models also revealed that an activating 

mutation of Fgfr3 results in the activation of multiple Stats, including Stat1, 

Stat5a and 5b (Chen et al., 1999; Chen et al., 2001; Li et al., 1999), suggesting a 

broader effect of FGF signals on the STAT proteins. Phosphorylation of multiple 

STAT proteins was also caused by expression of other receptors or treatment 

with FGFs (Hart et al., 2001; Hart et al., 2000; Smedley et al., 1999) possibly 

through a mechanism involving platelet-activating factor, JAK-2, and Src (Deo et 

al., 2002). Studies on animal models also revealed increased expression of several 

cell cycle inhibitors, including p21 and three other cell cycle inhibitors p16, p18 

and p19 that belong to the Ink4 family (Li et al., 1999). This observation suggests 

that the activated STAT signaling must generate pleiotropic effects that may be 

mediated by multiple cell-cycle inhibitors and other unidentified factors. 

Consistent with this notion, introduction of a p21-null background into the 

mutant mice did not have any apparent influence on skeletal phenotypes, 

presumably due to functional redundancy of other cell cycle inhibitors (Li et al., 
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1999).  

 

Interaction between FGF/FGFR and IHH/PTHrP signaling 

pathways 

IHH (Indian hedgehog)/PTHrP (parathyroid hormone-related protein 

peptide, also PTHIP) signals represent an important pathway for bone growth. 

IHH and PTHrP function in a negative feedback loop to control the proliferation 

and differentiation of growth plate chondrocytes (Vortkamp et al., 1996). Based 

on this model, IHH, which is expressed in the maturing zone of chondrocytes, 

induces the expression of PTHrP in the periarticular perichondrium. The 

activation of PTHrP-R in prehypertrophic chondrocytes prevents them from 

differentiating into hypertrophic cells (Vortkamp et al., 1996).  

 Examination of mouse models carrying activated Fgfr3 revealed markedly 

decreased expression of IHH and the PTHrP receptor (Chen et al., 2001). In 

cultured bone rudiments treated with FGF2, it was demonstrated that the down 

regulation of IHH and PTHrP receptor occurred prior to the appearance of bone 

abnormality (Chen et al., 2001). These observations indicate that FGFR3 functions 

upstream of IHH and PTHrP receptor, and negatively regulates their expression. 

Given a positive role of IHH signals in chondrocyte proliferation (St-Jacques et 

al., 1999), it is conceivable that down regulation of IHH contributes to 

pathogenesis of FGFR3-associated skeletal dysplasias. Of note, mice deficient in 

IHH, PTHrP, or PTHrP-R exhibited premature chondrocyte hypertrophy, 

characterized by the expansion of the zone of hypertrophic chondrocytes (Lanske 

et al., 1996; St-Jacques et al., 1999; Vortkamp et al., 1996). However, the mice 
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carrying activated Fgfr3, despite the downregulation of IHH and PTHrP-R 

expression, did not shown any signs of premature hypertrophy of chondrocytes, 

instead, they exhibited markedly reduced sizes of hypertrophic chondrocytes 

and much narrower zone of hypertrophic chondrocytes compared with those of 

control animals (Chen et al., 2001; Li et al., 1999; Naski et al., 1998). These data 

suggest that FGF/FGFR3 signaling inhibits chondrocyte differentiation 

independently, irrespective of IHH/PTHrP signaling. 

 To further study the interaction between FGF/FGFR3 and IHH/PTHrP 

signaling during bone growth, Chen et al. (2001) tested whether the inhibition of 

chondrocyte differentiation by PTHrP–PTHrP-R signaling is dependent on 

FGF/FGFR3 signaling. Their data revealed that PTHrP treatment could inhibit 

chondrocyte differentiation in all cultured bones irrespective of their genotypes, 

i.e. whether they were wild type, Fgfr3-knockout or Fgfr3-activating mutations. 

Altogether, these observations indicate that FGF/FGFR3 and IHH/PTHrP 

signals inhibit chondrocyte differentiation in a dominant and independent 

manner (Chen et al., 2001). 

 Studying cultured bones isolated from a transgenic mice carrying FGFR3-

G380R, a recent study proposed a similar, yet distinct model of interactions 

among FGF/FGFR, IHH/PTHrP and BMP (Minina et al., 2002). While this model 

supports a negative role of FGF signaling in chondrocyte proliferation, it 

suggests that FGF/FGFR signaling accelerates, rather than inhibits, hypertrophic 

differentiation independent of the IHH/PTHrP system. They believed that the 

reduced domain of hypertropic zone is secondary to the rapid differentiation and 

slower proliferation of chondrocytes. Although this explanation may fit their 

data obtained from cultured bones, it may not reconcile with the facts that Fgfr3 -
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/- mice exhibit accelerated chondrocyte differentiation in the growth plates 

characterized by both expanded zone of hypertropic chondrocytes and enlarged 

sizes of hypertropic chondrocytes (Deng et al., 1996). This last model also fails to 

explain why the fast differentiation should result in markedly reduced sizes of 

hypertrophic chondrocytes in mice carrying knock-in mutations that activate 

Fgfr3 (Chen et al., 1999; Chen et al., 2001; Li et al., 1999; Wang et al., 1999).  

 Their data also revealed that FGF and BMP signaling act antagonistically 

during chondrogenesis. Consistently, treatment of cultured bones isolated from 

FGFR3-G380R mice with BMP could rescue the decreased rate of chondrocyte 

proliferation and the reduced size of the hypertrophic zone (Minina et al., 2002). 

This observation provides a potential approach for therapeutic treatment of these 

skeletal dysplasias.  

 

Conclusions and future directions 

Since the initial identification and cloning of FGF receptors 15 years ago 

(Lee et al., 1989; Olwin et al., 1986), significant progress has been achieved 

toward the understanding of physiological roles of these receptors. Mounting 

evidence revealed that FGF/FGFR signals play many fundamental roles at 

multiple levels. At a molecular level, as summarized in the figure 4, they interact 

with numerous signal transduction pathways and regulate expression of many 

downstream targets. Through this signaling network, FGFs/FGFRs specify many 

cellular events, such as proliferation, differentiation, adhesion, movement, 

survival and transformation. During embryonic development, FGF/FGFR 

signals play a major role in mesoderm organization and patterning, body axis 
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and neural axis formation, and tissue/organ induction. Throughout postnatal 

development, FGF/FGFR signals are required for maintaining normal functions 

of many organs and tissues. In this respect, activating mutations of FGFR1-3 that 

result in many human skeletal dysplasias is the most significant finding, which 

uncovers indispensable roles of FGFs in both endochondral and 

intramembranous ossification.  

Despite this substantial progress, many questions still remain. Different 

mutations in a receptor result in activation of the receptor at varying levels; 

however, it is not clear how these events yield different syndromes. For instance, 

FGFR3-250 and FGFR3-380 result in craniosynostosis (affecting 

intramembranous ossification) and achondroplasia (affecting endochondral bone 

formation), respectively. It is also not clear different mutations of the same amino 

acid, i.e. FGFR3-K650E, FGFR3-K650N and FGFR3-K650M, could be responsible 

for syndromes with distinct phenotypes, TDII, HCH and SADDAN, respectively. 

Presumably, these different mutations have activated different signaling 

transduction pathways and caused different consequences to the patients. If this 

is the case, what is the sensor (or sensors) for these varying activating FGFR 

signals? What is the switch (or switches) to determine which pathways should be 

turned on or shut off or additive ? Finally, future studies will also be directed to 

uncover the pathways and downstream mediators that respond to each of these 

mutations that cause distinct phenotypes.  

A dozen mouse models for human skeletal dysplasias have been 

generated. While these models will facilitate efforts to determine interacting 

pathways and downstream mediators; importantly, they may also be used for 

therapeutic studies. Because these diseases are dominant, heterozygous mice are 
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ideal for screening therapeutic drugs and/or physiological repressors that inhibit 

FGF receptor activity to reverse the phenotypes. The newly developed RNAi 

technique may also be used to specifically inhibit the expression of mutant forms 

of receptors, but not the wild type forms, given its high specificity (Borkhardt, 

2002; Brummelkamp et al., 2002).  

Last, but not least, the absence of Fgfr1 and Fgfr2 result in early 

embryonic lethality. Their roles in many cell lineages in late embryonic and 

postnatal development remain to be determined. The existing conditional mutant 

mice should facilitate this research by using spatial and temporal-regulated Cre-

LoxP approaches (De Moerlooze et al., 2000; Xu et al., 2002; Yu et al., 2003) 
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Legends of the figures 

Figure 1. Structure of FGFR with the different Ig-like extracellular (and the 

possible splicing isoforms, IIIb and IIIc), transmembrane (TM) and the two 

intracellular tyrosine kinase (TK) domains. 

 

Figure 2.  Fgfr1-P250R mutation in mice results in craniosynostosis that mimics 

human Pfeiffer syndrome. A. Head morphology of p16 wild-type (WT) and 

Fgfr1P250R/+ (250/+) mice.  The arrow in (a) points to dome-shaped head of mutant 

mice.  B. Skull morphology of P16 WT, 250/+ mice.  Lines mark length of 

anterior frontal (Af) and posterior frontal sutures (Pf).  Co: coronal suture, La: 

lambdoid suture, Op: occipito-interparietal suture, Sa: sagittal suture. Notice 

premature fusion of the Af, Pf, Sa and Co sutures in 250/+ mice.  C and D. H&E 

staining revealed premature fusion of sagittal suture from P20 mutant (arrows in 

D) compared with wild type control (arrows in C). E and F. In situ hybridization 

using an antisense probe for Cbfa1 in wild-type (E) and 250/+ (F) sutures. Bar: 

230 µm for C-F. 

 

Figure 3. The Fgfr2-S250W mutation results in phenotypes mimicking human 

Apert syndrome.  (A) Top view of P20 wild type (Wt) and Fgfr2S250W/+(Mt) mice, 

notice the mutant have significantly shortened head, and premature fused 

coronal suture (arrows). A-P: anterior-posterior and L-R: left-right axes. Sa: 

sagittal; Co, coronal; and La, lambdoid sutures.  (B and C) Monitoring of bone 

formation using calcein double labeling. The mutant has less bone formed during 

a 14 day labeling period in comparison with wild type (compare distance 
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between two layers of bone pointed by arrows). (D and E) TUNEL assay reveals 

increased apoptosis in mutant coronal sutures in comparison with controls. (F, 

G) Mutant sutures also exhibited significantly increased Bax signals than controls 

as revealed by immunohistochemistry.  

 

Figure 4. A summary of FGFR signaling and regulatory network discussed in 

this article.  
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Table 1.  Targeted mutation  of Fgfrs in mouse 
 
Genes mutations Phenotype References 

FGFR1  Disruption/Null Growth retardation, defect of 
mesodermal patterning 
lethal at E7.5-9.5 

(Deng et al., 1994; 
Yamaguchi et al., 
1994) 

 FGFR1-deficient ES 
chimeras 

Defective cell migration through 
primitive streak. 
Malformation of chimeric limb buds 

(Ciruna, 1997; Deng 
et al., 1997). 

 Disruption/a isoforms Distal trunction of limb bud, 
lethal at E9.5-12.5 due to posterior 
embryonic defects 

Xu et al. 1999) 

 Disruption of IIIb Homozygous mutant mice appeared 
normal at weaning  

Partanen et al. 1998 

   2003 
 Disruption of IIIc Gastrulation defects Partanen et al. 1998 
 Telencephalon/Foxg1-

Cre  
Malformation of olfactory bulbs due to 
decreased cell proliferation and abnormal 
morphogenesis 

Hebert et al. 2003 

 Mid- and hindbrain/En-
Cre or Wnt-Cre 

Cerebellar and midbrain defects, ataxia Trokovic et al. 2003 

 CNS/Nestin-Cre  Our unpublished 
observation 

FGFR2 Deletion/Null Lethal at E4.5-5.5 (Arman et al., 1998) 
 Deletion of IIIb and IIIc Failure of limb bud initiation and 

placenta formation 
lethal at E10.5 
Tetraploid rescued embryos die at birth 
without limbs 

(Xu et al., 1998) 
Li et al. 2001 

 Deletion of IIIb Agenesis or severe dysgenesis of 
multiple organs. Lethality at birth 

Revest et al. 2001 

 Deletion of IIIc Delayed ossification in the sphenoid 
region of the skull base, dwarfism in the 
long bones and axial skeleton 

Eswarakumar et al. 
2002 

 Conditional/Dermo1-Cre Skeletal dwarfism and decreased bone 
density 

Yu et al. 2003 

FGFR3 Disruption/Null Bone over growth 
inner ear defect 

(Colvin et al., 1996; 
Deng et al., 1996). 

  Cooperation with FGFR4 in alveogenesis 
of the lung 

(Weinstein Deng 
1998) 

FGFR4 Disruption/Null Morphologically normal (Weinstein et al., 
1998) 

  Decrease of liver function (depleted 
gallbladders, elevated bile acid pool and 
excretion of bile acids) and sensibility to 
xenobiotics (CCl4) 

Yu Wang 2000 

    
FGFR3/
FGFR4 

Cross of FGFR3 and 
FGFR4 mutants 

Neonatal growth retardation, 
lung abnormalities 

(Weinstein et al., 
1998) 

 



Table 2: FGFR-related skeletal syndromes, phenotypes and their corresponding mutations 
 
Syndromes Genes and mutations Phenotypes 
Major defects: flat bone 
abnormalities 

Fgfr1, Fgfr2, Fgfr3 Common features: autosomal dominant craniosynostosis 
(prenamture fusion of the cranial sutures), tower-shaped skull, 
spaced protruding eyes, beaked nose, underdevelopped midface 

Antley-Bixler-like (ABS) Fgfr2/IgIIIa: Y290C                              
Fgfr2/IgIIIc: S351C 

Craniofacial and limb abnormalities (no dermatologic 
abnormalities) 

Apert syndrome (AS)  Fgfr2/IgIIIa: S252W, P253  
De novo insertion of Alu elements is 
observed. 

Severe syndyctaly (cutaneous and bony fusion of the digits). 
Broad thumbs broad great toes (due to an increase number of 
precursor cells). Wild midline calvarial defect. 

Beare-Stevenson cutis 
gyrata (BSS) 

Fgfr2/TM: Y375C  
Fgfr2/linker IgIII-TM: S372C  

Cutis gyrata or furrowed (overgrowth) skin with a corrugated 
appearance and acanthosis nigricans. Digits abnormalities.   

Crouzon and 
Acanthosis Nigricans 
syndrome (CAN) 

Fgfr2/IgIIIa: S267P, C278F, W289G, 
Y290G, HIQ287-289 , T268-TG 
Fgfr2/IgIIIc: Y328C, G338R, Y340H, 
C342Y,W, R, F or S, A344G or A, S347C, 
S354C 
Fgfr3/TM: A391E, P250R  

Normal hands and feet 

Jackson-Weiss 
syndrome (JWS) 

Fgfr2/IgIIIc: A344G, C342S or R  Hands are usually normal. Foot abnormalities. 

Muenke syndrome (MS) Fgfr3/IgIIIa: P250R  Abnormalities of hands and feet (thimble-like middle phalanges, 
coned epiphyses, and carpal and tarsal fusions).  

Non-syn unilateral 
coronal synostosis 

Fgfr3/IgIIIa: P250R  Variable, with or without craniosynostosis 

Pfeiffer syndrome (PS) Fgfr1/IgIIIa: P252R                                        
Fgfr2: A314S, D321A, T341P, C342R, W, 
Y or S (IgIIIc), V359F  
Fgfr3/IgIIIa: P250R  

Short fingers and soft-tissue syndactyly (due to increase 
expression of KGFR) 

Saethre-Chotzen-like 
syndrome(SCS) 

Fgfr2/IgIIIa: VV269-70del                                              
Fgfr3/IgIIIa: P250R 

Craniofacial and limb abnormalities  



Syndromes Genes and mutations Phenotypes 
Major defects: long 
bone abnormalities 

Fgfr3 Common features: autosomal dominant, reduced height of 
vertebral bodies and shortening of limbs. Poor cellular 
proliferation of growth plate chondrocytes. 

Achondroplasia (ACH) Fgfr3/TM: G346E, G375C, G380R Rhizomelic dwarfism (most pronounced in the proximal portion 
of the limbs), relative macroencephaly, exaggerated lumbar 
lordosis. Homozygotes ressemble TD patients (see below) 

Severe achondroplasia 
with developmental 
delay & acanthosis 
nigricans (SADDAN) 

Fgfr3/TKII: K650M Acanthosis nigricans, developmental delay, Craniofacial and limb 
abnormalities 

Thanatophoric 
dysplasia (TDI or TDII) 

TDI: Fgfr3/Linkers bet IgII-IgIII or IgIII-TM: 
R248C, S249C, S371C, Stop807Gly, 
Stop807Arg, Stop 807Cys  
TDII: Fgfr3/TKII: K650E, A391E 

Most severe and lethal neonatal skeletal dysplasia                                                     
TDI: curved, short femurs with or without cloverleaf skull                                                                         
TDII: straight, relatively long femurs and severe cloverleaf skull 

Hypochondroplasia 
(HCH) 

Fgfr3/TKI: N540K Similar to but midler than those of ACH and TD 

 
Lewanda 1996, Muenke 1994 & 1995, Bellus 1996, Lewanda 1996, Nagase 1998, Addor 1997, Tartaglia 1997, Przylepa 1996, 
Wilkie 1995, Briner 1991, Orlow 92, Slaney 1996, Lajeunie 1999, Von Gernet 2000, Oldridge 1999, Paznekas 1998, Schaefer 1998, 
Okajima 1999, Reardon 2000, Tsai 2001, Rutland 1995, Plomp 1998, Hollway 1998, Tavormina 1995, Meyers 1995, Rousseau 
1995, Wilcox 1998 



Syndromes Frequency Genes and 
mutations Phenotypes

Major defects: flat bone abnormalities - Fgfr1, Fgfr2, Fgfr3

Common features: autosomal dominant craniosynostosis 
(prenamture fusion of the cranial sutures), tower-shaped 
skull, widely spaced protruding eyes, beaked nose, 
underdevelopped midface

Antley-Bixler-like (ABS) Fgfr2/IgIIIa: Y290C                              
Fgfr2/IgIIIc: S351C

Craniofacial and limb abnormalities (no dermatologic 
abnormalities)

Apert syndrome (AS)                                  1/65,000

Fgfr2/IgIIIa: S252W, P253 . 
Constitutive activated receptors. 
De novo insertion of Alu elements 
is observed.

Severe syndyctaly (cutaneous and bony fusion of the 
digits) associated with an increase in KGFR expression. 
Broad thumbs broad great toes (due to an increase 
number of precursor cells). Wild midline calvarial defect. 
Cranio-facial abnormalities.

Beare-Stevenson cutis gyrata (BSS)
Fgfr2/TM: Y375C (Transmembrane 
dom)                                             
Fgfr2/linker IgIII-TM: S372C 

Cutis gyrata or furrowed (overgrowth) skin with a 
corrugated appearance and acanthosis nigricans. Digits 
abnormalities. Severe craniosynostosis

Crouzon and Acanthosis Nigricans syndrome (CAN) 1/50,000

Fgfr2/IgIIIa: S267P, C278F, W289G, 
Y290G, HIQ287-289 (3 aa 
deletion), T268-TG (1 aa 
insertion)                                                 
Fgfr2/IgIIIc: Y328C, G338R, Y340H, 
C342Y, C342W, C342R, C342F, 
C342S, A344G, S347C, S354C, 
A344A (creating donor splice site, 
resulting in 17 amino acid 
deletion),                                                                           
Fgfr3/TM: A391E ((Lewanda 
1996), also in some ACH), P250R 

Normal hands and feet

Jackson-Weiss syndrome (JWS) Fgfr2/IgIIIc: A344G, C342S, C342R Hands are usually normal. Foot abnormalities.

Muenke syndrome (MS) Fgfr3/IgIIIa: P250R 

Abnormalities of hands and feet (thimble-like middle 
phalanges, coned epiphyses, and carpal and tarsal 
fusions). Brachydactyly was seen in some cases; no 
significant syndactyly or deviation of the great toe. 
Sensorineural hearing loss was present in some and 
developmental delay was seen in a minority.  

Non-syn unilateral coronal synostosis Fgfr3/IgIIIa: P250R Variable, with or without craniosynostosis

Pfeiffer syndrome (PS)

Fgfr1/IgIIIa: P252R                                        
Fgfr2: A314S, D321A, T341P, 
C342R , C342Y, C342W, C342S 
(IgIIIc) , V359F (more than 10 
mutations in the acceptor site of 
exon 10 leading to increase 
expression of KGFR (exon 9))                                                    
Fgfr3/IgIIIa: P250R 

Short fingers and soft-tissue syndactyly (due to increase 
expression of KGFR)

Saethre-Chotzen-like syndrome (SCS) Fgfr2/IgIIIa: VV269-70del                                              
Fgfr3/IgIIIa: P250R

Craniofacial and limb abnormalities (no dermatologic 
abnormalities)

Major defects: long bone abnormalities - Fgfr3
Common features: autosomal dominant, reduced height 
of vertebral bodies and shortening of limbs. Poor cellular 
proliferation of growth plate chondrocytes.

Achondroplasia (ACH) 1/26,000 Fgfr3/TM: G346E, G375C, G380R

Rhizomelic dwarfism (most pronounced in the proximal 
portion of the limbs), relative macroencephaly, 
exaggerated lumbar lordosis. Homozygotes ressemble TD 
patients (see below)

Severe achondroplasia with developmental delay & acanthosis nigricans 
(SADDAN) Fgfr3/TKII: K650M Acanthosis nigricans, developmental delay, Craniofacial 

and limb abnormalities

Thanatophoric dysplasia (TDI or TDII) 1/20,000

TDI: Fgfr3/Linkers bet IgII-IgIII or 
IgIII-TM: R248C, S249C, S371C 
(create unpaired Cys residues), 
Stop807Gly, Stop807Arg, Stop 
807Cys (addition of 141 amino 
acids)                                                                                                       
TDII: Fgfr3/TKII: K650E, A391E

Most severe and lethal neonatal skeletal dysplasia                                                     
TDI: curved, short femurs with or without cloverleaf skull                                                                         
TDII: straight, relatively long femurs and severe cloverleaf 
skull

Hypochondroplasia (HCH) Fgfr3/TKI: N540K Similar to but midler than those of ACH and TD

Lewanda 1996, Muenke 1994 & 1995, Bellus 1996, Lewanda 1996, 
Nagase 1998, Addor 1997, Tartaglia 1997, Przylepa 1996, Wilkie 1995, 
Briner 1991, Orlow 92, Slaney 1996, Lajeunie 1999, Von Gernet 2000, 
Oldridge 1999, Paznekas 1998, Schaefer 1998, Okajima 1999, Reardon 
2000, Tsai 2001, Rutland 1995, Plomp 1998, Hollway 1998, Tavormina 
1995, Meyers 1995, Rousseau 1995, Wilcox 1998










