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Meng Sun, Jingjing Pan, Cédric Le Bastard,  Yide Wang, and Jianzhong Li

G round-penetrating radar (GPR) is a common technique 
for evaluating the structure and quality of civil engineer-
ing materials. The ever-increasing demand for higher GPR 

time resolution and better interpretation of GPR data has moti-
vated the use of advanced signal processing methods for GPR 
applications. In this article, we review the major advances in 
signal processing techniques employed in civil engineering 
for different tasks, such as estimation of thickness, permittiv-
ity, and roughness. Their performance is tested and compared 
through numerical testing and using experimental data from 
laboratory measurements.

Introduction
GPR, employing electromagnetic (EM) waves to survey a va-
riety of media, has numerous applications in many fields [1], 
[2], such as archeology, civil engineering, agriculture, and the 
military. In civil engineering, GPR is widely used as a non-
destructive testing method to study structures [3] like pave-
ment [4]–[6], buildings [7], and bridges [8]. Figure 1 provides 
an example of GPR (in particular, step-frequency GPR) in a 
pavement survey. However, it is not easy to distinguish small 
targets [5] or to interpret GPR data from very close objects [1], 
[2] because of the limited time resolution of conventional GPR 
methods and the complex conditions of the probed media. To 
improve GPR performance and offer better data interpretation, 
many signal processing techniques have been proposed [4], [5], 
[7], [10]–[19] in recent decades. These methods can be divided 
into two main categories:

■■ Basic data processing: Advanced signal processing meth-
ods cannot be applied directly to raw GPR data without 
basic data processing, such as data editing, filtering, data 
whitening, and time-zero correction. Generally, these steps 
should be applied before data interpretation and target 
detection. These basic data processing methods have been 
intensively discussed as fundamental knowledge in GPR 
societies [1], [2], [4].

■■ Advanced signal processing methods with preprocessed 
data: This is the main focus of this article. Different tasks 
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(e.g., parameter estimation and imaging) require different 
signal processing techniques. For conventional GPR, the 
main data processing difficulty lies in the detection of close 
backscattered echoes due to the limited time resolution. To 
improve GPR time resolution [5] and the detection of 
healthy and damaged zones (interface debonding, etc.), 
many signal processing methods have been developed, par-
ticularly high-resolution techniques. Media parameters, 
such as layer thickness [5], [10]–[13], media permittivity 
[7], [12], [19], and interface roughness [14]–[16] are impor-
tant in evaluating the structure and quality of civil engineer-
ing materials. These parameters allow the characterization 
of the probed media. In the context of small defects or very 
close interfaces, the parameters cannot be obtained directly 
from data without specific signal processing methods.

With the technical advancement and rapid development of com-
puter science, GPR techniques have come to achieve fruitful re-
sults. Some new signal processing procedures are proposed for 
GPR systems, such as machine-learning methods and compres-
sive sensing (CS)-based approaches, which have been widely 
adopted in media parameter estimation and object detection. 

Signal model
In civil engineering, GPR applies EM waves to probe the struc-
ture and properties of materials in buildings and pavement. 
The received signals are usually formulated in the frequency 
domain, such that spectral analysis techniques can be used to 
estimate the probed media structure. In the far-field condition, 
the received signal model in the frequency domain can be ex-
pressed as [1], [2], [5], [7], [15]

,expr f e f s f j f t n f2i
k

K

i k i i k i
1

r= - +
=

^ ^ ^ ^ ^h h h h h/ � (1)

where K  is the number of backscattered echoes; e fi^ h is the 
radar pulse in the frequency domain; tk  is the time arrival of 
the kth echo; n fi^ h is an additive white Gaussian noise, with 
zero mean and variance n

2v ; and ,s f s w fk i k k i=^ ^h h  where sk

represents the amplitude of the kth backscattered echo under 
ideal conditions (lossless media with smooth interfaces) and 
w f f j fk i k i k ia b= +^ ^ ^h h h represents the complex frequency 
behavior of the kth backscattered echo at frequency fi  due to the 
media dispersion or interface roughness. The functions fk ia ^ h 
and fk ib ^ h are nonlinear and depend on the studied media.

For low-loss media like the first two or three pavement lay-
ers, the dispersivity can be neglected, according to the work 
in [1] and [2]. As a consequence, the backscattered echoes are 
simply time-shifted and attenuated copies of the transmitted 
signal [5]. With smooth interfaces, the amplitude of the kth 
backscattered echo is independent of frequency .s f sk k=^ h  
If the interface roughness is taken into account, the ampli-
tude of the kth backscattered echo decreases with frequency, 
which can be expressed as f fs sk k ka=^ ^h h with f 1k 1a ^ h  
because of the scattering [15]. For lossy and dispersive media, 
with the frequency behavior of the kth backscattered echo 

,f f fw jk k ka b= +^ ^ ^h h h  a more sophisticated EM model, 
such as the constant-Q model, was proposed in [7].

The frequency f  can be discretized as ( )f f i f1i 1 D= + -  
, ,, ,i N1 2 f=^ h  with N  being the number of used frequen-

cies, f1  the lowest frequency of the used frequency band, and 
fD  the frequency step. Therefore, (1) can also be written in the 

following vector form:

r As nK= + (2)

with the following notational definitions:
■■ r r f r f r fN

T
1 2 f= ^ ^ ^h h h6 @  is the N 1#  received signal 

vector, called the observation vector, which may represent 
either the measurements by a step-frequency radar or the 
Fourier transform of an impulse GPR signal; the super-
script T denotes the transpose operation.

■■ { , , , }e f e f e fdiag N1 2 fK = ^ ^ ^h h h  is an N N#  diagonal 
matrix whose diagonal elements are the radar pulse in the 
frequency domain.

■■ ( ) ( ) ( )A W a W a W at t tK K1 1 2 2 f=6 @ is the N K#  mode 
matrix.

■■
f f f( ) [ ]a t e e ek

j t j t j t T2 2 2k k N k1 2 g= r r r- - -  is the N 1#  mode 
vector.

■■ { , , , }W w f w f w fdiagk k k k N1 2 f= ^ ^ ^h h h  is an N N#  diag-
onal matrix, whose diagonal elements represent the com-
plex frequency behavior of the kth backscattered echo.

■■ s s s sK
T

1 2f=6 @  is the K 1#  vector of the amplitudes of 
echoes from lossless media with smooth interfaces.

■■ n n f n f n fN
T

1 2 f= ^ ^ ^h h h6 @  is the N 1#  complex noise 
vector with zero mean and covariance matrix ,I Iandn N N

2v  
is the identity matrix of dimension N N# .

Assuming the noise to be independent of the echoes, we can 
write the data covariance matrix Y as

( ) ,Y rr ASA IE H H H
n N
2vKK= = + (3)

where (.)E  denotes the ensemble average, S is the K K# - 
dimensional covariance matrix of vector s, and super-
script H denotes the conjugate transpose operation. With the 

FIGURE 1. The French Research Institute of Science and Technology for 
Transport, Development, and Networks’ (IFSTTAR’s) air-coupled step-
frequency GPR and the automated bench to scan the near subsurface [14].
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aforementioned signal model (1), the following steps are the 
data interpretation and media parameter estimation by signal 
processing techniques.

Preprocessing techniques
In recent decades, signal processing in GPR applications has 
achieved a great deal; however, without good-quality data, 
no methods perform well. Hence, some specific preprocess-
ing techniques must be applied to improve the quality of GPR 
data to make their interpretation easier. In this section, basic 
data processing methods and subband averaging techniques 
are presented.

Basic data processing
Basic GPR data processing methods are usually applied to 
raw data to better visualize or interpret the GPR data. In most 
cases, they are mandatory for the subsequent advanced signal 
processing methods. There are many different types of basic 
data processing techniques; discussed next are the five most 
frequently used.

■■ Data editing: This procedure involves the adjustment of 
the collected raw data by removing and correcting bad data 
and sorting data files; its purpose is to control the data 
quality and to give a good interpretation of GPR signals, 
particularly for GPR measurements in large data volumes, 
such as pavement surveys [1], [2].

■■ Time-zero correction: The time-zero point is defined as the 
reference time point corresponding to the air/ground wave 
first arrival time. However, this point is unstable due to 
temperature, cable length, and antenna height. The time-
zero correction aims at fixing a unique starting point for 
GPR to measure the time of arrival of echoes [1], [2].

■■ Filtering: The goal of this procedure is to eliminate the 
echoes received outside the GPR main working time win-
dow, such as the multiple reflected echoes outside the time 
window and direct wave in air. This procedure can help to 
improve the quality of GPR data.

■■ Data whitening: This operation is to whiten the GPR data 
by radar pulse [1], [2]. The radar pulse can be measured as 

the backscattered echo from a metallic plane. After the 
whitening procedure, the new observation vector rl can be 
written as ,r r As n As b1 1KK= = + = +- -l  with b the 
new noise vector after the original received data are 
divided by the pulse. The new covariance matrix R can be 
written as

( ) ,R r r Y ASAE H H H
n

1 2v RK K= = = +- -l l � (4)

where , , , .
e f e f e f

1 1 1diag
N

H1

1
2

2
2 2gR K K= =- -

^ ^ ^h h h' 1

■■ Denoising: The denoising procedure aims to provide a 
good interpretation of data by reducing the noise impact on 
GPR signals. This kind of method is applied by either esti-
mating the power of the noise [20] or utilizing signal 
enhancement techniques [21].

Subband averaging techniques
In practical environments, the backscattered echoes come from 
the signal emitted by the transmitter, though usually along dif-
ferent paths. Therefore, these backscattered echoes are highly 
correlated or even coherent. Consequently, there will be a rank 
loss of the data covariance matrix. Signal processing methods, 
such as high-resolution approaches based on the data covari-
ance matrix, suffer greatly from performance degradation due 
to a mix of signal and noise subspaces. To handle the correlated 
echoes, the data covariance matrix should be processed with a 
decorrelation technique, such as subband averaging, which al-
lows the obtaining of a new covariance matrix with a restored 
rank. With the signal model of low-loss media and smooth in-
terfaces [a frequency behavior of ( )w f 1. ], the echoes can be 
efficiently decorrelated using conventional spatial smoothing 
preprocessing (SSP) and its extensions, such as modified SSP 
(MSSP) [17], and the two improved spatial smoothing (ISS) 
techniques, called ISSA [18] and ISSB [17] in this article.

As shown in Figure 2, N frequencies and M overlapping 
subbands with length L are considered. In general, subband 
averaging techniques work with the following denoised data 
cross-covariance matrix between the kth subband and the lth 
subband Rkl  (in Figure 2, r is used instead of rl):

( ) ( ) ,R r r A D S D AEkl k l
H

L
k l H

L
H1 1= = - -l l (5)

where rkl  and rll denote the L 1#  data vector of the kth and lth 
subbands, respectively. ,AL  corresponding to the first L rows 
of matrix A, is the L K#  mode matrix, which is independent 
of parameter k, and D denotes the K K#  diagonal matrix, ex-
pressed as , ... , .D e ediag j ft j ft2 2 K1= r rD D- -" ,

Table 1 and Figure 3 summarize the principle and perfor-
mance of the subband averaging techniques. We can see from 
Table 1 that ISSB takes advantage of both the cross subband 
covariance matrices Rkl  and the covariance matrices / ,R Rkk ll  
unlike SSP, MSSP, and ISSA, which exploit only the covari-
ance matrices / .R Rkk ll  Therefore, by using more data to esti-
mate the rank-restored data covariance matrix, ISSB is more 
powerful for decorrelation than SSP, MSSP, and ISSA. This 

f1 f2 fL fNfL+1

r (f1)
r (f2) r (fL)

r (fN)
r (fL+1)

r1

r2

rM

FIGURE 2. The set of the overlapping frequency subbands for the subband 
averaging techniques. 
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is confirmed in Figure 3, where we have calculated the rela-
tive root-mean-square error (RRMSE) of the estimated time 
delay by ESPRIT with SSP, MSSP, ISSA, and ISSB. Among 
these methods, ISSB provides the best performance with the 
smallest RRMSE in the scenario of the tested signal-to-noise 
ratios (SNRs). The computational complexity of the subband 
averaging techniques is also mentioned in Table 1; the compu-
tational load of ISS techniques is slightly higher than that of 
the conventional SSP and MSSP.

Advanced signal processing methods 
for GPR applications
After using preprocessing techniques, advanced signal 
processing methods can be applied. The objectives of the 
latter employed on GPR data are 1) to improve the GPR 
time resolution and 2) better estimate the parameters of the 
surveyed media.

Regarding the first purpose, the GPR processing time reso-
lution is defined by the B xD  product for a given frequency 
band B as the minimal time shift xD  between two echoes 
that the processing is able to distinguish [5]. Indeed, the limit 
resolution of classical GPR is B 1xD = . Figure 4 provides an 
example of classical GPR time resolution with different B xD  
products. As shown in Figure 4, classical GPR cannot directly 
resolve echoes for a B xD  product smaller than one. In the lit-
erature, there are two possible solutions for increasing the reso-
lution. One is to increase the frequency bandwidth of the GPR. 
For example, the time delay is smaller than 0.2 ns for echoes 
coming from two smooth interfaces of homogeneous media 
having a thickness of 2 cm and a relative permittivity of five. 
As such, a GPR with a frequency bandwidth larger than 5 GHz 
is required to distinguish them. Another solution is to apply 
high-resolution signal processing methods to improve the GPR 
time resolution.

For the second purpose, media parameters like permittiv-
ity and interface roughness cannot be recovered directly from 
data. This fact leads to the development of signal processing 
methods for media parameter estimation. However, some sig-
nal processing techniques, such as high-resolution approaches, 
suppose that the number of backscattered echoes is known 
beforehand. Therefore, we first introduce echo detection meth-
ods to estimate the number of echoes. Then, some major meth-
ods for media parameter estimation are presented.

Echo detection methods
GPR is used to detect the backscattered echoes from the stud-
ied media. The amplitudes and phases of the backscattered 
echoes contain useful information, such as time delays and 
wave speed, which are important for analyzing the internal 
structure of civil engineering materials. Furthermore, for high-
resolution methods [5] or some machine-learning methods 
[19], the number of backscattered echoes should be known a 
priori. However, the number of echoes to be detected is un-
known in practice.

Methods have been proposed for echo detection, such as 
Akaike’s information criterion (AIC) and minimum description 
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Table 1. A summary of the subband averaging techniques (J is 
the L × L exchange matrix, and the operator * denotes the 
complex conjugate).

Method Averaged Data Covariance Matrix 
Computational 
Complexity 
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length (MDL) [22], which are based on eigenvalue decompo-
sition (EVD) of the data covariance matrix and information-
theoretic criteria. The merit of AIC and MDL is that they do 
not require any subjective threshold setting but estimate the 
number of echoes in an objective way. The number of echoes 
can be determined by searching the minimum value of the fol-
lowing AIC and MDL criteria:

[ ( )],minK C i
i

= (6)

where C(i) ( , , ..., )i L0 1 1= -  is the cost function of AIC and 
MDL, given by the equation appearing in the box at the bot-
tom of this page, where jm  is the jth eigenvalue of the data co-
variance matrix (arranged in decreasing order) after subband 
averaging techniques, with , , ...,j L1 2= ; and Nx  is the num-
ber of snapshots. However, as mentioned in [23] and [24], AIC 
tends to asymptotically overestimate the number of echoes, 
while MDL performs poorly at low SNRs or a limited number 
of snapshots (leading to an underestimation of the number of 
echoes). To solve the problems coming from low SNRs as well 
as a limited number of snapshots, numerous adaptations of AIC 
and MDL have been proposed [23], [24]. With the knowledge 
of the number of echoes, media parameter estimation methods 
are introduced in the following section.

Thickness estimation in low-loss media
Over the past several decades, many signal processing tech-
niques have been proposed for thickness estimation with low-
loss media and smooth interfaces [10]–[13], especially small 
thicknesses [5]. As previously mentioned, for such interfaces, 
the frequency behavior .w f 1.^ h  For horizontally stratified 
media like pavement, the layer thickness H can be deduced 
from the time delay xD  between two backscattered echoes as-
sociated with each interface and the relative permittivity rf  of 
the media, as follows:

,H c
2 rf

xD= (7)

where c is the speed of light. Therefore, estimating thickness 
is equivalent to retrieving the time delay of echoes and the 
relative permittivity of each layer. In the following, we will 
review three types of time-delay estimation (TDE) methods: 

the high-resolution method, machine-learning method, and 
CS-based method.

High-resolution approaches

Subspace-based high-resolution methods
Such techniques were originally proposed for the direction-of-ar-
rival detection of incoming plane waves using an array of sensors 
and have lately been successfully developed for spectral analy-
sis and thickness estimation (employing time delays and media 
permittivity). These algorithms are based on the eigenstructure 
properties of the data covariance matrix. They are known for 
their high-resolution ability and excellent estimation accuracy 
as compared to the conventional fast Fourier transform-based 
methods. The two most prominent subspace-based methods— 
MUSIC and ESPRIT [5]—are presented here for TDE.

■■ MUSIC: The MUSIC algorithm is based on the orthogo-
nality of signal and noise subspaces. The preprocessed data 
covariance matrix ,Rx  after undergoing whitening, denois-
ing, and subband averaging, can be written in terms of its 
eigenvalues and eigenvectors as

,R U U U Ux S S S
H

N N N
HKK= + (8)

where subscript x represents the selected subband averaging 
technique; SK  is a diagonal matrix containing the K largest 
eigenvalues, with their associated eigenvectors in the col-
umns of US  (the matrix of signal eigenvectors); and NK  is a 
diagonal matrix containing the L K-  smallest eigenvalues, 
with their associated eigenvectors arranged in UN  (the ma-
trix of noise eigenvectors). The MUSIC principle is based 
on the fact that UN  is orthogonal to US  and, consequently, 
to the mode matrix AL  ( ) , , ..., .U a t k K0 1N

H
L k = =^ h  The 

MUSIC pseudospectrum can be written as

( )
( ) ( )

.
a U U a

P t
t t

1
L
H

N N
H

L
MUSIC = (9)

The time delays can be estimated by searching the peak 
positions of ( ) .P tMUSIC

■■ ESPRIT: The MUSIC algorithm requires a 1D search for 
parameter estimation. Compared to MUSIC, ESPRIT 
affords direct parameter estimation with lower computa-
tional complexity. It divides the mode matrix AL  into two 
overlapping submatrices:
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- A .AL
L

L

1

2
= =

-Ac cm m

The ( )L K1 #- -dimensional mode matrices of each sub-
band AL1  and AL2  are related to each other by the K K#  
diagonal matrix D defined in the “Subband Averaging 
Techniques” section, the diagonal elements of which de-
pend on the time delay to be estimated. The relationship 
between , ,A AL L1 2  and D can be expressed as

.A A DL L2 1= (10)

However, matrix D cannot be directly estimated from data; 
thus, we need to find a way to estimate the diagonal ele-
ments of D. According to [5], based on the EVD of the data 
covariance matrix ,Rx  the diagonal elements of D can be 
retrieved from a similar matrix that has the same eigen-
values as D. As such, the time delay can be estimated by 
calculating the phase of the eigenvalues of this new matrix.

High-resolution methods without EVD
The subspace-based methods require EVD or singular-value 
decomposition (SVD), which involve a large computational 
burden. To solve this problem, the propagator-based methods 
or linear subspace methods, such as the orthogonal propagator 
method (OPM) [25], are proposed to estimate the time delay by 
using linear operations without EVD or SVD. In the following, 
the principle of the OPM applied for TDE is briefly recalled.

The OPM is based on the structure of the data covariance 
matrix ,Rx  which partitions matrix AL  into two submatrices:

,A
A
AL

L

L

-

.
=c m

where -AL  and AL . are K K#  and ( )L K K#- -dimensional  
matrices, respectively. There exists a ( )K L K# - -dimensional  
linear operator P, such that P A AH

L L- .=  or [ , ]P I AH
L K L- -

,0Q AH
L= =  where IL K-  is an ( ) ( )L K L K#- - -dimen-

sional identity matrix. Because AL  is full rank, the linear 
operator P is unique. Similar to the idea of subspace-based 
methods, the mode vectors are orthogonal to the columns of Q  

( ) , , ..., .t k K0 1Q aH
L k = =^ h  Consequently, we can obtain the 

following OPM pseudospectrum:

( )
( ) ( ) ( )

.P t
t t

1
a Q Q Q Q aL

H H H
L

1OPM = - (11)

The time delays of the echoes can then be estimated by 
searching the peak positions of (11). The propagator P is un-
known in reality, which can be retrieved from the structure of 
the data covariance matrix Rx  [25]. Unlike subspace-based 
methods, which use EVD to calculate ,UN  the propagator es-
timation can be done without EVD, which is computationally 
efficient. However, propagator-based methods are developed 
with signal models under ideal conditions and without the 
consideration of noise. Hence, their performance is degraded 
in low-SNR scenarios.

Machine learning
In recent years, there has been a boom in machine-learning 
techniques for parameter estimation in many domains. Here, 
machine-learning applications are classified into two catego-
ries: supervised learning and combined methods (where ma-
chine-learning and signal processing techniques are integrated). 

Supervised learning
The classical machine-learning approaches with GPR sys-
tems are based on the supervised-learning process. The 
purpose of supervised learning is to approximate the map-
ping from the inputs to the outputs, as shown in Figure 5. 
The inputs are the feature representations of the GPR data, 
for example, the elements of the data covariance matrix, 

[ ( , ), ( , ), , ( , )]N N1 1 1 2v R R R Tf=  [19]. The outputs are the 
parameters to be estimated (time delay, roughness, permittiv-
ity, and so forth). The mapping can be either linear or nonlinear 
while the latter might depend on kernel-based mechanisms to 
deal with the nonlinear data. This process requires learning 
databases. Then the approximated mapping can work automat-
ically on new inputs, which is also known as testing. The most 
frequently used supervised-learning algorithms in parameter 
estimation include support vector regression (SVR) [19], [26] 
and neural networks.

SVR is the regression form of the support vector machine. 
It is based on the structural risk minimization principle, 
which takes both the structural and empirical errors of the 
model into account. It has a good generalization ability, even 
in small sample learning problems. In TDE [19], the case of 
K echoes is considered. K sets of training data are applied, 
and the feature vector v is normalized to obtain the vector z, 
with .z v v=^ h  The kth set of training data is expressed as 
[( , ), ( , ), , ( , )],t t tz z zk k k k k

N
k
N0 0 1 1 1 1p pf

- -  with Np  being the number 
of training pairs. The regression function in TDE is, therefore, 

( ) , ,f bz w z= +  with .G H the inner product. w and b are the  
regression parameters, which are determined by an optimiza-
tion problem. Consequently, the time delays can be estimated 
according to the regression function.

Combined methods
There is also a group of applications that marries machine-
learning and signal processing approaches, namely, the combined 

R(1,1),
R(1,2),

...
R(N,N )

Features Parameters

Time Delay,
Permittivity,
Thickness

...

Machine Learning

FIGURE 5. The principle of the supervised-learning process. 
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methods, such as SVR-based linear prediction (LP) or forward-
backward LP (FBLP)-SVR in [10]. Unlike the supervised-
learning applications, the key insight of the combined tech-
niques is to find the solution of signal processing approaches 
under the concept of machine-learning theory. As it turns out, 
the combined methods exploit machine learning but also ex-
tend the original signal processing algorithms with enhanced 
accuracy and robustness. For example, the LP-based methods 
try to find the relationship between the next GPR signal y and 
its previous observation Z:

,yZ~= (12)

where ~  is the weighting coefficient vector. The conventional 
LP method calculates ~  by using the least-squares approach 

( ) ,yZ Z ZH H1~= -  but with constraints on the number of ob-
servations. Different from the conventional LP solution, (12) 
can be viewed as a typical SVR problem in the complex do-
main [10]; therefore, ~  can be estimated by the SVR princi-
ple. In [10], the combined LP–SVR performs well in the case 
of both coherent echoes and limited snapshots. However, its 
computational load is a little higher than those of the conven-
tional LP method.

CS
It has been previously mentioned that the GPR echoes may be 
coherent, which would lead to a rank loss of the data cova-
riance matrix. Therefore, the aforementioned high-resolution 
methods cannot be applied directly without decorrelation tech-
niques. In the past decade, new parameter estimation methods 
based on CS have been proposed that can process the coherent 
signals with high accuracy [27]–[29].

In TDE, the entire time domain can be sampled with a 
dictionary matrix, such as [ , , , , , ],T i N0 1 0f fx x x x=  with 

.N K0 &  If T is dense enough, K values in T can be expected 
to be very close (or even equal) to the true time arrivals ,tk  with 

, , , ;k K1 2 f=  if not, there will be a bias in the TDE. There-
fore, the sparse form of the received signal can be written as

,r A x nT TK= + (13)

where [ ( ), ( ), , ( ), , ( )]A a a a aT i N0 1 0f fx x x x=  is the (N # 
( ))N 10 + -dimensional overcomplete dictionary, and the 
( )N 1 10 #+  vector [ , , , ] ,x x xx N

T
0 1 0f=  with only K nonzero 

elements defined as the sparse form of s. Thus, when ,ti kx =

we obtain .x si k=  The most direct way to recover the nonzero 
value of x is to minimize the 0,  norm; however, it is an in-
tractable optimization problem. As mentioned in [27] and [28], 
when vector x is sparse enough, the 0,  norm can be replaced 
by the 1,  norm. Vector x satisfies the sparse condition because 
of .K N0%  Therefore, TDE can be achieved by solving the 
following optimization problem [27], [28]:

( ) ,arg min 1x A x r x
x

T T 2
2

1n nK= - - +t $ . � (14)

where [ , ]0 1!n  is the regularization parameter controlling the 
tradeoff between the quality of fit A x rT T 2K -  and the de-
gree of sparsity. This parameter is important to the estimation 
accuracy. The nonzero value of x can be recovered by using 
some existing sparse reconstruction methods, such as second-
order cone programming (SOCP) [28]. Then, vector x is re-
built, and the positions of nonzero elements in x as well as the 
corresponding positions in AT  can be estimated. Consequent-
ly, the time delays of the backscattered echoes can be obtained.

With the estimated time delays, the echo amplitudes can 
be retrieved from the signal model of the low-loss media with 
smooth interfaces, by

( ) ,s A A rAH H1 1K= - -t t t t (15)

where At  is the N K#  mode matrix constructed from the esti-
mated time delays. Then, the relative permittivity of each layer 
can be deduced [12]. For example, the estimated relative per-
mittivity of the first layer r1ft  can be expressed as

,
s
s

1
1

r1
1

1
2

f =
+
-t
t
tc m (16)

where s1t  represents the estimated amplitude of the first back-
scattered echo. Therefore, the layer thickness can then be re-
trieved from the estimated time delays and relative permittivity.

In Table 2, we summarize the characteristics of the previ-
ously noted methods for low-loss media. It can be seen that 
the mentioned high-resolution techniques cannot directly work 
with coherent signals because of the rank loss of the data cova-
riance matrix, while machine-learning and CS-based methods 
can handle the case of coherent signals. Then, the major com-
putational requirements of the noted methods are presented. 
ESPRIT and MUSIC require EVD of the data covariance 
matrix. In contrast, the OPM does not apply EVD but needs a 
1D search in the time spectrum (as with MUSIC). There is no 
analytical expression to indicate the computational complexity 
of machine-learning methods, which are black boxes. 

Meanwhile, the computational load of CS-based methods 
is based on the applied sparse reconstruction methods. In addi-
tion, when the frequency behavior ,w f 1!^ h  the methods pre-
sented in Table 2 can also be adapted for TDE, but with some 
modifications. For example, without modifications, MUSIC, 

Table 2. A summary of methods (Nt is the number of search points 
in the time spectrum).

Method 
Coherent 
Signals Computations 

Frequency  
Behavior w( f )

MUSIC No ( ( ( ) ) )O L L L K L N2 t
3+ - + Linear 

ESPRIT No ( ( ) )O L L K K3 1 23 2 3+ - + Linear 

OPM No ( ( )
( ( ) ) )

O L K L K K
L L K L N2 t

2 2+ -

+ - +

Linear 

Machine 
learning

Yes — Linear/
nonlinear 

CS Yes — Linear/
nonlinear 
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ESPRIT, and the OPM can work only when the exponent of 
w f^ h is a linear function of the frequency. Although machine-
learning and CS-based methods can be directly applied when 
the exponent of w f^ h is either a linear or nonlinear function of 
the frequency, a multidimensional search is required.

Simulation examples
We also present some simulation examples to show the perfor-
mance of various methods—two subspace-based ones (MUSIC 
and ESPRIT), a propagator-based method (OPM), one based 
on machine learning (FBLP-SVR), and a CS-based technique 
(CS-SOCP). The simulation data represent the radar backscat-
tered echoes from a layer made up of two interfaces separating 
homogeneous media, as shown in Figure 6. The studied medi-
um consists of a layer of ultrathin asphalt surface with relative 
permittivity r1f  equal to 4.5, overlying a baseband with relative 
permittivity r2f  equal to seven; the thickness of layer one is 
H 20.  mm, which can be estimated from the TDE of the first 
two echoes. and the thickness of layer 2 is supposed to be infi-
nite. The frequency bandwidth is 0.5–2.5 GHz, with 0.05-GHz 
steps (41 frequency samples), and the number of subbands is 
equal to 20. The dimensions of CS-SOCP overcomplete dic-
tionary AT  are   ;41 181#  the SNR is defined as the ratio be-
tween the power of the second echo and the noise variance.

In the simulation, the performance of the compared algo-
rithms versus the SNR is evaluated by a Monte Carlo process 
of 100 independent runs with 500 independent snapshots. The 
SNR varies from 0 to 20 dB. Figure 7 shows the RRMSE of 
the estimated thickness using different methods. It is clear 
from Figure 7 that CS-SOCP offers the best performance (with 
the smallest RRMSE) in thickness estimation. CS-SOCP can 
handle the coherent signals without subband averaging, which 
makes use of full frequency bandwidth. Then, the subspace-
based methods MUSIC and ESPRIT share similar perfor-
mance, but with a greater RRMSE than that of CS-SOCP. In 
low-SNR scenarios, the RRMSE of the OPM is greater than 
the compared subspace-based methods because it is found-
ed on a noise-free signal model. As the SNR increases, the 
OPM’s performance tends to be similar to that of MUSIC and 
ESPRIT. The performance of FBLP-SVR is similar to that 
of the conventional FBLP with large snapshots (>100) but is 
worse than with the high-resolution methods.

Moreover, in Table 3, we calculate the consuming time of 
the compared algorithms for a single run with one snapshot. As 
expected, the consuming time of CS-SOCP is much higher than 
the compared high-resolution methods and FBLP-SVR because 
of the choice of dictionary matrix; and the consuming time of 
the high-resolution methods confirms the computational loads 
mentioned in the previous section. In addition, for MUSIC, the 
OPM, and FBLP-SVR, a 1D search occupies the majority of the 
consuming time. Some adaptations have been proposed to avoid 
a 1D search; for example, root-MUSIC [5] estimates the time 
delay by calculating the roots of the MUSIC cost function.

Interface roughness estimation in low-loss media
At usual GPR wavelengths (the decimeter range in the air), 
the interface roughness may be neglected. But within the 
scope of centimeter waves, the influence of the interface 
roughness must be considered [15]. The interface roughness 
can produce a particular frequency signature of the echoes’ 
amplitudes, which decrease with frequency [15]. It is only 
recently that interface roughness estimation has gained more 
attention, leading to the development of new signal process-
ing methods [14]–[16].

With a frequency band B inferior to 2 GHz, interface rough-
ness estimation can be carried out by taking into account an 
exponential frequency behavior ,expw f f b fk k k.a= -^ ^ ^h h h  
with bk  the roughness parameter of the kth interface [15], [16]. 

Air

Layer 1H εr1

Layer 2 εr2

t1 t2

FIGURE 6. The pavement configuration, with tk  representing the time delay 
of the kth echo. 
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FIGURE 7. The RRMSE of the estimated thickness Ht  versus the SNR. 

Table 3. The consuming time for a single run with one snapshot on 
a computer equipped with a CPU of 2.4 GHz and 4 GB of RAM.

Method Consuming Time

MUSIC 38.2 ms 8.69 ms for EVD 29.5 ms for 1D 
search

ESPRIT 23.5 ms — —

OPM 28.1 ms 1.85 ms for prop-
agator estimation 

26.2 ms for 1D 
search

FBLP-SVR 33.5 ms 8.75 ms for ~
estimation

25.7 ms for 1D 
search

CS-SOCP 1,320 ms — —
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High-resolution methods associated with preprocessing tech-
niques (subband averaging techniques) can be adapted to inter-
face roughness estimation [16]. In [16], a modified ESPRIT 
algorithm is adopted to jointly estimate the time delay and 
interface roughness. A similar relationship between AL1  and 
AL2  can be found with ,A AL L2 1U=  with the K K#  diagonal 
matrix , , .e ediag ( ) ( )j t b j t b2 2 K K1 1 fU = r rD D- + - +f f" ,  According 
to the principle of ESPRIT [5], the diagonal elements of U  can 
be retrieved from a matrix W  that has the same eigenvalues as 

.U  Then, the time delay and interface roughness can be esti-
mated by calculating the phase and modulus of the eigenvalues 
of ,U  respectively.

However, it was found in [15] that, with the widening of the 
frequency band, the assumption of an exponential frequency 
behavior is not valid. The frequency behavior can be better 
approximated by a Gaussian function for GPR with frequency 
bandwidth  ,B 2 GHz2  as ,expw f f c fk k k

2.a= -^ ^ ^h h h  
with ck  representing the roughness parameter of the kth inter-
face [15]. When a Gaussian frequency behavior is taken into 
account in the signal model, conventional subband averaging 
techniques can no longer be used. In fact, they work only on 
exponential frequency behaviors [15]. Moreover, methods like 
machine learning and CS may apply a multidimensional search 
in roughness estimation, which is computationally inefficient.

In [14] and [15], an interpolated spatial smoothing tech-
nique is proposed to interpolate the frequency behavior of the 
backscattered echoes into an exponential frequency behavior 
that can take into account several possible frequency behaviors 
and is suitable for GPR with a large frequency bandwidth. By 
applying interpolation, a new data covariance matrix can be 
written as follows:

,BASA B B BR H H
n

H2v R= +t (17)

where B is the transformation matrix of interpolation [14]. Ma-
trix B can be computed offline and only once for any inter-
face. Then, subband averaging techniques are applied on Rt  
to decorrelate the echoes, making the estimation of the time 
delay and interface roughness possible. For example, in [15], a 
modified MUSIC algorithm based on the Rayleigh quotient is 

proposed for a large frequency bandwidth  .B 2 GHz2^ h  It al-
lows estimating the time delays without knowing the frequen-
cy behavior. The interface roughness can then be estimated by 
using the maximum likelihood method.

Thickness estimation in dispersive media
In low-loss media with smooth interfaces, the received sig-
nal is modeled as the sum of some time-shifted and attenuated 
copies of the transmitted signal. Nevertheless, this model does 
not hold for lossy and dispersive media, so the aforementioned 
signal processing techniques can no longer work. Some modi-
fications should be made on both the model and methods.

To consider the effects of propagation in dispersive media, 
the constant-Q model was proposed [7]. This framework 
applies a complex power function of frequency for the media 
permittivity. Similar to the signal model in roughness estima-
tion, the constant-Q model is a nonlinear one. Accordingly, 
the interpolation procedure in (17) should be used, but with a 
different transformation matrix B that contains information of 
the time delays and Q factor. In [7], a modified matrix pencil 
method, combined with a spline interpolation technique, is pro-
posed to estimate the time delays, permittivity, Q factor, and, 
consequently, the thickness. It applies an iterative procedure to 
rebuild the Vandermonde structure of the mode matrix.

In thickness estimation, future work may consider both media 
dispersion and interface roughness in the signal model, which 
will make the estimation more realistic but more complex. New 
methods might also be proposed for this new signal model.

Experimental examples
This section is devoted to thickness estimation by GPR mea-
surement. The experimental setup is shown in Figure 8. A mo-
nostatic step-frequency radar is used, which is composed of a 
vector network analyzer (VNA) and an antenna device whose 
transmitter and receiver are allocated together. The exponential 
tapered slot antennas (ETSA) [9] are used for both transmitter 
and receiver, which are set 70 cm above the tested materials, as 
shown in Figure 9.

In Figure 9, a smooth polyvinyl chloride (PVC) slab is 
probed, which is set on a metal plane. The GPR frequency 
bandwidth ranges from 1.6 GHz to 3.2 GHz, with a 0.02 GHz 
frequency step (81 frequency samples). Therefore, the rough-
ness can be ignored. The thickness of the PVC is approximately 
4 cm, with a relative permittivity . . j2 97 0 015rf = + . The rela-
tive permittivity is obtained from a data sheet [30], which can 
be measured by a coaxial cylindrical EM cell. In this situation, 
the probed material can be considered as a low-loss medium 
[2], and the medium dispersive can then be neglected. Thus, 
the frequency behavior .w f 1.^ h  The radar pulse is measured 
with a metal plane [5]. To calculate the thickness of the PVC, 
only the time delays of the echoes needs to be estimated.

By applying the preprocessing methods—filtering (to 
eliminate the echoes received outside the GPR main work-
ing time window) and data whitening (to whiten the data by 
radar pulse)—the preprocessed data are obtained [see Fig
ure 10(a)]. As shown in that graph, the black line indicates the 

ETSA Antennas

VNA Computer

FIGURE 8.  IFSTTAR experimental devices, consisting of a VNA. ETSA 
antennas, and a computer [9].
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preprocessed data, and the red dashed line the envelopes cal-
culated by the Hilbert transform, which provides the analytic 
representation of the received signal. It can be seen that the 
backscattered echoes are overlapped and cannot be detected. 
Therefore, high-resolution methods are required. In the experi-
ment, two subspace-based techniques (MUSIC and ESPRIT 
[5]), a propagator-based approach (OPM [25]), and a machine-
learning method (FBLP-SVR [10]) are tested for TDE.

Table 4 and Figure 10(b) provide the experimental results of 
the applied methods. In a real measurement, there are, gener-
ally, no true values available for the estimated thickness. How-
ever, the applied methods share similar results; the estimated 
thicknesses are within the interval [ . , . ]4 09 4 19  cm, which are 
acceptable in thickness estimation (the thickness of the PVC is 
approximately 4 cm).

Conclusions and future perspectives
In this article, we take a broad view of the current develop-
ment of the signal processing methods used to solve estima-
tion problems of GPR applications in civil engineering. For 
each application, there are specific signal processing meth-
ods with appropriate data preprocessing. The preprocessing 
methods (basic data processing and subband averaging tech-
niques) help improve the readability of data and make the 
data close to those of the assumed signal models. Then, high-
resolution, machine-learning, and CS-based methods serve as 
tools for media parameter estimation (thickness, permittivity, 

and roughness). Experimental examples are presented to test 
the performance of the representative GPR methods. As GPR 
measurements are large in data volume, methods with high 
computational loads may be too time consuming for real-time 
processing. Therefore, future work may be directed toward 
to finding the best tradeoff between estimation accuracy and 
computational complexity for GPR data processing. Artificial 
intelligence-based techniques with high accuracy that are com-
putationally efficient (with the training procedure done offline) 
may be a promising future for GPR data processing.
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