

Validation of a new device dedicated to the mechanical characterisation of cartilage micropellets

Noémie Petitjean, Marie Maumus, Gilles Dusfour, Patrick Cañadas, Christian Jorgensen, Pascale Royer, Danièle Noël, S. Lefloch

▶ To cite this version:

Noémie Petitjean, Marie Maumus, Gilles Dusfour, Patrick Cañadas, Christian Jorgensen, et al.. Validation of a new device dedicated to the mechanical characterisation of cartilage micropellets. Journée de l'école doctorale CBS2, May 2019, Montpellier, France. , 2019. hal-02171713

HAL Id: hal-02171713

https://hal.science/hal-02171713

Submitted on 3 Jul 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Validation of a new device dedicated to the mechanical characterisation of cartilage micropellets

N. Petitjean^{a,b}*, M. Maumus^{b,c}, G. Dusfour^a, P. Cañadas^a, C. Jorgensen^{b,c}, P. Royer^a, D. Noël^{b,c}, and S. Le Floc'h^a ^a LMGC, Univ. Montpellier, CNRS, Montpellier, France; ^bIRMB, Univ. Montpellier, INSERM, CHU Montpellier, Montpellier, France; ^cHopital Lapeyronie, Clinical immunology and osteoarticular diseases Therapeutic Unit, Montpellier, France

INTRODUCTION

- Articular cartilage ensures smooth motions and facilitates force transmissions.
- Cartilage micropellet is known as cartilage growth model [1].
- In literature, very few studies focus on the evolution of mechanical properties over time during growth [2].
- A new device were designed to assess mechanical properties of micropellets without removing there from their culture environment.

Objective: (i) To test if the new fluidic device damages soft microspheres subjected to large deformation and (ii) to estimate the precision of this new device to quantify mechanical properties.

MATERIALS & METHODS

Home made device:

Fluidic system with 3D-printed tank (Figure 1). Fluid pressure applied at the top causes the sphere to sink into the cone and to deform. Pressure and displacement were in order to estimate recorded mechanical properties of the beads.

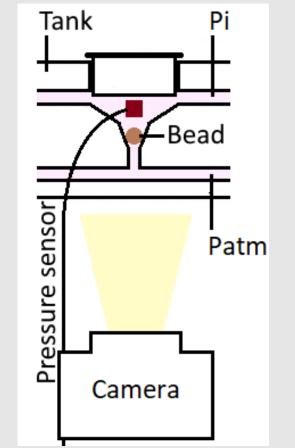
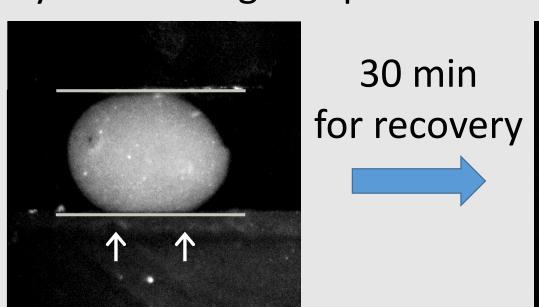
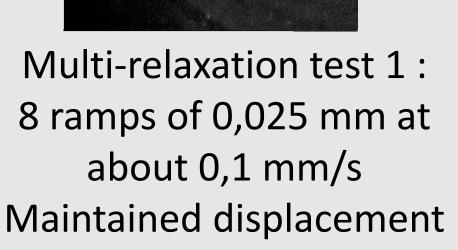




Figure 1 – Fluidic system of compression for microspheres.

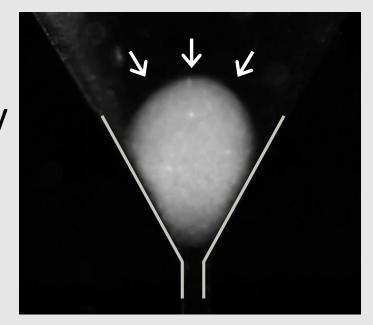
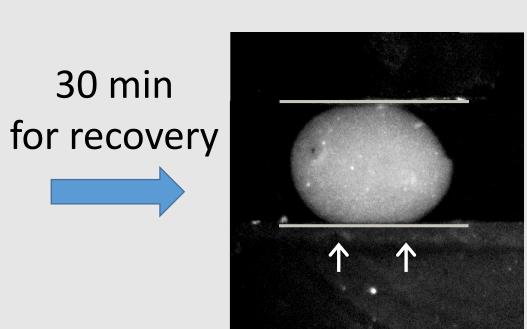
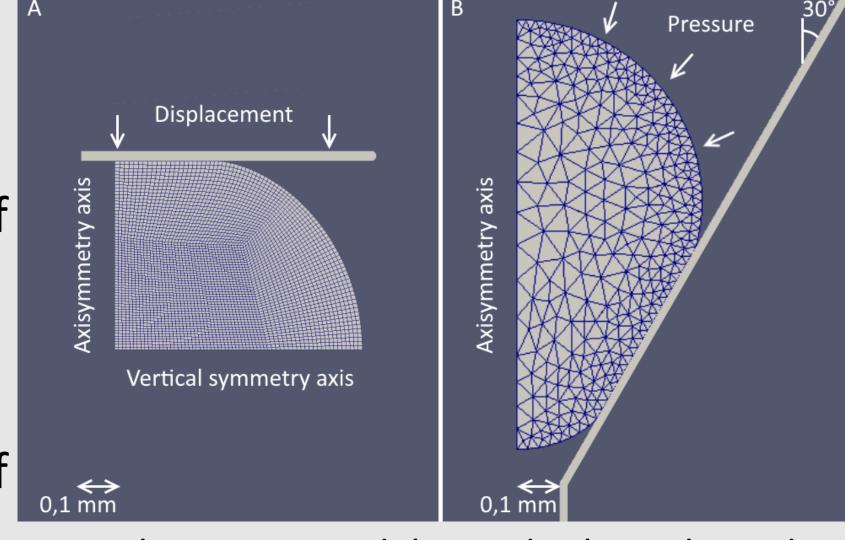

- Conventional compression device: Beads were compressed between 2 planar surfaces in order to get ground values of the mechanical properties of the beads.
- Beads: 13 alginate beads (1,36 ± 0,13 mm in diameter) were made by polymerisation of a solution of 3% w/w sodium alginate in 0.15 M NaCl, in 0,1M CaCl2 during 24h.
- Chronology of mechanical tests (Figure 2): In order to check if the beads were damaged by the large deformation with the new fluidic device, conventional compression tests were driven before and after the new fluidic test.

Figure 2 – Alginate beads in the conventional (left and right) and fluidic (centre) system during compression test.



during more than 30 sec


Multi-creep test: 6 ramps of 13 ± 1.4 kPa at about 160 kPa/s 10 picture during 2 min at the set pressure

Multi-relaxation test 2

Finite element identification procedures (Figure 3):

Specific finite element models, with Neo-Hookean law, were used to identify the mechanical properties of the beads. Briefly, numerical data were fitted on experimental data by tuning the mechanical properties of the bead.

30 min

Figure 3 – Finite elements models and their boundary conditions for planar (A) and conical (B) compression – LMGC90.

Statistical analysis: paired bilateral T-tests were used to compare the 3 mechanical tests.

RESULTS

Fitted curves:

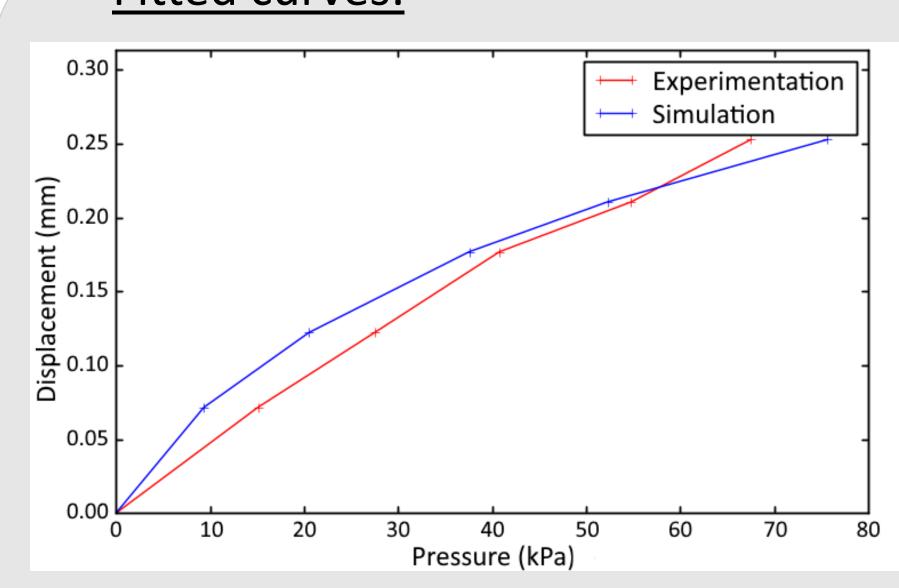


Figure 4 – Experimental and simulated displacements of the bottom of an alginate bead as a applied at the top of the bead.

Determined Young's moduli:

	Conventional compression 1		Conventional compression 2
Mean	104,7 *\$	107,0	97,8 *
Sd	29,1	36,0	19,1

Table 1 – Mean and standard deviation of Young's moduli (kPa) obtained for both testing devices; * p>0,25 compared to fluidic compression test; \$p=0.31 compared to the second conventional compression test.

DISCUSSION

- damage of alginate beads (p=0,31 between conventional tests): results of both conventional and fluidic compression test can be compared and the system is non destructive for the spheres.
- Similar Young's moduli with both type of tests: new device allowed to characterise the mechanical properties of small spherical samples in a quantitative manner.
- Limitation: No perfect fit between experimental and numerical data because of a quite simple hyperelastic law.

CONCLUSION

- A new fluidic system is proposed to pressurise small soft spheres into a conical shape.
- This new setup, together with an identification procedure, is able to quantify mechanical properties.
- Fabricated with fully biocompatible materials, this new device should be able to mechanically stimulate and to follow up mechanical properties of cartilage micropellets.

ACKNOWLEDGEMENTS

We thank Stephan Devic, Patrice Valorge and Yvan Duhamel for their technical support in developing the fluidic setup. This work was supported by Labex Numev (PIA: ANR-10-LABX-20) and by CNRS (AAP "Osez l'Interdisciplinarité 2018", MoTiV Project).

REFERENCES

- [1] Barry F, Boynton R E, Liu B, Murphy J M. 2001. Exp. Cell Res. 268. 2:189 200.
- [2] O'Conor, Christopher J, Case N, Guilak F. 2013. Stem Cell Res Ther. 4:61.