
 

 

Alpha synchrony for chronic lower back pain 

 

Supporting Material for “Alpha-phase synchrony for multiresistant 

chronic low back pain patients: an open-label pilot study” 

 

Online EEG data processing for NFB training sessions 

DATA PRE-PROCESSING 

Pre-processing treatment were built using Mensia's proprietary algorithms as implemented in the NeuroRT 

software platform (v2, Mensia Technologies, Paris, France), which runs the real-time core of NeuroRT Training. 

The EEG signals were band-pass filtered using a 1-45Hz 1st-order Butterworth filter, and band –stop filtered in 

the frequency range 47-53 Hz with a 3rd-order Butterworth notch filter to suppress 50Hz power line interference. 

BLIND SOURCE SEPARATION FOR EYE BLINK CORRECTION 

A primary source of physiological noise in EEG signals is that of eye movements and particularly eye blinks, 

which typically generate very large amplitude artefacts. Because of their amplitude and spectral content, which 

may overlap with the alpha activity we are meaning to train in our protocol, it is desirable to remove such signal 

by means of source separation techniques.  

In blind source separation (BSS) we assume that the observed recordings at the scalp are the result of an 

unknown mixture of unknown sources [6] [9]. Because of a number of physiological and physical reasons listed 

in [12], the multichannel EEG signal recorded at N channels/sensors X ∈ ℝN can be modeled as a linear 

(instantaneous) combination of M ≤ N independent sources S ∈ ℝM, such as: 

X = A S , 

where 𝐴 ∈ 𝑅𝑁×𝑀 is the mixing matrix, considered constant throughout the recording. The goal of BSS is to 

estimate the separating/demixing matrix B ∈ ℝM×N allowing source estimation: 

S = B X , 

with B being the estimated pseudo-inverse of (unknown) matrix A. Sources are estimated up to a permutation 

and scaling factor. Many methods exist to estimate this separating matrix, including independent component 

analysis (ICA) [8], which is based on the estimation of higher order statistics (HOS) [5], and methods based on 

second order statistics (SOS) [4]. The cleaned signal is obtained by rejecting sources identified as artifacts thanks 

to a diagonal activation matrix D ∈ ℝM×M containing 0 for artifact components and 1 otherwise: 

X̃ = A D S . 
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Figure SM1: Illustration of the blind source separation denoising: the EEG signal (left) is decomposed in 

sources components (middle), and once artefactual sources rejected, the signal is projected back into the sensor 

space, giving the denoised signal (right). 

The process of denoising by BSS is summarized schematically in Figure SM1. Note that we have implemented 

an unsupervised online eye-blinks denoising procedure that does not make use of EOG traces, nor a training 

database. It is reference-free, i.e. it does not need spatial or temporal templates, which are dependent from the 

headset and thus potentially specific to the training subject(s). Therefore, this generic method is compatible with 

any headset. In order to achieve this, we allow only a non-supervised self-calibration step, i.e., a small segment 

of signal can be used to learn relevant features. Consequently, this type of denoising can be applied on a single 

signal/trial, as well as on a complete database. The technique was validated on large database showing increased 

signal to noise ratios (SNR) on both spectral and temporal physiologically meaningful endpoints [3]. 

RIEMANNIAN GEOMETRY FOR ARTIFACT DETECTION AND SIGNAL QUALITY INDEX 

In this framework, covariance matrices are used as descriptors of EEG signals so that every epoch of EEG signal 

is represented by its spatial covariance matrix Σ. For the filtered EEG signal X ∈ ℝN ×T recorded at N channels 

during 𝑇 samples, the spatial covariance matrix is estimated as: 

Σ =
1

𝑇−1
𝑋𝑇𝑋 . 

Covariance matrices naturally live in a Riemannian manifold, thus appropriate tools of Riemannian geometry 

should be applied to computes distances between covariance matrices [11]. An average covariance matrix Σ̅ can 

then always be estimated and used as a reference representing a baseline activity. Such baseline activity can be 

clean EEG data of one subject as well as average clean EEG data across a sample recorded under homogeneous 

conditions. 

The Riemannian distance between the current matrix Σ and the reference Σ̅ is defined by: 

𝑑(Σ, Σ̅) = [ ∑ log2λn(Σ,  Σ̅) 

N

n=1

]
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where 𝜆𝑛 are the the eigenvalues of Σ−1/2Σ̅ Σ−1/2 [16]. 

Riemannian geometry is used to target artefactual epochs of signal. Pre-processed EEG signals are segmented 

into 0.25s-overlapping epochs of 2s and represented by their spatial covariance matrix Σ. Then the average Σ̅ of 

clean epochs per subjects is computed and the distance 𝑑(Σ, Σ̅) between the current matrix Σ and the average Σ̅ is 

standardized and compared to a threshold. A z-score threshold of 2.5 is chosen to reject artefactual epochs. 
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Called Riemannian potato [1] [2], this method is applied online to ensure that no artefactual EEG data is used 

during the active conditioning process.  

After online preprocessing and denoising, the application extracts neuromarker and rewards the user according to 

the specified protocol. 

ALPHA SYNCHRONY (APS) AND CONCENTRATION (APC) NEUROMARKER EXTRACTION 

Pre-processed EEG data that was deemed of sufficient quality was used to extract an alpha phase synchrony 

(APS) neuromarker [15], which was fed back to the user in real time. Signals were band-pass filtered between 8 

and 12Hz using a 5th order Butterworth filter. These filtered signals are then spatially averaged over all channels. 

Then, a moving average on a window of 2s every 0.25s was used to compute the Frobenius squared norm of the 

average as a proxy for alpha synchrony power, called 𝑎. Finally, this metric is normalized by the global field 

power of pre-processed signals, computed similarly with a moving average on a window of 2s every 0.25s used 

to compute the Frobenius squared norm, called 𝑏. Normalization of the neuromarker is given by:  

APS = 𝑙𝑜𝑔(ε + 𝑎) / 𝑙𝑜𝑔 (ε + 𝑏), 

with ε=1.1.  

To study these different levels of changes, the entire dataset was post-processed to extract the evolution of two 

pre-specified neuromarkers: the APS defined above, sensitive to both amplitude and phase which was trained,  

and the alpha phase concentration (APC) [14] [7] solely sensitive to phase and arguably relating more 

specifically to the modulation of the nucleus accumbens [13], which we believe relates more specifically to the 

symptoms of chronic pain and their evolution. 

For the extraction of alpha phase concentration [7], Fourier Transform is computed after a Hamming window of 

1s every 0.25s. Fourier coefficients are averaged between 8 and 12Hz, and this averaged complex coefficient is 

then normalized (absolute value equal to 1). The normalized coefficients are averaged over all channels, and 

finally, we keep the absolute value of this average: 

APC =  |
1

𝑁
 ∑ 𝑒𝑖 𝜑𝑛

𝑁

𝑛=1

|, 

where 𝜑𝑛 is the phase of alpha band in channel 𝑛. This metric is also known as circular mean resultant length 

[14], inter-trial phase coherence, inter-trial phase clustering or phase coherence [7] [10]. 

AUTOMATED THRESHOLDING OF THE NEUROMARKER 

In order to provide efficient neurofeedback training, i.e. to enable the subject to gain control of the brain activity 

and to train it in the desired direction, the threshold between a positive and negative reward must be finely tuned. 

Indeed, threshold adjustment stimulates the subjects and maintains engagement to the session. 

The actual clinical practice of neurofeedback supposes trainer supervision with manual selection of the threshold 

during the session. Consequently, neurofeedback sessions have to be performed by the subject with assistance of 

a trained specialist. Said supervision considerably limits availability of neurofeedback sessions. Moreover, it also 

limits feasibility studies and repeatability. 

To avoid these limitations, an unsupervised automatic adjustment of the threshold has been implemented, 

estimating a piece-wise constant threshold based on the distribution of the neuromarker computed on a sliding 

window [17], and is illustrated in Figure SM2. 
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Figure SM2: Illustration of the automated thresholding. The brain activity of interest extracted from the EEG 

activity (neuromarker) is represented in blue line. It oscillates around a threshold (orange line), constant and 

adaptive during the session. The discrete feedback (here “Reward!”) is displayed to users when the 

neuromarker activity is maintained below the threshold (for a down training protocol) for more than 0.5 seconds 

(time-gating). A positive reinforcement (here “Cumulative Booster!”) is showed to the user when the 

neuromarker activity is maintained below the threshold (for a down training protocol) during more than 3 

seconds (time-boosting). If the three seconds are reached consecutively, a “Consecutive Booster” is earned. This 

way we promote a reinforcement and a maintenance in time of this activity. 
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