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A MODEL FOR SUSPENSION OF CLUSTERS OF PARTICLE PAIRS

AMINA MECHERBET

Abstract. In this paper, we consider N clusters of pairs of particles sedimenting in a
viscous fluid. The particles are assumed to be rigid spheres and inertia of both parti-
cles and fluid are neglected. The distance between each two particles forming the cluster
is comparable to their radii 1

N while the minimal distance between the pairs is of or-

der N−1/2. We show that, at the mesoscopic level, the dynamics are modelled using a
transport-Stokes equation describing the time evolution of the position x and orientation
ξ of the clusters. Under the additional assumption that the minimal distance is of order
N−1/3, we investigate the case where the orientation of the cluster is initially correlated
to its position. In this case, a local existence and uniqueness result for the limit model is
provided.

Introduction

We consider the problem of N rigid particles sedimenting in a viscous fluid under grav-
itational force. The inertia of both fluid and particles is neglected. At the microscopic
level, the fluid velocity and the pressure satisfy a Stokes equation on a perforated do-
main. The mathematical derivation of models for suspensions in Stokes flow interested
a lot of researches. One of the most investigated question is the effective computations
of quantities such as the viscosity or the average sedimentation velocity, see for instance
[2, 7, 8, 10, 13, 12, 18, 29, 32, 34, 36] and all the references therein. Regarding the anal-
ysis of the associated homogenization problem, it has been proved that the interaction
between particles leads to the appearance of a Brinkman force in the fluid equation. This
Brinkman force depends on the dilution of the cloud but also the geometry of the particles,
see [1, 3, 5, 8, 16, 17, 33]. In the dynamic case, the justification of a mesoscopic model using
a coupled transport-Stokes equation has been proved in [24] where authors show that the
interaction between particles is negligible in the dilute case i.e. when the minimal distance
between particles is larger than 1

N1/3 . In [20, 31] the justification has been extended to
regimes that are not so dilute but where the minimal distance between particles is still
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2 AMINA MECHERBET

large compared to the particles radii. The coupled equations derived are:

(1)

 ∂tρ+ div((κg + u)ρ) = 0
−∆u+∇p = 6πr0κgρ ,

div(u) = 0.

Here u is the fluid velocity, p its associated pressure, ρ is the density of the cloud. r0 = RN ,
where R is the particles radii, g the gravity vector. The velocity κg = m

6πR
g represents the

fall speed of a sedimenting single particle under gravitational force. The derivation of this
model is a consequence of the method of reflections which consists in approaching the flow
around several particles as the superposition of the flows associated to one particle at time,
see [35], [27, Chapter 8], [30], [11, Section 4], [28], [23] for more details.

In this paper, we are interested in the case where the cloud is made up of clusters i.e
the case where the minimal distance between the particles is proportional to the particles
radii R. The main motivation is to show the influence of the clusters configuration on the
mean velocity fall. A first investigation in this direction is to consider clusters of pairs of
particles where the minimal distance between the particles forming the pair is comparable
to their radii. The cluster configuration is determined by the center x and the orientation
ξ of the pair. Starting from the microscopic model and assuming the propagation in time
of the dilution regime, the first result of this paper is the derivation of a fluid-kinetic model
describing the sedimentation of the suspension at a mesoscopic scaling. The fluid-kinetic
model obtained couples a Stokes equation for the fluid velocity and pressure (u, p) with a
transport equation for the function f(t, x, ξ) representing the density of clusters centered
in x and having orientation ξ at time t, see Theorem 0.1. The mean velocity fall of clusters
is formulated through the Stokes resistance matrices while the variation of its orientation
involves the gradient of the fluid velocity. In particular, the presence of the gradient of the
fluid velocity suggests a similarity with the model of suspension of rod-like particles where
the density function depends on the center of the rods x and there orientations n ∈ S2, see
[6, 21, 22] and the references therein.

The second result of this paper corresponds to the case where the orientation of the
cluster is correlated to its center i.e. ξ = F (t, x). Under additional assumptions, see The-
orem 0.2, the derived model is a transport equation for ρ coupled to a Stokes equations for
the fluid velocity and pressure (u, p) and a hyperbolic equation for the function describing
the evolution of the cluster orientation F . A local existence and uniqueness result for the
former system is also presented, see Theorem 0.3.

The starting point is a microscopic model representing sedimentation of N ∈ N∗ particle
pairs in a uniform gravitational field. The pairs are defined as

Bi := B(xi1, R) ∪B(xi2, R) , 1 ≤ i ≤ N,
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where xi1, x
i
2 are the centers of the ith pair and R the radius. We define (uN , pN) as the

unique solution to the following Stokes problem :

(2)

{
−∆uN +∇pN = 0,

div uN = 0,
on R3 \

N⋃
i=1

B
i
,

completed with the no-slip boundary conditions :

(3)


uN = U i

1 on ∂B(xi1, R),
uN = U i

2 on ∂B(xi2, R),
lim
|x|→∞

|uN(x)| = 0,

where (U i
1, U

i
2) ∈ R3 × R3 , 1 ≤ i ≤ N are the linear velocities. In this model, the angular

velocity is neglected and we complete the PDE with the motion equation for each couple
of particles :

(4)

{
ẋi1 = U i

1,
ẋi2 = U i

2.

Newton law yields the following equations where inertia is neglected :

(5)

F i
1

F i
2

 = −

mg
mg

 ,

where m is the mass of the identical particle adjusted for buoyancy, g the gravitational
acceleration, F i

1, F
i
2 are the drag forces applied by the fluid on the ith particle :

F i
1 =

∫
∂B(xi1,R)

Σ(uN , pN)ndσ , F i
2 =

∫
∂B(xi2,R)

Σ(uN , pN)ndσ,

with n the unit outer normal and Σ(uN , pN) = (∇uN + (∇uN)>)− pNI the stress tensor.
In order to formulate our results we introduce the main assumptions on the cloud.

0.1. Assumptions and main results. We assume that the radius is given by R = r0
2N

. In
this paper we use the following notations, given a pair of particles B(x1, R) and B(x2, R):

x+ :=
1

2
(x1 + x2) , x− := 1

2
(x1 − x2) , ξ :=

x−
R
.

Let T > 0 be fixed. We introduce the empirical density µN ∈ P([0, T ]× R3 × R3):

µN(t, x, ξ) =
1

N

N∑
1

δ(xi+(t),ξi(t))(x, ξ),

and set ρN its first marginal:

(6) ρN(t, x) :=
1

N

∑
i

δxi+(t) (x).
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We denote by dmin the minimal distance between the centers xi+:

dmin(t) := min {dij(t) := |xi+(t)− xj+(t)| , i 6= j}.
We assume that there exists two constants M1 > M2 > 1 independent of N such that:

(7) M2 ≤ |ξi| ≤M1 , i = 1, · · · , N ∀ t ∈ [0, T ].

We assume that µN converges weakly to a measure µ in the sense that for all test function
ψ ∈ Cb([0, T ]× R3 × R3) we have:

(8)

∫ T

0

∫
R3

∫
R3

ψ(t, x, ξ)µN(t, dx, dξ)dt →
N→∞

∫ T

0

∫
R3

∫
R3

ψ(t, x, ξ)µ(t, x, ξ)dx dξ dt.

We assume that the first marginal of µ denoted by ρ is a probability measure such that
ρ ∈ L∞(R3)∩L1(R3). We introduce W∞(t) := W∞(ρN(t, ·), ρ(t, ·)) the infinite-Wasserstein
distance between ρN and ρ, see (19) for a definition. We assume that

(9) sup
t∈[0,T ]

W∞(t) →
N→∞

0.

For the first result, we assume that there exists a positive constant E1 > 0 such that:

(10) sup
t∈[0,T ]

sup
N∈N∗

W 3
∞(t)

d2min(t)
≤ E1.

Regarding the second result, we assume in addition that there exists a positive constant
E2 > 0 such that:

(11) sup
t∈[0,T ]

sup
N∈N∗

W 3
∞(t)

d3min(t)
≤ E2.

Remark 0.1. Since ρ ∈ L∞(0;T, L∞(R3)), this yields a lower bound for the infinite
Wasserstein distance for all t ∈ (0, T ) and all N ∈ N∗:

(12)
1

NW 3
∞(t)

. sup
x∈R3

ρN(t, B(x,W∞(t)))

|B(x,W∞(t))|
. ‖ρ‖L∞(0;T,L∞(R3)).

On the other hand, the definition of the infinite Wasserstein distance ensures that

(13) W∞(t) ≥ dmin(t)/2 ,

which yields according to (9)

(14) sup
t∈[0,T ]

dmin(t) →
N→∞

0.

Assumption (11) is only needed for the second Theorem 0.2. Precisely, under assumption
(10), the minimal distance is at least of order C√

N
and R � dmin. Indeed using (12),(10)

we have for all N ∈ N∗

1√
N
≤ ‖ρ‖1/2L∞(0;T,L∞(R3))

√
E2dmin(t).

Whereas under the additional assumption (11), the threshold for the minimal distance is
of order C

N1/3 .
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Our main results read:

Theorem 0.1. Let µ0 ∈ L1(R3×R3)∩L∞(R3×R3) a probability measure. Assume that (7),

(8) and (10) are satisfied. If r0 max(‖ρ‖L∞(0,T ;L∞(R3)), ‖ρ‖1/3L∞(0,T ;L∞(R3)), ‖ρ‖
2/3

L∞(0,T ;L∞(R3)))

is small enough, µ satisfies the following transport equation :
(15)

∂tµ+ divx[(A(ξ))−1κg + u)µ] + divξ[∇u · ξµ] = 0 , on [0, T ]× R3 × R3,
−∆u+∇p = 6πr0κρg , on [0, T ]× R3,

div(u) = 0 , on [0, T ]× R3,
µ(0, ·) = µ0 , on R3 × R3.

Remark 0.2. In the case where µ0 is compactly supported with respect to the second vari-
able ξ uniformly in the first variable x, local existence and uniqueness of the above kinetic
equation can be shown following the result of [19, Chapter 8] for the model of suspension of
rod-like particles. In particular, the L1 norm of the spatial density ρ is conserved in time
while the L∞ norm of ρ(t, ·) is bounded by sup

x∈R3

| supp(µ(t, x, ·)|‖µ(t, ·, ·)‖∞. This ensures

existence and uniqueness for a small time T and ‖ρ‖L∞(0,T ;L∞(R3)) is controlled by ‖µ0‖∞
and sup

x∈R3

| supp(µ0(x, ·)| .

Remark 0.3. The matrix A is defined as A := A1+A2 where A1 and A2 are the resistance
matrices associated to the sedimentation of a couple of identical spheres, see Section 1.1 for
the definition. The term (A)−1κg represents the mean velocity of a couple of identical par-
ticles sedimenting under gravitational field. We assume herein that A−1, A1, A2 ∈ L∞(R3).

The second result concerns the case where the vectors along the line of centers ξi are
correlated to the positions of centers xi+.

Theorem 0.2. Assume now that ρ ∈ W 1,∞(R3)∩W 1,1(R3), A−1,A ∈ W 2,∞(R3) and con-
sider the additional assumption (11). Assume that there exists a function F0 ∈ W 1,∞(R3)
such that ξi(0) = F0(x

i
+(0)) for all 1 ≤ i ≤ N . There exists T > 0 independent of N and

unique FN ∈ L∞(0, T ;W 1,∞(R3)) such that for all t ∈ [0, T ] we have:

µN = ρN ⊗ δFN and FN(0, ·) = F0.

Moreover, the sequence (FN)N admits a limit F ∈ L∞(0, T ;W 1,∞(R3)). The limit measure
µ is of the form µ = ρ⊗ δF and the triplet (ρ, F, u) satisfies the following system

(16)



∂tF +∇F · (A(F )−1κg + u) = ∇u · F, on [0, T ]× R3,
∂tρ+ div((A(F )−1κg + u)ρ) = 0, on [0, T ]× R3,

−∆u+∇p = 6πr0κgρ, on R3,
div u = 0, on R3,
ρ(0, ·) = ρ0, on R3,
F (0, ·) = F0 on R3.

We finish with a local existence and uniqueness result for the limit model.
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Theorem 0.3. Let p > 3, F0 ∈ W 2,p(R3) and ρ0 ∈ W 1,p(R3) compactly supported. There
exists T > 0 and unique triplet (ρ, F, u) ∈ L∞(0, T ;W 1,p(R3)) × L∞(0, T ;W 2,p(R3)) ×
L∞(0, T ;W 3,p(R3)) satisfying (16).

As in [31], the idea of proof of Theorem 0.1 and 0.2 is to provide a derivation of the
kinetic equation satisfied weakly by µN . This is done by computing the first order terms
of the velocities of each pair:

(17)


ẋi+ ∼ (A(ξi))

−1κg + 6πr0
N

∑
j 6=i

Φ(xi+ − x
j
+)κg,

ξ̇i ∼

(
6πr0
N

∑
j 6=i
∇Φ(xi+ − x

j
+)κg

)
· ξi.

The interaction force Φ is the Oseen tensor, see formula (18). This development is a
corollary of the method of reflections which consists in approaching the solution uN of
2N separated particles by the superposition of fields produced by the isolated 2N particle
solutions. We refer to [35], [30], [27, Chapter 8] and [11, Section 4], [28] for an introduction
to the topic. We also refer to [23] where a converging method of reflections is developed
and is used in [20]. In this paper we reproduce the same method of reflections developed
in [31, Section 3]. However this method is no longer valid in the case where the minimal
distance is comparable to the particle radii. The idea is then to approach the velocity
field uN by the superposition of fields produced by the isolated N couple of particles
Bi = B(xi1, R)tB(xi2, R). This requires an analysis of the solution of the Stokes equation
past a pair of particles. In particular, we need to show that these special solutions have
the same decay rate as the Stokeslets, see [31, Section 2.1]. This is proved in Section 1.
The convergence of the method of reflections is ensured under the condition that the
minimal distance dmin between the centers xi+ satisfies

W 3
∞

dmin

+
W 3
∞

d2min

< +∞ ,

and that the distance |xi1 − xi2| for each pair satisfies formula (7).
In this paper, we focus only on the derivation of the mesoscopic model. Precisely, we do
not tackle the propagation in time of the dilution regime and the mean field approxima-
tion. We provide in Propositions B.3 and B.1 some estimates showing that the control
on the minimal distance dmin depends on the control on the infinite Wasserstein distance
W∞(ρN , ρ). However, the gradient of the Oseen tensor appearing in equation (17) leads
to a log term in the estimates involving the control of W∞(ρN , ρ), see Proposition B.2.
This prevents us from performing a Gronwall argument in order to prove the mean field
approximation in the spirit of [14, 15].

0.2. Outline of the paper. The remaining sections of this paper are organized as follows.
In section 1 we present an analysis of the particular solution of two translating spheres in
a Stokes flow. The main result of this section is the justification of the approximation of
this particular solution using the Oseen tensor and proving some decay properties similar
to the Stokeslets. In section 2 we present and prove the convergence of the method of
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reflections using the estimate of Appendix A. We also present two particular cases of the
application of this method which are useful later. In section 3 we compute the particle
velocities (ẋi+, ξ̇i)1≤i≤N using the estimates provided in the previous section.
Section 4 is devoted to the proof of the first Theorem 0.1. Precisely, we prove that the
discrete density µN satisfies weakly a transport equation (46) which can be seen as a
discrete version of the limit equation (15). In particular, equation (46) is formulated
using a discrete convolution operator KNρN ∼ Φ ∗ ρN defined rigorously in Section 4.
The convergence proof is obtained by showing that KNρN converges to the continuous
convolution operator Kρ = Φ ∗ ρ. Convergence estimates of KNρN − Kρ are provided in
the Appendix B.
Section 5 is devoted to the proof of Theorems 0.2 and 0.3. The first step is to prove local
existence and uniqueness results for the correlation function FN solution of (48) and also
for F the solution of the hyperbolic equation (54). The idea is to apply a fixed-point
argument using some stability estimates provided in the last Appendix C. The last part
of Section 5 concerns the convergence of the microscopic model to the mesoscopic model.
This convergence result is obtained by showing that the sequence FN converges is some
sense to F .

0.3. Notations. In this paper, n always refers to the unit outer normal to a surface and
dσ denotes the measure integration on the surface of the particles.
We recall the definition of the Green’s function for the Stokes problem (U ,P) where U is
also called the Oseen tensor, See [9, Formula (IV.2.1)] or [27, Section 2.4.1].

Φ(x) =
1

8π

(
I
|x|

+
x⊗ x
|x|3

)
, P (x) =

1

4π

x

|x|3
.(18)

Given two probability measures ν1, ν2, we define the infinite Wasserstein distance as

W∞(ν1, ν2) := inf
{
π − esssup|x− y| , π ∈ Π(ν1, ν2)

}
,

where Π(ν1, ν2) is the set of all probability measures on R3 × R3 with first marginal ν1
and second marginal ν2. In the case where ν1 is absolutely continuous with respect to the
Lebesgue measure, then according to [4] the following definition holds true

(19) W∞(ν1, ν2) := inf
{
ν1 − esssup|T (x)− x| , T : supp ν1 → R3 , ν2 = T#ν1

}
,

In particular, this distance is well adapted to the estimates of the discrete convolution
operatorKNρN defined in (43). Precisely, the infinite Wasserstein distance allows to localise
the singularity of the Oseen tensor and is closely related to the minimal distance dmin. We
refer also to [14, 15, 4, 31] for more details.
Given a couple of velocities (U1, U2) ∈ R3 × R3 we use the following notations

U+ :=
U1 + U2

2
, U− :=

U1 − U2

2
.
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Finally, in the whole paper we use the symbol . to express an inequality with a multi-
plicative constant independent of N and depending only on r0, ‖ρ‖L∞(0,T ;L∞(R3), E1, E2 and
eventually on κ|g| which is uniformly bounded, see [31].

1. Two translating spheres in a Stokes flow

In this section, we focus on the analysis of the Stokes problem in R3 past a pair of
particles. Given x1, x2 ∈ R3 and R1, R2 > 0, such that |x1 − x2| > R1 + R2, we consider
two spheres Bα := B(xα, Rα) α = 1, 2 and focus on the following Stokes problem:

(20)

{
−∆u+∇p = 0,

div u = 0,
on R3 \ B̄1 ∪ B̄2,

completed with the no-slip boundary conditions:

(21)

{
u = Uα, on ∂Bα, α = 1, 2,

lim
|x|→∞

|u(x)| = 0,

where Uα ∈ R3 for α = 1, 2. Classical results on the Steady Stokes equations for exterior
domains (see [9, Chapter V] for more details) ensures the existence and uniqueness of
equations (20) – (21). In this section, we aim to describe the velocity field u in terms of
the force applied by the fluid on the particles defined as:

Fα :=

∫
∂Bα

Σ(u, p)ndσ , α = 1, 2.

We refer to the paper [25] for the following statements. Neglecting angular velocities and
torque we emphasize that there exists a linear mapping called resistance matrix satisfying:

(22)

(
F1

F2

)
= −3π(R1 +R2)

(
A11 A12

A21 A22

)(
U1

U2

)
,

where Aαβ, 1 ≤ α, β ≤ 2, are 3 × 3 matrices depending only on the non-dimensionalized
centre-to-centre separation:

s := 2
x1 − x2
R1 +R2

,

and the ratio of the spheres’ radii:

λ =
R1

R2

,

each of these matrices is of the form:

(23) Aαβ := gα,β(|s|, λ)I + hα,β(|s|, λ)
s⊗ s
|s|2

,

where I is the 3 × 3 identity matrix and gα,β, hα,β are scalar functions. We refer to the
paper of Jeffrey and Onishi [25] where the authors provide a development formulas for gα,β
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and hα,β given by a convergent power series of |s|−1. Note that the matrices satisfy

(24)
A22(s, λ) = A11(s, λ

−1),
A12(s, λ) = A21(s, λ),
A12(s, λ) = A12(s, λ

−1).

Inversly, there exists also a linear mapping called mobility matrix such that

(25)

(
U1

U2

)
= − 1

3π(R1 +R2)

(
a11 a12
a21 a22

)(
F1

F2

)
.

The matrices aα,β depend on the same parameters as matrices Aα,β and satisfy a formula
analogous to (23). They are also symmetric in the sense of formula (24).
The resistance and mobility matrices satisfy the following formula:

(26)

(
A11 A12

A21 A22

)(
a11 a12
a21 a22

)
=

(
I 0
0 I

)
,

Again, we refer to [25] for more details.

1.1. Restriction to the case of two identical spheres. We simplify the study by
assuming that R1 = R2 = R i.e. λ = 1. This means that the resistance matrix depends
only on the parameter s which becomes:

s =
x1 − x2
R

= 2 ξ,

and we have:
A22(s, 1) = A11(s, 1).

Hence we reformulate the resistance matrix as follows:

(27)

(
F1

F2

)
= −6πR

(
A1(ξ) A2(ξ)
A2(ξ) A1(ξ)

)(
U1

U2

)
,

and the mobility matrix:

(28)

(
U1

U2

)
= −(6πR)−1

(
a1(ξ) a2(ξ)
a2(ξ) a1(ξ)

)(
F1

F2

)
.

Formula (26) yields the following relations

(29)

{
A1a1 + A2a2 = I,
A1a2 + A2a1 = 0.

We are interested in providing a formula for the velocity u and showing some decay prop-
erties. In this paper we use the notation (U [U1, U2], P ([U1, U2]) for the unique solution
to {

−∆U [U1, U2] +∇P [U1, U2] = 0,
divU [U1, U2] = 0,

on R3 \ B̄1 ∪ B̄2,

completed with the no-slip boundary conditions:{
U [U1, U2] = Uα, on ∂Bα, α = 1, 2,

lim
|x|→∞

|U [U1, U2](x)| = 0,



10 AMINA MECHERBET

The main result of the section is the following

Proposition 1.1. Denote by ξ := x−
R

. Assume that there exists M1 > 1 such that |ξ| < M1.
There exists a vector field R[U1, U2] depending on U1, U2, ξ, x+ such that for all |x− x+| >
4M1 we have

(30) U [U1, U2](x) = −Φ(x+ − x)(F1 + F2) +R[U1, U2](x),

Moreover, there exists a positive constant independent of U1, U2, ξ, x+ and depending only
on M1 such that for all |x− x+| > 4M1 we have

(31)
∣∣∇βR[U1, U2](x)

∣∣ ≤ C(M1)R
2 |U1|+ |U2|
|x− x+|2+|β|

, ∀ β ∈ N3.

The unique solution (U [U1, U2], P [U1, U2]) satisfies the following decay property with C(M1)
independent of x+, ξ, U1 and U2.∣∣∇βU [U1, U2](x)

∣∣ ≤ C(M1)R
|U1|+ |U2|
|x− x+|1+|β|

,
∣∣∇βP [U1, U2](x)

∣∣ ≤ C(M1)R
|U1|+ |U2|
|x− x+|2+|β|

, ∀ β ∈ N3.(32)

Proof. We first consider the case where x+ = 0 and R = 1, the generalization to arbitrary
x+ and R can be obtained by scaling arguments. In what follows we use the short cut
(u, p) := (U [U1, U2], P [U1, U2]) and extend u by Uα on B(xα, 1), α = 1, 2 and we have
u ∈ Ḣ1(R3). We consider a regular truncation function χ = 0 on B(0, 2M1) ⊃ B(x1, 1) ∪
B(x2, 1) and χ = 1 on cB(0, 3M1) and we set

ū := uχ−B2M1,3M1 [u∇χ],

p̄ := pχ,

where B2M1,3M2 is the Bogovskii operator on the annulus B(0, 3M1) \ B(0, 2M1), see [16,
Appendix A. Lemma 18] for instance, and satisfies

div (B2M1,3M1 [u∇χ]) = u∇χ,

‖B2M1,3M1 [u∇χ]‖L2(B(0,3M1)\B(0,2M1))
≤ C(M1)‖u∇χ‖L2(B(0,3M1)\B(0,2M1)).

Using Stokes regularity results, see [9, Theorem IV.4.1], combined with some Sobolev
embeddings we have ū ∈ C∞(R3) and satisfies a Stokes equation on R3 with a source term
f = − div Σ(ū, p̄) having support in B(0, 3M1) \ B(0, 2M1)). Hence we can apply the
convolution formula with the Green function Φ and write

ū(x) =

∫
R3

Φ(x− y)f(y)dy.

Note that u = ū on cB(0, 3M1). We may then apply a Taylor expansion of Φ(· − y) for
|x| > 3M1 and get

u(x) = ū(x) = Φ(x)

∫
R3

f(y)dy −
∫
R3

∫ 1

0

(1− t)[∇Φ(x− ty)y]f(y)dydt.
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An integration by parts for the first term yields∫
R3

f(y)dy =

∫
B(0,3M1)\B(0,2M1))

div(Σ(ū, p̄)),

= −
∫
∂B(0,3M1)

Σ(u, p)ndσ,

= −
∫
∂B(x1,1)

Σ(u, p)ndσ +

∫
∂B(x2,1)

Σ(u, p)ndσ,

= −F1 − F2,

we recall that in the above computations the unit normal vector n is pointing outward. It
remains to estimate the error term, we recall that using the Bogovskii properties and the
embedding Ḣ1(R3) ⊂ L2

loc(R3) we have

(33) ‖f‖Ḣ−1(B(0,3M1)\B(0,2M1))
= ‖ū‖Ḣ1(B(0,3M1)\B(0,2M1))

≤ C(M1)(‖u‖Ḣ1(R3) + ‖u‖L2(B(0,3M1)\B(0,2M1))) ≤ C(M1)‖u‖Ḣ1(R3),

on the other hand, an integration by parts together with (27) yields

‖∇u‖2L2(R3\(B(x1,1)∪B(x2,2))
= −F1 · U1 − F2 · U2 ≤ (|A1(ξ)|+ |A2(ξ)|)2(|U1|+ |U2|)2.

For the remaining term we introduce G(x, y)

G(x, y) := ψ(y)

∫ 1

0

(1− t)[∇Φ(x− ty)y]dt,

where ψ = 0 on cB(0, 7/2M1) and ψ = 1 on B(0, 3M1). With this construction and since
supp f ∈ B(0, 3M1) \B(0, 2M1) we have∫

R3

∫ 1

0

(1− t)[∇Φ(x− ty)y]f(y)dydt =

∫
R3

f(y)G(x, y)dy.

Moreover, we have for all t ∈ [0, 1], |x| > 4M1 > 7/2M1 > |y| > 2M1

|x− ty| ≥ |x| − t|y| ≥ |x| − |y| ≥ 1

8
|x|,

this yields using the decay property of the Oseen tensor for all |x| > 4M1 and y ∈
B(0, 7/2M1) \B(0, 2M1)

‖G(·, x)‖W 1,∞ ≤
C(M1)

|x|2
.

Hence ∣∣∣∣∫
R3

f(y)G(x, y)dy

∣∣∣∣ ≤ ‖f‖Ḣ−1(R3)‖G(·, x)‖H1
0 (B(0,7/2M1)\B(0,2M1))

≤ C(M1)
(|A1(ξ) + A2(ξ)|)(|U1|+ |U2|)

|x|2
,

we conclude by using the fact that |ξ| ≤ M1 and the uniform bounds on A1 + A2, see
Remark 0.3. �
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2. The method of reflections

In this section, we aim to show that the method of reflections holds true in the special
case where the minimal distance and the radius R are of the same order. The idea is to
approach the velocity field uN by the particular solutions developed in the section above.
We recall that uN is the unique solution to the following Stokes problem :{

−∆uN +∇pN = 0,
div uN = 0,

on R3 \
N⋃
i=1

B̄i,

completed with the no-slip boundary conditions :
uN = U i

1 , on ∂B(xi1, R),
uN = U i

2 , on ∂B(xi2, R),
lim
|x|→∞

|uN(x)| = 0,

where (U i
1, U

i
2) ∈ R3 × R3 , 1 ≤ i ≤ N are such that:F i

1

F i
2

 = −

mg
mg

 , ∀ 1 ≤ i ≤ N.

Thanks to the superposition principle, the sum of the N solutions
∑N

i=1 U [U i
1, U

i
2] satisfies

a Stokes equation on R3 \
N⋃
i=1

Bi, but does not match the boundary conditions. Hence, we

define the error term:

U [u(1)∗ ] = u−
N∑
i=1

U [U i
1, U

i
2],

which satisfies a Stokes equation on R3 \
N⋃
i=1

Bi completed with the following boundary

conditions for all 1 ≤ i ≤ N , α = 1, 2 and x ∈ B(xiα, R) :

u(1)∗ (x) = −
∑
j 6=i

U [U i
1, U

i
2](x).

We set then for α = 1, 2 and 1 ≤ i ≤ N :

U i,(1)
α := u(1)∗ (xiα),

and reproduce the same approximation to obtain:

U [u(2)∗ ] := u−
N∑
i=1

(
U [U i

1, U
i
2] + U [U

i,(1)
1 , U

i,(1)
2 ]

)
,
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which satisfies a Stokes equation with the following boundary conditions for all 1 ≤ i ≤ N ,
α = 1, 2 and x ∈ B(xiα, R):

u(2)∗ (x) = u(1)∗ (x)− u(1)∗ (xiα)−
∑
j 6=i

U [U
i,(1)
1 , U

i,(1)
2 ](x).

By iterating the process, one can show that for all k ≥ 1 we have:

u =
k∑
p=0

N∑
i=1

U [U
i,(p)
1 , U

i,(p)
2 ] + U [u(k+1)

∗ ],

where for all α = 1, 2, 1 ≤ i ≤ N and p ≥ 0:

u(p+1)
∗ (x) = u(p)∗ (x)− u(p)∗ (xiα)−

∑
j 6=i

U [U
i,(p)
1 , U

i,(p)
2 ](x) ,

u(0)∗ =
N∑
i=1

U i
1 1B(xi1,R) + U i

2 1B(xi2,R) ,

U i,(p)
α = u(p)∗ (xiα) ,

U i,(0)
α = U i

α .(34)

The convergence is analogous to the convergence proof in [31, Section 3.1]. We begin by
the following estimates that are needed in the computations.

Lemma 2.1. Under assumptions (7), (10) we have for all 1 ≤ i 6= j ≤ N , 1 ≤ α, β ≤ 2:

(35) |xi+ − x
j
β| ≥

1

2
|xi+ − x

j
+|.

The first step is to show that the sequence max
i

(max(|U i,(p)
1 |, |U i,(p)

2 |)) converges when p

goes to infinity.

Lemma 2.2. Under assumptions (7), (8), (10) and the assumption that r0‖ρ‖1/3L∞(0,T ;L∞(R3))

is small enough, there exists a positive constant K < 1/2 satisfying for all 1 ≤ i ≤ N ,
p ≥ 0

max
i

(max(|U i,(p+1)
1 |, |U i,(p+1)

2 |)) ≤ Kmax
i

(max(|U i,(p)
1 |, |U i,(p)

2 |)),
for N large enough.

Proof. According to formulas (32) and Lemma 2.1, we have for all α = 1, 2 and 1 ≤ i ≤ N :

|U i,(p+1)
α | ≤

∣∣∣∣∣∑
j 6=i

U [U
j,(p)
1 , U

j,(p)
2 ](xiα)

∣∣∣∣∣
.
Cr0
N

(∑
j 6=i

1

dij

)
max
j

(|U j,(p)
1 |, |U j,(p)

2 |)

≤ Cr0

(
‖ρ‖L∞(0,T ;L∞(R3)

W 3
∞

dmin

+ ‖ρ‖1/3L∞(0,T ;L∞(R3)

)
,
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where we used Lemma A.1 for k = 1. Hence, the first term in the right-hand side vanishes
according to (10) and (14).

Finally, if we assume that r0‖ρ‖1/3L∞(0,T ;L∞(R3)) is small enough, we obtain the existence of a

positive constant K < 1/2 such that:

max
i

(max(|U i,(p+1)
1 |, |U i,(p+1)

2 |)) ≤ Kmax
i

(max(|U i,(p)
1 |, |U i,(p)

2 |)).

�

We have the following result.

Proposition 2.3. Under the same assumptions as Lemma 2.2, we have for N large enough:

lim
k→∞
‖∇U [u(k+1)

∗ ]‖2 . R max
1≤i≤N
α=1,2

|U i
α|.

Proof. The proof is analogous to the convergence proof of [31, Proposition 3.4]. This is
due to the fact that the particular solutions have the same decay rate as the Oseen-tensor,
see (32). �

2.1. Two particular cases.

2.1.1. First case. Given W ∈ R3 we consider in this part w the unique solution to the
Stokes equation (2) completed with the following boundary conditions :

(36) w =

 W on B(x11, R),
−W on B(x12, R),

0 on B(xi1, R) ∪B(xi2, R), i 6= 1.

We denote by W i,(p)
α , α = 1, 2, 1 ≤ i ≤ N , p ∈ N the velocities obtained from the method

of reflections applied to the velocity field w. In other words :

w =
k∑
p=0

∑
i

U [W i,(p)
1 ,W i,(p)

2 ] + U [w(k+1)
∗ ].

We aim to show that, in this special case, the sequence of velocities W i,(p)
α and the error

term U [w
(k)
∗ ] are much smaller than before. This is due to the initial vanishing boundary

conditions for i 6= 1. Indeed we have :

Proposition 2.4. There exists two positive constants C > 0 and L = L(‖ρ‖L∞(0,T ;L∞(R3)))
such that for N large enough:

max
α=1,2

|W i,(p+1)
α | ≤ C(2Cr0L)p

R|x1−|
|x1+ − xi+|2

|W | , i 6= 1 , p ≥ 0,

max
α
|W1,(p+1)

α | ≤ C2p−1(r0CL)p|x1−|
R

dmin

|W | , p ≥ 1,

max
α
|W i,(0)

α |+ max
α
|W1,(1)

α | = 0 , i 6= 1.
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Proof. We show that the statement holds true for p = 0 then we prove it for all p ≥ 1 by
induction. According to formula (34) we have for p = 0:

W1,(0)
α = Wδα1 −Wδα2,

and for i 6= 1, α = 1, 2, U
i,(0)
α = 0. Using (30), this yields for i 6= 1, α = 1, 2:

W i,(1)
α = U [W1,(0)

1 ,W1,(0)
2 ](xiα),

= −Φ(x1+ − xiα)(F 1
1 + F 1

2 ) +R[W,−W ](xiα),

where:

F 1
1 = −6πR(A1(s

1)− A2(s
1))W, F 1

2 = −6πR(A2(s
1)− A1(s

1))W.

Hence, F 1
2 = −F 1

1 we have then using Lemma 2.1 and the decay rate (31) for R[W,−W ]

|W i,(1)
α | . R2 |W |

d2i1
. R|x1−|

|W |
d2i1

,

where we used the fact that R is comparable to |x1−| thanks to (7). Thus, we denote by
C > 0 the maximum between the global constant appearing in (32) and the one in the
above estimate.
This shows that the first statement holds true for p = 0. For the second estimate we have

|W1,(1)
α | = 0 and for p = 1 we have using the decay rate (32)

|W1,(2)
α | =

∣∣∣∣∣∑
j 6=1

U [Wj,(1)
1 ,Wj,(1)

2 ](x1α)

∣∣∣∣∣ ,
≤ C

∑
j 6=1

R

d1j
max(|Wj,(1)

1 |, |Wj,(1)
2 |),

≤ C
∑
j 6=1

(
CR2|x1−|
d31j

)
|W |,

≤ C
|x1−|R
dmin

Cr0(E1‖ρ‖∞ + ‖ρ‖2/3∞ ) |W | ,

where we used Lemma A.1 for k = 2 and assumption (10). We define then the constant
L > 0 as the constant satisfying:

(37) max
i

(
1

N

∑
j 6=i

(
1

d2ij

)
+

1

N

∑
j 6=1,i

(
1

dij
+

1

d1j

))
. E1‖ρ‖L∞(0,T ;L∞(R3)) + ‖ρ‖1/3L∞(0,T ;L∞(R3)) + ‖ρ‖2/3L∞(0,T ;L∞(R3)) := L.
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Now for all p ≥ 1, i 6= 1 we have using again (32)

|W i,(p+1)
α | =

∣∣∣∣∣∑
j 6=i

U [Wj,(p)
1 ,Wj,(p)

2 ](xiα)

∣∣∣∣∣
≤ C

∑
j 6=i

R

dij
max(|Wj,(p)

1 |, |Wj,(p)
2 |),

≤ C
(∑
j 6=i,1

R

dij
C(2Cr0L)p−1

R|x1−|
d21j

+
R

di1

R|x1−|
dmin

C2p−2(r0CL)p−1
)
|W |,

using the fact that 1
dijdkj

≤ 1
dik

(
1
dij

+ 1
dkj

)
we obtain

|W i,(p+1)
α | ≤ C

(R|x1−|
di1

C(2Cr0L)p−1

(
1

d1i

∑
j 6=i,1

(
R

dij
+

R

d1j

)
+
∑
j 6=i,1

R

d21j

)

+
R

di1

R|x1−|
dmin

C2p−2(r0CL)p−1
)
|W |,

≤ C
R|x1−|
di1

(
C(2Cr0L‖)p−1

(
r0L

d1i

)
+

R

dmin

C2p−2(r0CL)p−1
)
|W |,

≤ C
R|x1−|
d2i1

(
(Cr0L)p2p−1 +

Rdi1
dmin

C2p−2(r0CL)p−1
)
|W |.

Since Rd1i
dmin

� r0L, the second term can be bounded by (Cr0L)p 2p−2 which yields the

expected result because 2p−1 + 2p−2 ≤ 2p. We prove now the second estimate. Let p ≥ 1,
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using the decay rate (32) :

|W1,(p+1)
α | =

∣∣∣∣∣∑
j 6=1

U [Wj,(p)
1 ,Wj,(p)

2 ](x1α)

∣∣∣∣∣ ,
≤ C

∑
j 6=1

R

dj1
max(|Wj,(p)

1 |, |Wj,(p)
2 |),

≤ C

(∑
j 6=1

R

d1j
C(2Cr0L

R|x1−|
d21j

)
|W |,

≤ C(2Cr0L)p−1C
R

dmin

|x1−|

(∑
j 6=1

R

d21j

)
|W |,

≤ C2p−1(Cr0L)p
R

dmin

|x1−||W |.

�

According to these estimates and the definition of L (37), if we assume that r0 max(‖ρ‖L∞(0,T ;L∞(R3)),

‖ρ‖1/3L∞(0,T ;L∞(R3)), ‖ρ‖
2/3

L∞(0,T ;L∞(R3))) is small enough to have 2LCr0 < 1 then the following

result holds true :

Corollary 2.5. Under the assumption that r0 max(‖ρ‖L∞(0,T ;L∞(R3)), ‖ρ‖1/3L∞(0,T ;L∞(R3)), ‖ρ‖
2/3

L∞(0,T ;L∞(R3)))

is small enough we have :

∞∑
p=0

max
α=1,2

|W i,(p)
α | .

R|x1−|
|x1+ − xi+|2

|W | , i 6= 1,

∞∑
p=1

max
α=1,2
|W1,(p)

α | .
R|x1−|
dmin

|W |,

for N large enough.

This result shows that we can obtain a better estimate for the error term of the method
of reflections in this particular case:

Proposition 2.6. We set η := 2CLr0 < 1 the constant introduced in Proposition 2.4. For
all i 6= 1 we have up to a constant depending on ‖ρ‖∞

‖∇w(k)
∗ ‖L∞(Bi) .

R|x1−|
d3i1
|W |,

‖w(k+1)
∗ ‖L∞(Bi) . R‖∇w(k)

∗ ‖L∞(Bi) +
R

d21i
|x1−|ηk−1|W |.
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And for i = 1 we have :

‖∇w(k)
∗ ‖L∞(B1) .

R

dmin

|x1−|
(
W 3
∞

d3min

+ | logW∞|
)
|W |,

‖w(k+1)
∗ ‖L∞(B1) . R‖∇w(k)

∗ ‖L∞(B1) +
R

dmin

|x1−|ηk−1|W |,

Proof. Estimate for ‖∇w(k)
∗ ‖∞.

Let x ∈ B(xiα, R), with α = 1, 2 and i 6= 1, formula (34) yields:

|∇w(k+1)
∗ (x)| ≤ |∇w(k)

∗ (x)|+
∑
j 6=i

|∇U [Wj,(k)
1 ,Wj,(k)

2 ](x)|,

≤
k∑
p=0

∑
j 6=i

|∇U [Wj,(p)
1 ,Wj,(p)

2 ](x)|,

≤
k∑
p=0

∑
j 6=i,1

|∇U [Wj,(p)
1 ,Wj,(p)

2 ](x)|+
k∑
p=1

|∇U [W1,(p)
1 ,W1,(p)

2 ](x)|

+ |∇U [W1,(0)
1 ,W1,(0)

2 ](x)|.

We estimate the first term applying Corollary 2.5 and the same arguments as before

k∑
p=0

∑
j 6=i,1

|∇U [Wj,(p)
1 ,Wj,(p)

2 ](x)| ≤ C
k∑
p=0

∑
j 6=i,1

(
R

d2ij

)
max
α=1,2

|W j,(p)
α |,

.
∑
j 6=i,1

(
R

d2ij

R|x1−|
d21j

)
|W |,

.
R|x1−|
d21i

∑
j 6=i,1

(
R

d2ij
+

R

d21j

)
|W |,

.
R|x1−|
d21i
|W |.

We reproduce the same for the second term applying Corollary 2.5:

k∑
p=1

|∇U [W1,(p)
1 ,W1,(p)

2 ](x)| ≤ C
k∑
p=1

(
R

|x1+ − xi+|2

)
max(|W1,(p)

1 |, |W1,(p)
2 |),

.
R

|x1+ − xi+|2
R

dmin

|x1−||W |.
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For the last term, according to (30) we have :

∇U [W1,(0)
1 ,W1,(0)

2 ](x) = −∇Φ(x1+ − x)(F 1
1 + F 1

2 ) +∇R[W1,(0)
1 ,W1,(0)

2 ](x),

as (W1,(0)
1 ,W1,(0)

2 ) = (W,−W ) we have:

{
F 1
1 = −6πR(A1(ξ1)W − A2(ξ1)W ),
F 1
2 = −6πR(A2(ξ1)W − A1(ξ1)W ).

Thus F 1
2 = −F 1

1 and we obtain using the decay rate of R (31) together with the fact that
|x1−| is comparable to R thanks to assumption (7) :

∣∣∣∇U [W1,(0)
1 ,W1,(0)

2 ](x)
∣∣∣ . R|x1−|
|x1+ − xi+|3

|W |, ∀x ∈ B(xiα, R), i 6= 1

Gathering all the inequalities we have for i 6= 1:

‖∇w(k)
∗ ‖L∞(Bi) .

R|x1−|
|x1+ − xi+|3

|W |.

Analogously for i = 1 we apply Lemma A.1 for k = 3 and obtain up to a constant depending
on ‖ρ‖∞:

|∇w(k+1)
∗ (x)| ≤ |∇w(k)

∗ (x)|+
∑
j 6=1

|∇U [Wj,(k)
1 ,Wj,(k)

2 ](x)|,

≤
k∑
p=0

∑
j 6=1

|∇U [Wj,(p)
1 ,Wj,(p)

2 ](x)|,

≤ C
k∑
p=0

∑
j 6=1

(
R

d21j

)
max(|Wj,(p)

1 |, |Wj,(p)
2 |),

.
∑
j 6=1

(
R

d21j

R|x1−|
d21j

)
|W |,

.
R|x1−|
dmin

(
W 3
∞

d3min

+ | logW∞|
)
|W |.
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Estimate for ‖w(k)
∗ ‖∞. Let x ∈ B(xiα, R), α = 1, 2, i 6= 1. We have according to formula

(34) :

|w(k+1)
∗ (x)| =

∣∣∣∣∣w(k)
∗ (x)− w(k)

∗ (xiα)−
∑
j 6=i

U [Wj,(k)
1 ,Wj,(k)

2 ](x)

∣∣∣∣∣ ,
≤ R‖∇w(k)

∗ ‖∞ +
∑
j 6=i

∣∣∣U [Wj,(k)
1 ,Wj,(k)

2 ](x)
∣∣∣ ,

≤ R‖∇w(k)
∗ ‖∞ + C

∑
j 6=i

R

dij
max(|Wj,(k)

1 |, |Wj,(k)
2 |),

. R‖∇w(k)
∗ ‖∞ +

(∑
j 6=i,1

R

dij
ηk−1

R

d21j
+

R

d1i
ηk−1

R

dmin

)
|x1−||W |.

where η = 2Cr0L < 1 is the constant appearing in Proposition 2.4. Reproducing the same
computations as before yields:

‖w(k+1)
∗ ‖L∞(Bi) . R‖∇w(k)

∗ ‖∞ +
R

d21i
|x1−|ηk−1|W |.

In the case i = 1 we have:

|w(k+1)
∗ (x)| =

∣∣∣∣∣w(k)
∗ (x)− w(k)

∗ (xiα)−
∑
j 6=i

U [Wj,(k)
1 ,Wj,(k)

2 ](x)

∣∣∣∣∣ ,
≤ R‖∇w(k)

∗ ‖∞ + C
∑
j 6=1

R

d1j
max(|Wj,(k)

1 |, |Wj,(k)
2 |),

. R‖∇w(k)
∗ ‖∞ +

∑
j 6=1

R

d1j
ηk−1

R

d21j
|x1−||W |,

. R‖∇w(k)
∗ ‖∞ +

R

dmin

|x1−|ηk−1|W |.

�

Thanks to these estimates we have the following convergence rate:

Proposition 2.7.

lim
k→∞
‖∇U [w(k+1)

∗ ]‖2 . R|x1−||W |.
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Proof. Reproducing exactly the same proof as in [31, Proposition 3.4], the main difference
appears in the last estimate where we apply Proposition 2.6:

‖∇U [w(k+1)
∗ ]‖22 . R3

∑
i

(
‖∇w(k+1)

∗ ‖L∞(Bi) +
1

R
‖w(k+1)
∗ ‖L∞(Bi)

)2

,

. R3
[∑
i 6=1

(
R2

d61i
+

1

d41i
η2(k−1)

)

+
R2

d2min

(
W 3
∞

d3min

+ | logW∞|
)2

+
1

d2min

η2(k−1)
]
|x1−|2|W |2,

.

(
R4

d3min

+
R2

dmin

η2(k−1)
)(

W 3
∞

d3min

+ | logW∞|
)
|x1−|2|W |2

+ |x1−|2|W |2
R5

d2min

(
W 3
∞

d3min

+ | logW∞|
)2

+
R3

d2min

η2(k−1)|x1−|2|W |2 .

Taking the limit when k goes to infinity we get:

‖∇U [w(k+1)
∗ ]‖22 . R2|x1−|2|W |2

{
R2

d3min

(
W 3
∞

d3min

+ | logW∞|
)

+
R3

d2min

(
W 3
∞

d3min

+ | logW∞|
)2
}
.

The term inside brackets is bounded as follows:

R2

d3min

(
W 3
∞

d3min

+ | logW∞|
)

+
R3

d2min

(
W 3
∞

d3min

+ | logW∞|
)2

≤ R2

d2min

W 3
∞

d2min

+R| logW∞|+
R

d2min

(
R

dmin

W 3
∞

d2min

+R| logW∞|
)2

,

we recall that R
dmin

< +∞ and R
d2min
≤ r0

2
‖ρ‖∞W 3

∞
d2min

according to (12). �

2.1.2. Second case. Given W ∈ R3 we consider in this part w the unique solution to the
Stokes equation (2) completed with the following boundary conditions :

(38) w =

 W on B(x11, R),
W on B(x12, R),

0 on B(xi1, R) ∪B(xi2, R), i 6= 1.

Denote by W i,(p)
α , α = 1, 2, 1 ≤ i ≤ N , p ∈ N the velocities obtained from the method of

reflections applied to the velocity field w. In other words :

w =
∞∑
p=0

∑
i

U [W i,(p)
1 ,W i,(p)

2 ] +O(R).

We aim to show that, in this special case, the sequence of velocities W i,(p)
α are also smaller

than the general case. This is due to the initial boundary conditions which vanish for i 6= 1.
Indeed we have :
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Proposition 2.8. There exists two positive constants C > 0 and L = L(‖ρ‖L∞(0,T ;L∞(R3)))
such that :

max
α=1,2

|W i,(p+1)
α | ≤ C(2Cr0L)p

R

|x1+ − xi+|
|W | , i 6= 1 , p ≥ 0,

max
α
|W1,(p+1)

α | ≤ C2p−1(r0CL)pR |W | , p ≥ 1,

max
α
|W1,(1)

α | = 0,

for N large enough.

Proof. The proof is analogous to the one of Proposition 2.4. �

According to these estimates, if we assume that r0 max(‖ρ‖L∞(0,T ;L∞(R3)), ‖ρ‖1/3L∞(0,T ;L∞(R3)),

‖ρ‖2/3L∞(0,T ;L∞(R3))) is small enough to have 2LCr0 < 1 then the following result holds true:

Corollary 2.9. We have for N large enough:
∞∑
k=0

max
α=1,2

|W i,(p+1)
α | . R

|x1+ − xi+|
|W | , i 6= 1,

∞∑
k=0

max
α
|W1,(p+1)

α | . R |W |.

3. Extraction of the first order terms for the velocities

This section is devoted to the computation of the velocities U i
+, U

i
− for 1 ≤ i ≤ N . The

idea of proof is to apply the method of reflections to the velocity field uN as presented
above and we set :

∞∑
p=0

U i,(p)
α = U i,∞

α , 1 ≤ α ≤ 2 , 1 ≤ i ≤ N,

we also use the following notations for the forces associated to the solutions U [U i,∞
1 , U i,∞

2 ]:

F i,∞
1 = −6πR(A1(ξi)U

i,∞
1 + A2(ξi)U

i,∞
2 ),

F i,∞
2 = −6πR(A2(ξi)U

i,∞
1 + A1(ξi)U

i,∞
2 ).(39)

3.1. Preliminary estimates.

Proposition 3.1. If r0‖ρ‖L∞(0,T ;L∞(R3)), ‖ρ‖1/3L∞(0,T ;L∞(R3)), ‖ρ‖
2/3

L∞(0,T ;L∞(R3))) is small enough

and assumptions (7), (8) (10) hold true we have for N large enough and for all 1 ≤ i ≤ N

U i
1 + U i

2

2
= (A1(ξi) + A2(ξi))

−1 m

6πR
g

+
1

2

∑
j 6=i

(
U [U j,∞

1 , U j,∞
2 ](xi1) + U [U j,∞

1 , U j,∞
2 ](xi2)

)
+O(

√
R) max

1≤i≤N
α=1,2

|U i
α|.
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U i,∞
1 + U i,∞

2

2
= (A1(ξi) + A2(ξi))

−1 m

6πR
g +O(

√
R) max

1≤i≤N
α=1,2

|U i
α|.

Proof. We prove the formula for i = 1 and the same holds true for all 1 ≤ i ≤ N . We set
w the unique solution to the Stokes equation (2) completed with the following boundary
conditions :

(40) w =

 W on B(x11, R),
W on B(x12, R),

0 on B(xi1, R) ∪B(xi2, R), i 6= 1,

with W an arbitrary vector of R3. We use the method of reflections to obtain :

2mg ·W = 2

∫
D(uN) : ∇w

= −(F 1,∞
1 + F 1,∞

2 ) ·W + lim
k→∞

2

∫
D
(
U [u(k+1)

∗ ]
)

: ∇w.

For the last term we apply again the method of reflections to the velocity field w, see
Section 2.1.2. We set:

w1 =
k∑
p=0

N∑
i=1

U [W i,(p)
1 ,W i,(p)

2 ] :=
N∑
i=1

U [W i,∞
1 ,W i,∞

2 ],

with
‖∇w −∇w1‖L2(R3\

⋃
i
Bi)
≤ R|W |.

We obtain :

2

∫
D
(
U [u(k+1)

∗ ]
)

: ∇w = 2

∫
∇U [u(k+1)

∗ ] : D (w1) + 2

∫
D
(
U [u(k+1)

∗ ]
)

: ∇(w − w1).

Thanks to the method of reflections, the second term on the right hand side can be bounded
by R2|W | max

1≤i≤N
α=1,2

|U i
α| (see Proposition 2.3). For the first term, direct computations using (27)

show that

‖∇w1‖L2(R3\
⋃
i
Bi)
≤
∑
i

∥∥∇U [W i,∞
1 ,W i,∞

2 ]
∥∥
L2(R3\Bi)

,

=
∑
i

(
−
∫
∂B(xi1,R)∪∂B(xi2,R)

Σ
(
U [W i,∞

1 ,W i,∞
2 ], P [W i,∞

1 ,W i,∞
2 ]
)
n · U [W i,∞

1 ,W i,∞
2 ]dσ

)1/2
=
∑
i

(
6πR

(
A1(ξi)W i,∞

1 + A2(ξi)W i,∞
2

)
· W i,∞

1

+ 6πR
(
A2(ξi)W i,∞

1 + A1(ξi)W i,∞
2

)
· W i,∞

2

)1/2
≤ C
√
R
∑
i

(∣∣W i,∞
1

∣∣+
∣∣W i,∞

2

∣∣) .
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Using Corollary 2.9 we get that ‖∇w1‖L2(R3\
⋃
i
Bi)
≤ C
√
R|W |. Finally, we have:

2mg ·W = −(F 1,∞
1 + F 1,∞

2 ) ·W +O(R
√
R)|W | max

1≤i≤N
α=1,2

|U i
α|.

This being true for all W ∈ R3 it yields:

2mg = −(F 1,∞
1 + F 1,∞

2 ) +O(R
√
R) max

1≤i≤N
α=1,2

|U i
α|.

Using the definitions of F 1,∞
1 and F 1,∞

2 , see (39), this becomes:

2mg = 6πR(A1(ξ1) + A2(ξ1))(U
1,∞
1 + U1,∞

2 ) +O(R
√
R) max

1≤i≤N
α=1,2

|U i
α|.

Recall that A1(ξ) and A2(ξ) are of the form h1(|ξ|)I + h2(|ξ|) ξ⊗ξ|ξ|2 . Moreover, according

to formulas (29) A1 + A2 (resp. A1 − A2) is invertible and its inverse is (a1 + a2) (resp.
a1 − a2). Thus :

(41) U1,∞
1 +U1,∞

2 = 2(A1(ξ1) +A2(ξ1))
−1 m

6πR
g+

1

6π
(A1(ξ1) +A2(ξ1))

−1O(
√
R) max

1≤i≤N
α=1,2

|U i
α|.

We use the fact that ‖(A1(ξ1) + A2(ξ1))
−1‖ is uniformly bounded independently of the

particles and N to get

U1,∞
1 + U1,∞

2 = 2(A1(ξ1) + A2(ξ1))
−1 m

6πR
g +O(

√
R) max

1≤i≤N
α=1,2

|U i
α|.

On the other hand, as (U
1,(0)
1 , U

1,(0)
2 ) = (U1

1 , U
1
2 ) we rewrite formula (41) as :

U1
1+U1

2 = −
∞∑
p=1

(U
1,(p)
1 +U

1,(p)
2 )+(A1(ξ1)+A2(ξ1))

−1 m

6πR
g+2

1

6π
(A1(ξ1)+A2(ξ1))

−1O(
√
R) max

1≤i≤N
α=1,2

|U i
α|.

Using again formula (34) this yields :

U1
1 + U1

2 =
∞∑
p=1

∑
j 6=1

U [U
j,(p−1)
1 , U

j,(p−1)
2 ](x11) + U [U

j,(p−1)
1 , U

j,(p−1)
2 ](x12),

+ 2(A1(ξ1) + A2(ξ1))
−1 m

6πR
g +

1

6π
(A1(ξ1) + A2(ξ1))

−1O(
√
R) max

1≤i≤N
α=1,2

|U i
α|,

=
∑
j 6=1

(
U [U j,∞

1 , U j,∞
2 ](x11) + U [U j,∞

1 , U j,∞
2 ](x12)

)
+ 2(A1(ξ1) + A2(ξ1))

−1 m

6πR
g,

+
1

6π
(A1(ξ1) + A2(ξ1))

−1O(
√
R) max

1≤i≤N
α=1,2

|U i
α|.

We conclude by emphasizing that ‖(A1 + A2)
−1‖ can be uniformly bounded. �
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Applying the same ideas we obtain the following result:

Proposition 3.2. for all 1 ≤ i ≤ N we have :

U i
1 − U i

2 =
∑
j 6=i

(
U [U j,∞

1 , U j,∞
2 ](xi1)− U [U j,∞

1 , U j,∞
2 ](xi2)

)
+O(

√
R|xi−|) max

1≤i≤N
α=1,2

|U i
α|.

U i,∞
1 − U i,∞

2 = O(
√
R|xi−|) max

1≤i≤N
α=1,2

|U i
α|.

Proof. The proof is analogous to the one of Proposition 3.1. The idea is to consider this time
w the unique solution to the Stokes equation (2) completed with the following boundary
conditions :

(42) w =

 W on B(x11, R),
−W on B(x12, R),

0 on B(xi1, R) ∪B(xi2, R), i 6= 1,

with W an arbitrary vector of R3. Using the method of reflections, Propositions 2.7 and
2.3 we obtain the desired result. �

3.2. Estimates for ẋi+. Propositions 3.1 and 3.2 yields the following result:

Corollary 3.3. For all 1 ≤ i ≤ N we have :

U i
+ := (A(ξi))

−1κg +
6πr0
N

∑
j 6=i

Φ(xi+ − x
j
+)κg +O(dmin),

where A = A1 + A2.

Proof. First of all, from Propositions 3.1 and 3.2 we can show that the velocities U i
α are

uniformly bounded with respect to N for all 1 ≤ i ≤ N and α = 1, 2. Indeed, using formula
(34) together with the decay properties (32) and Propositions 3.1 and 3.2 we have :

max
α=1,2

1≤i≤N

|U i
α| ≤ max

1≤i≤N
(|U i

+|+ |U i
−|),

. 1 + max
1≤i≤N

(|U i,∞
+ |+ |U

i,∞
− |) +O(

√
R) max

α=1,2

1≤i≤N

|U i
α|,

. 1 +O(
√
R) max

α=1,2

1≤i≤N

|U i
α|.

This allows us to bound the terms max
α=1,2

1≤i≤N

|U i
α| by a constant independent of N in the esti-

mates of Propositions 3.1 and 3.2. From Proposition 3.2 we have

U i
+ = (A1(ξi) + A2(ξi))

−1 m

6πR
g +

1

2

∑
j 6=i

(
U [U j,∞

1 , U j,∞
2 ](xi1) + U [U j,∞

1 + U j,∞
2 ](xi2)

)
+O(

√
R).
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We recall that using (30) we have

U [U j,∞
1 , U j,∞

2 ](xi1) + U [U j,∞
1 , U j,∞

2 ](xi2) = −(Φ(xj+ − xi1) + Φ(xj+ − xi2))(F
j,∞
1 + F j,∞

2 )

+R[U j,∞
1 , U j,∞

2 ](xi1) +R[U j,∞
1 , U j,∞

2 ](xi2)

recall that F j,∞
+ = −mg + O(R

√
R), see proof of Propositions 3.2 and 3.1. Hence, we

replace F j
1 + F j

2 = 2F j,∞
+ by −2mg with 6πRκg = mg and bound the error terms using

the decay properties of the Oseen tensor Φ and the field R, see (31)∑
j 6=i

∣∣Φ(xj+ − xi1) + Φ(xj+ − xi2)
∣∣O(R

√
R)+

∣∣R[U j,∞
1 , U j,∞

2 ](xi1) +R[U j,∞
1 , U j,∞

2 ](xi2)
∣∣ ≤ C

√
R+CR.

Now it remains to replace both terms Φ(xj+ − xi1), Φ(xj+ − xi2) by Φ(xi+ − xj+). Direct
computations show that for all 1 ≤ α ≤ 2 we have |xi+ − xiα| = |xi−|, which yields for all
1 ≤ α,≤ 2: ∑

j 6=i

|Φ(xj+ − xiα)− Φ(xj+ − xi+)|6πR|κg| .
∑
j 6=i

|xi−|R
|x1+ − x

j
+|2
. |xi−|,

which is comparable to R according to assumption (7). Gathering all the estimates, the

error term is of order
√
R which is of order dmin according to assumption (10) and Remark

0.1.
�

3.3. Estimates for ẋi−. Analogously, Propositions 3.1 and 3.2 yields the following result:

Corollary 3.4. For all 1 ≤ i 6= N we have:

U i
1 − U i

2

2
=

(
6πr0
N

∑
j 6=i

∇Φ(xi+ − x
j
+)κg

)
· xi− +O

(
|xi−|dmin

)
.

Proof. The first formula of Proposition 3.2 together with the uniform bound on the veloc-
ities (U i

+, U
i
−), see proof of Corollary 3.3, yields:

U i
1 − U i

2 =
∑
j 6=i

U [U j,∞
1 , U j,∞

2 ](xi1)− U [U j,∞
1 , U j,∞

2 ](xi2) +O(
√
R|xi−|).

We want to estimate the first term, we have using (30)

U [U j,∞
1 , U j,∞

2 ](xi1)− U [U j,∞
1 , U j,∞

2 ](xi2)

= −Φ(xi1 − x
j
+)(F j,∞

1 + F j,∞
2 ) + Φ(xi2 − x

j
+)(F j,∞

1 + F j,∞
2 ),

= −4[∇Φ(xi2 − x
j
+) · xi−]F j,∞

+

− 2

∫ 1

0

∑
|β|=2

(xi−)β ·DβΦ(xi2 − x
j
+ + txi−)F j,∞

+ dt

= −4[∇Φ(xi+ − x
j
+) · xi−]F j,∞

+ + E1i,j + E2i,j.
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Now recall that, from the proof of Proposition 3.1 we have:

F j,∞
+ = −mg +O(R2).

Thus, we get the following formula:

U [U j,∞
1 , U j,∞

2 ](xi1)− U [U j,∞
1 , U j,∞

2 ](xi2) = 2[∇Φ(xi+ − x
j
+) · xi−]mg + E1i,j + E2i,j + E3j ,

with

E3j = −4[∇Φ(xi+ − x
j
+) · xi−](F j,∞

+ +mg).

We recall that mg = 6πRκg = 1
2
6πr0
N
g. Finally we obtain:

U i
1 − U i

2

2
=

6πr0
N

∑
j 6=i

[∇Φ(xi+ − x
j
+) · xi−]κg +

1

2

∑
j 6=i

E1i,j + E2i,j + E3j +O(
√
R|xi−|).

It remains to bound the error terms. We begin by the first one:

|E1i,j| ≤ 2

(
sup

y∈[xi1,xi2]

(
|∇2Φ(xj+ − y)|

))
|xi−|2(|F

j,∞
+ |).

We emphasize that for all y ∈ [xi1, x
i
2]:

|y − xj+| ≥ |xi1 − x
j
+| − |xi1 − y| ≥ |xi1 − x

j
+| − 2|xi−| ≥

1

4
|xi+ − x

j
+|,

where we used the fact that

|xi−| ≤
C

R
≤ 1

8
dmin ≤

1

8
|xi+ − x

j
+|,

and

|xi1 − x
j
+| ≥

1

2
|xi+ − x

j
+|,

This yields :∑
j 6=i

|E1i,j| ≤ C
∑
j 6=i

1

d3ij
|xi−|2Rκ|g| ≤ C|xi−|

R

dmin

(∑
j 6=i

R

d2ij

)
≤ C|xi−|

R

dmin

≤ Cdmin|xi−|.

For the second error term we have:

E2i,j = −2[∇Φ(xi2 − x
j
+)−∇Φ(xi+ − x

j
+)] · xi− · F

j,∞
+ ,

where

|∇Φ(xi2 − x
j
+)−∇Φ(xi+ − x

j
+)| ≤ C

(
1

|xi2 − x
j
+|3

+
1

|xi+ − x
j
+|3

)
|xi−|.

Since |xj−| ∼ R ∼ |xi−| the second error term is bounded by:∑
j 6=i

|E2i,j| ≤ C
∑
j 6=i

1

d3ij
|xi−|2Rκ|g|,
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which yields the same estimate as for the first error term. Finally, the last error term gives:∑
j 6=i

|E3i,j| ≤ 2|∇Φ(xi+ − x
j
+)| |xi−| |F

j,∞
+ +mg| ≤ CR2.

where we used the fact that F j,∞
+ = −mg +O(R2) and |xi−| ∼ R. �

4. Proof of Theorem 0.1

In order to derive the transport-Stokes equation satisfied at the limit, the idea is to
show that the discrete density µN satisfies weakly a transport equation. We introduce the
following notations. Given a density ρ, we define the operator Kρ as:

Kρ(x) := 6πr0

∫
R3

Φ(x− y)κg ρ(dy).

The operator is well defined and is Lipschitz in the case where ρ ∈ L1 ∩ L∞. Moreover,
note that Kρ satisfies the Stokes equation

−∆K(ρ) +∇p = 6πr0κgρ,

on R3. Analogously, we define KNρN as:

(43) KNρN(x) := 6πr0

∫
R3

χΦ(x− y)κg ρN(dy),

where χΦ(·) = χ
(
·

dmin

)
Φ(·), χ is a truncation function such that χ = 0 on B(0, 1/4) and

χ = 1 on cB(0, 1/2).

4.1. Derivation of the transport-Stokes equation. The transport equation satisfied
by µN is obtained directly using the ODE system derived for each couple (xi+, ξi). We
recall that:

U i
+ = (A(ξi))

−1κg +KNρN(xi+) +O(dmin),

U i
−

R
= ∇KNρN(xi+) · ξi +O (dmin) .

Following the idea of [31, Section 5.2], one can show that we can construct two divergence-
free velocity fields EN and ẼN such that :

U i
+ = (A(ξi))

−1κg +KNρN(xi+) + EN(xi+),(44)

U i
−

R
= ∇KNρN(xi+) · ξi + ẼN (ξi) ,

and there exists a positive constant independent of N such that

‖EN‖∞ = O(dmin), ‖ẼN‖∞ = O (dmin) , ‖∇EN‖∞ + ‖∇ẼN‖∞ < C.(45)

This construction yields the following result
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Proposition 4.1. µN satisfies weakly the transport equation:
(46)
∂tµ

N + divx[(A(ξ))−1κgµN +KNρN(x)µN +ENµN ] + divξ[∇KNρN(x) · ξµN + ẼNµN ] = 0.

We can prove now Theorem 0.1.

4.2. proof of Theorem 0.1. The proof is a corollary of Proposition 4.1. Indeed, we want
to show that for all ψ ∈ C∞c (R3) we have:

(47)

∫ T

0

∫
R3×R3

{
∂tψ(t, x, ξ) +∇xψ(t, x, ξ) · [(A(ξ))−1κg + 2Kρ(x)))]

+∇ξψ(t, x, ξ) · [∇Kρ(x) · ξ]
}
µ(t, dx, dξ)dt.

which is obtained directly by passing through the limit in each term of formula (46). Indeed
we recall that we have the following estimates:

‖KNρN −Kρ‖∞ . W∞,

‖∇KNρN −∇Kρ‖∞ . W∞(1 + | logW∞|),
‖EN‖∞ = O (dmin) , ‖ẼN‖∞ = O (dmin) .

5. Proof of theorem 0.2 and 0.3

This section is devoted to the proof of Theorem 0.2 and 0.3. The Lipschitz-like estimates
proved in Proposition B.3 suggests a correlation between the vectors along the line of
centers ξi and the centers xi+. In this section, we show in particular that this correlation
is well propagated in time.

5.1. Derivation of the transport-Stokes equation. We assume now that there exists
a lipschitz function F0 such that

ξi(0) = F0(x
i
+(0)) , 1 ≤ i ≤ N,

which means that µN0 = ρN0 ⊗ δF0 . In order to propagate this correlation we search for a
function FN(t, ·) ∈ W 1,∞(R3) such that for all t ∈ [0, T ] we have

ξi(t) = FN(t, xi+(t)) , 1 ≤ i ≤ N.

According to the ODE satisfied by ξi, see (44), FN must satisfy the following equation{
∂tF

N +∇FN · (A(FN)−1κg +KNρN + EN) = ∇KNρN · FN + ẼN(FN),
FN(0, ·) = F0.

The following proposition shows the existence and uniqueness of FN .

Proposition 5.1. There exists T >0 such that for all N ∈ N∗, there exists a unique (local)
solution FN ∈ L∞(0, T ;W 1,∞(R3)) of the following equation

(48)

{
∂tF

N +∇FN · (A(FN)−1κg +KNρN + EN) = ∇KNρN · FN + ẼN(FN),
FN(0, ·) = F0.
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Proof. The idea is to apply a fixed-point argument. We define the mapping A which
associates to any F ∈ L∞(0, T ;W 1,∞(R3)) the unique solution A(F ) = F̂ to the transport
equation

(49)

{
∂tF̂ +∇F̂ · (A(F )−1κg +KNρN + EN) = ∇KNρN · F + ẼN(F ),

F̂ (0, ·) = F0.

We define XN as the characteristic flow satisfying :

∂sX
N(s, t, x) = A(F (s,XN(s, t, x)))−1κg +KNρN(s,XN(s, t, x)) + EN(s,XN(s, t, x)).

XN(t, t, x) = x.

The Lipschitz property of A−1, F , KNρN and EN ensures the existence, uniqueness and
regularity of such a flow, see Proposition B.1 and formula (45). Moreover, direct estimates
show that for all 0 ≤ s ≤ t:
(50)
‖∇XN(s, t, ·)‖∞ ≤ exp(

[
|κg|‖∇A−1‖∞‖F‖L∞(0,T ;W 1,∞(R3)) + ‖KNρN + EN‖L∞(0,T ;W 1,∞(R3))

]
(t−s)).

Hence, we can write

F̂ (t, x) = F0(X
N(0, t, x))+

∫ t

0

∇KNρN(s,XN(s, t, x))·F (s,XN(s, t, x))+Ẽ(s, F (XN(s, t, x)))ds.

Direct computations yield

‖A(F )‖L∞(0,T ;L∞(R3)) ≤ ‖F0‖∞+T‖∇KNρN‖L∞(0,T ;L∞(R3))‖F‖L∞(0,T ;L∞(R3))+‖ẼN‖L∞(0,T ;L∞(R3)),

and

‖∇A(F )‖L∞(0,T ;L∞(R3)) ≤ [‖F0‖1,∞ + T
{
‖∇KNρN‖L∞(0,T ;W 1,∞(R3))

+ ‖ẼN‖L∞(0,T ;W 1,∞(R3))

}
‖F‖L∞(0,T ;W 1,∞(R3))]‖∇XN(·, t, ·)‖L∞(0,T ;L∞(R3)),

Gathering all the estimates and using Proposition B.1 and the uniform bounds (45), there
exists some constants independent of N such that:

(51) ‖A(F )‖L∞(0,T ;W 1,∞(R3)) ≤ (‖F0‖W 1,∞(R3) + TC1‖F‖L∞(0,T ;W 1,∞(R3)))e
C2T .

On the other hand, given F1, F2 ∈ L∞(0, T ;W 1,∞(R3)) we set Xi the associated charac-
teristic flow and we have

‖A(F1)(t, ·)−A(F2)(t, ·)‖∞ ≤(
‖∇F0‖∞ + t‖F1‖L∞(0,T ;W 1,∞(R3))‖KNρN‖L∞(0,T ;W 2,∞(R3))

)
‖X1(0, t, ·)−X2(0, t, ·)‖∞

+ t‖∇KNρN‖L∞(0,T ;L∞(R3))‖F1 − F2‖L∞(0,T ;L∞(R3)).

The characteristic flows satisfies

|X1(s, t, x)−X2(s, t, x)| ≤ ‖∇A−1‖∞
∫ t

s

‖F1(τ, ·)− F2(τ, ·)‖∞+

(‖F1‖L∞(0,T ;L∞)|κg|+ 2‖∇KNρN +∇EN‖L∞(0,T ;L∞))|X1(τ, t, x)−X2(τ, t, x)|dτ,
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hence

‖X1(s, t, ·)−X2(s, t, ·)‖∞ ≤
(∫ t

s

‖∇A−1‖∞‖F1(τ, ·)− F2(τ, ·)‖∞dτ
)
eC(t−s).

This yields

(52) ‖A(F1)−A(F2)‖L∞(0,T ;L∞(R3)) ≤ C(‖F1‖L∞(0,T ;W 1,∞(R3)))T ‖F1 − F2‖L∞(0,T ;L∞(R3)).

We construct the following sequence (Fk)k∈N ⊂ L∞(0, T ;W 1,∞(R3)) defined as{
F k+1 = A(F k) , k ∈ N ,
F 0 = F0 .

For T small enough and independent of N , using estimates (51) and (52), the sequence
(F k)k is bounded in L∞(0, T ;W 1,∞(R3)) and is a Cauchy sequence in the Banach space
L∞(0, T ;L∞(R3)). There exists a limit F ∈ L∞(0, T ;W 1,∞(R3)) such that F k → F in
L∞(0, T, L∞(R3)) and ∇F k ⇀ ∇F weakly-* in L∞(0, T, L∞(R3)). It remains to show that
F = A(F ). The weak formulation of the transport equation writes∫ T

0

∫
R3

(
∂tψ + div

(
ψ · [A−1(F k)κg +KNρN ]

))
F k =

∫ T

0

∫
R3

(
∇KNρN · F k + ẼN(F k)

)
·ψ,

for all ψ ∈ C1c ((0, T ) × R3). Using the strong convergence of FN to F and the weak-*
convergence of its derivative, we get∫ T

0

∫
R3

(
∂tψ + div

(
ψ · [A−1(F )κg +KNρN ]

))
F =

∫ T

0

∫
R3

(
∇KNρN · F + ẼN(F )

)
· ψ,

Uniqueness of the fixed-point is ensured thanks to estimate (51) and (52). �

Proposition 5.1 and formula (44) yield the following result

Corollary 5.2. There exists a unique solution of (48) FN ∈ L∞(0, T ;W 1,∞(R3)) such
that µN = (id, FN)#ρN and ρN satisfies weakly

(53) ∂tρ
N + div[(A(FN))−1κg +KNρN(x) + EN)ρN ] = 0.

5.2. proof of Theorem 0.2 and 0.3. In the previous part we showed the existence of a
unique function FN such that:

ξi = FN(xi+).

In order to provide the limit behaviour of the system, we need to extract the limit equation
satisfied by F = lim

N→∞
FN and to estimate and specify the convergence. It is straightforward

that the limit function F should satisfy the following equation:

(54)

{
∂tF +∇F · (A(F )−1κg +Kρ) = ∇Kρ · F, on [0, T ]× R3,

F (0, ·) = F0.

We begin with the proof of local existence and uniqueness of the solution to system (16).
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Proof of Theorem 0.3. Let p > 3, F0 ∈ W 2,p(R3), ρ0 ∈ W 1,p(R3) having compact support.
The idea is to apply a fixed-point argument. We define the operator A which associates to
each u ∈ L∞(0, T ;W 3,p(R3)) the following divergence free velocity

u 7→ F (u) 7→ ρ(u) 7→ A(u),

where F (u) ∈ L∞(0, T ;W 2,p(R3)) is the unique solution, see Proposition C.1, to the fol-
lowing equation{

∂tF +∇F · (A−1(F )κg + u) = ∇u · F, on [0, T ]× R3,
F (0, ·) = F0, on R3.

ρ(u) ∈ L∞(0, T ;W 1,p(R3)) is the unique solution, see Proposition C.2, to the transport
equation {

∂tρ+ div((A−1(F (u))κg + u)ρ) = 0, on [0, T ]× R3,
ρ(0, ·) = ρ0, on R3.

and A(u) = Kρ(u) = 6πr0Φ ∗ (κρ(u)g). The mapping is well-defined, indeed, since ρ0 ∈
W 1,p(R3) we have ρ ∈ L∞(0, T ;W 1,p(R3)), see Proposition C.2. Consequently, applying [9,
Theorem IV.2.1] shows that ∇3A(u), ∇2A(u) ∈ Lp(R3) and we have

‖∇3A(u)‖p ≤ C‖∇ρ(u)‖p, ‖∇2A(u)‖p ≤ C‖ρ(u)‖p.
On the other hand, since ρ(t, ·) ∈ Lp(R3) and is compactly supported, see Remark C.1, we
have in particular ρ(t, ·) ∈ Lq1(R3) ∩ Lq2(R3) with

q1 =
3p

3 + p
∈]3/2, 3[, q2 =

3p

3 + 2p
∈]1, 3/2[.

We apply again [9, Theorem IV.2.1] for q = q1 (resp. q = q2) to get ∇A(u) ∈ Lp(R3) (resp.
A(u) ∈ Lp(R3)) and we have according to [9, Formula IV.2.22] (resp. [9, Formula IV.2.23])

‖∇A(u)‖p ≤ C‖ρ(u)‖q1 , ‖A(u)‖p ≤ C‖ρ(u)‖q2 ,

Hence, since q1, q2 < 3 < p, Holder’s inequality yields

‖∇A(u)‖p + ‖A(u)‖p . (sup
[0,T ]

| supp ρ(u)(t, ·)|1/3 + sup
[0,T ]

| supp ρ(u)(t, ·)|2/3)‖ρ(u)‖p,

where sup
[0,T ]

| supp ρ(u)(t, ·)| depends on T , ‖A−1‖∞, ‖F‖L∞(0,T ;W 2,p(R3)) and ‖u‖L∞(0,T ;W 2,p(R3))

according to Remark C.1

(55) diam(supp(ρ(u)(t, ·)) ≤ C(ρ0, T, ‖u‖L∞(0,T ;W 2,p(R3)), ‖F‖L∞(0,T ;W 2,p(R3))),

Finally we have

‖A(u)‖L∞(0,T ;W 3,p(R3)) ≤ C(1 +M(T ))‖ρ(u)‖L∞(0,T ;W 1,p(R3)),(56)

‖A(u)‖L∞(0,T ;W 2,p(R3)) ≤ C(1 +M(T ))‖ρ(u)‖L∞(0,T ;Lp(R3)),(57)

M(T ) = sup
[0,T ]

| supp ρ(u)(t, ·)|1/3(1 + sup
[0,T ]

| supp ρ(u)(t, ·)|1/3).

We recall the following bounds, see Proposition C.2 and Proposition C.1

‖ρ(u)‖L∞(0,T ;W 1,p(R3)) ≤ ‖ρ0‖1,peCT , C = C(‖F (u)‖L∞(0,T ;W 2,p(R3)), ‖u‖L∞(0,T ;W 3,p(R3))).(58)
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According to Proposition C.1, for a small time interval we have for a fixed λ > 1

(59) ‖F (u)‖2,p ≤ λ‖F0‖2,p.

On the other hand, gathering the stability estimates of Proposition C.2 and Proposition
C.1 and (57) we get for ui ∈ W 3,p(R3), i = 1, 2

‖A(u1)− A(u2)‖L∞(0,T ;W 2,p(R3))

≤ C(1 +M(u1, u2)(T ))‖ρ(u1)− ρ(u2)‖L∞(0,T ;Lp(R3))

≤ C(1 +M(u1, u2)(T ))T
(
‖F (u1)− F (u2)‖L∞(0,T ;W 1,p(R3)) + ‖u1 − u2‖L∞(0,T ;W 1,p(R3))

)
eC1T

≤ C(1 +M(u1, u2)(T ))T (1 + T )‖u1 − u2‖L∞(0,T ;W 2,p(R3))e
C1T ,

where C depends on ‖ui‖L∞(0,T ;W 3,p(R3)), ‖F (ui)‖L∞(0,T ;W 2,p(R3)), ‖ρ(ui)‖L∞(0,T ;W 1,p(R3)) and

M(u1, u2)(T ) := sup
[0,T ]

| supp(ρ(u1)) ∪ supp(ρ(u2)|1/3(1 + sup
[0,T ]

| supp(ρ(u1)) ∪ supp(ρ(u2)|1/3),

. C(T, ‖ui‖L∞(0,T ;W 2,p(R3)), ‖Fi‖L∞(0,T ;W 2,p(R3)), supp(ρ0)).

We consider the following sequence{
uk+1 = A(uk) , k ∈ N ,
u0 = Kρ0 .

We set F k := A(uk), ρk := ρ(uk). Previous estimates show that the sequences (uk)k∈N,
(Fk)k∈N, (ρk)k∈N are uniformly bounded in L∞(0, T ;W 3,p(R3)), L∞(0, T ;W 2,p(R3)), L∞(0, T ;W 1,p(R3)),
respectively, and are Cauchy sequences in L∞(0, T ;W 2,p(R3)), L∞(0, T ;W 1,p(R3)), L∞(0, T ;Lp(R3)),
respectively for T small enough. Consequently, there exists (u, F, ρ) such that

uk → u in L∞(0, T ;W 2,p(R3)),

F k → F in L∞(0, T ;W 1,p(R3)),

ρk → ρ in L∞(0, T ;Lp(R3)).

This allows to pass through the limit in the weak formulations of uk and ρk. In addition, we
use the fact that ∇Fk converges weakly-* in L∞(0, T ;L∞(R3)) in order to pass through the
limit in the weak formulation of F k. Hence, the triplet (u, ρ, F ) satisfies equation (16). We
recover the regularity of each term using the a priori bounds. Uniqueness is a consequence
of the previous stability estimates. �

5.3. Proof of Theorem 0.2.

Proof of Theorem 0.2. We recall that W∞(ρN , ρ) → 0 according to (9). We want to show
that the triplet (ρN , FN ,KNρN) converges to (ρ, F,Kρ) the unique solution of equation
(16). From Proposition B.2 and using the same arguments as in Proposition C.1 we have

‖FN(t, ·)− F (t, ·)‖∞ ≤ C

∫ t

0

W∞(s)

(
1 + | logW∞(s)|) +

W 2
∞(s)

d2min

)
+ ‖EN‖∞ + ‖ẼN‖∞,
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where W∞(s) := W∞(ρN(s, ·), ρ(s, ·)). Hence FN converges to F in L∞(0, T ;L∞(R3)) and
KNρN converges to Kρ in L∞(0, T ;W 1,∞(R3)) if the Wasserstein distance is preserved in
finite time. This allows us to pass through the limit in the weak formulation of ρN∫ t

0

∫
R3

(
∂tψ +∇ψ ·

(
A−1(FN)κg +KNρN

))
ρN = 0.

�

Appendix A. Some preliminary estimates

This section is devoted to the proof of the following lemma which is analogous to [24,
Lemma 2.1]. We drop the dependence with respect to time in what follows.

Lemma A.1. There exists a positive constant C such that for k ∈ [0, 2]

1

N

∑
j 6=i

1

dkij
≤ C

(
‖ρ‖∞

W 3
∞

dkmin

+ ‖ρ‖k/3∞
)
,

1

N

∑
j 6=i

1

d3ij
≤ C‖ρ‖∞

(
W 3
∞

d3min

+ | log
(
‖ρ‖1/3∞ W∞

)
|+ 1

)
.

Proof. We introduce a radial truncation function χ such that χ = 0 on B(0, 1/2) and χ = 1
on cB(0, 3/4). We have for all k ≥ 0:

1

N

∑
j 6=i

1

dkij
=

∫
R3

χ

(
xi − y
dmin

)
1

|xi − y|k
ρN(t, dy) ,

=

∫
R3

χ

(
xi − T (y)

dmin

)
1

|xi − T (y)|k
ρ(t, dy) ,

=

(∫
B(xi,3W∞)

+

∫
cB(xi,3W∞)

)
χ

(
xi − T (y)

dmin

)
1

|xi − T (y)|k
ρ(t, dy) .

Recall that W∞ ≥ dmin/2. Since χ
(
xi−T (y)
dmin

)
= 0 if |xi − T (y)| ≤ dmin/2, the first term

yields: ∫
B(xi,3W∞)

χ

(
xi − T (y)

dmin

)
1

|xi − T (y)|k
ρ(t, dy) ≤ C‖ρ‖∞

W 3
∞

dkmin

.

For the second term, we have |xi − T (y)| ≥ |xi − y| − |y − T (y)| ≥ [xi−y|
2

and we get for
k ∈ [0, 2]: ∫

cB(xi,3W∞)

χ

(
xi − y
dmin

)
1

|xi − T (y)|k
ρ(t, dy)

≤ ‖ρ‖∞
∫ A

3W∞

1

rk−2
dr + A−k‖ρ‖L1 ,

≤ ‖ρ‖∞A3−k + A−k,
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for all constant A > 3W∞ and one can show that the optimal constant is A = ‖ρ‖−1/3∞
which yields the desired result. We proceed analogously for k = 3. �

Appendix B. Estimates on KNρN , Kρ and control of the minimal distance

In this part we present some estimates for the convergence of the velocity field KNρN
and its gradient towards Kρ and its gradient. We estimate the ∞ norm of the error using
the infinite Wasserstein distance between ρN and ρ in the spirit of [14, 15].
We recall that, according to [4][Theorem 5.6], at fixed time t ≥ 0, there exists a (unique)
optimal transport map T satisfying :

W∞ := W∞(ρ(t, ·), ρN(t, ·)) = ρ - esssup |T (x)− x|,

with ρN(t, ·) = T#ρ(t, ·). This allows us to write KNρN as follows

KNρN(x) = 6πr0

∫
χΦ(x− T (y))ρ(y)dy.

This important property allows us to show the following results.

Proposition B.1 (Boundedness). Under the assumption that ρ ∈ W 1,1(R3) ∩W 1,∞(R3),
there exists a positive constant C > 0 independent of N such that:

‖KNρN‖W 2,∞ ≤ C

(
1 +

W 3
∞

dmin

+
W 3
∞

d2min

+
W 3
∞

d3min

)
‖ρ‖W 1,∞(R3)∩W 1,1(R3),

where

W∞ := W∞(ρ(t, ·), ρ̄N(t, ·)) = ρ - esssup |Tt(x)− x|.

Remark B.1. The term W 3
∞

d3min
appears only for the second derivative of KNρN which is

needed for the proof of Theorem 0.2.

Proof. Let x ∈ R3, we have :∣∣KNρN(x)
∣∣ ≤ C

∫
|χΦ(x− T (y))ρ(y)dy| ,

≤ C‖ρ‖∞
∫
B(x,3W∞)

|χΦ(x− T (y))|+
∫
cB(x,W∞)

|χΦ(x− T (y))| |ρ(y)|dy.

Recall that for all y ∈ B(x, 3W∞) such that |x−T (y)| ≤ dmin/2 we have χΦ(x−T (y)) = 0.
Hence in all cases we have the following bound for all y ∈ B(x, 3W∞):

|χΦ(x− T (y))| ≤ C

dmin

,

this yields the following bound∫
B(x,3W∞)

|χΦ(x− T (y))| ≤ C
W 3
∞

dmin

.
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For all y cB(x,W∞) we have that |x − T (y)| ≥ |x − y| − |T (y) − y| ≥ 2W∞ ≥ dmin. This
ensures that χΦ(x− T (y)) = Φ(x− T (y)) on cB(x,W∞). Moreover we have

|x− T (y)| ≥ |x− y| −W∞ ≥
1

2
|x− y|,

which yields∫
cB(x,W∞)

|χΦ(x− T (y))| |ρ(y)dy ≤ C‖ρ‖∞
∫
cB(x,W∞)∩B(x,1)

dy

|x− y|
+ ‖ρ‖L1 ,

≤ C‖ρ‖L1(R3)∩L∞(R3).

Analogously we obtain a similar bound for∇KN . We focus now on the bound for∇2KNρN .
We have∣∣∇2KNρN(x)

∣∣ ≤ C‖ρ‖∞
∫
B(x,3W∞)

∣∣∇2χΦ(x− T (y))
∣∣ dy+

∣∣∣∣∫
cB(x,W∞)

∇2χΦ(x− T (y))ρ(y)dy

∣∣∣∣ .
We use the same estimates as before to bound the first term by ‖ρ‖∞W 3

∞
d3min

. For the second

term we write

(60)

∣∣∣∣∫
cB(x,W∞)

∇2χΦ(x− T (y))ρ(y)dy

∣∣∣∣ ≤ ∣∣∣∣∫
cB(x,W∞)

∇2Φ(x− y)ρ(y)dy

∣∣∣∣
+

∫
cB(x,W∞)

∣∣∇2χΦ(x− T (y))−∇2Φ(x− y)
∣∣ |ρ(y)|dy.

Using an integration by parts for the first term in the right hand side of (60) we get∣∣∣∣∫
cB(x,W∞)

∇2Φ(x− y)ρ(y)dy

∣∣∣∣ ≤ ∣∣∣∣∫
cB(x,W∞)

∇Φ(x− y)∇ρ(y)dy

∣∣∣∣
+

∫
∂B(x,W∞)

|∇Φ(x− y)| |ρ(y)|dσ(y) ,

≤ C‖∇ρ‖L1(R3)∩L∞(R3) + ‖ρ‖∞.

Finally, for the second term in the right hand side of (60) we have∫
cB(x,W∞)

∣∣∇2χΦ(x− T (y))−∇2Φ(x− y)
∣∣ |ρ(y)|dy

≤
∫
cB(x,W∞)

(
1

|x− y|4
+

1

|x− T (y)|4

)
|y − T (y)||ρ(y)|dy

≤ C‖ρ‖L1(R3)∩L∞(R3).

�

The following convergence estimates are used in the proof of Theorem 0.2.



A MODEL FOR SUSPENSION OF CLUSTERS OF PARTICLE PAIRS 37

Proposition B.2 (Convergence estimates). The following estimates hold true:

‖KNρN −Kρ‖L∞ . ‖ρ‖∞W∞(ρN , ρ)

(
1 +

W∞(ρN , ρ)2

dmin

)
,

‖∇KNρN −∇Kρ‖L∞ . ‖ρ‖∞W∞(ρN , ρ)

(
| logW∞(ρN , ρ)|+ W∞(ρN , ρ)2

d2min

+ 1

)
.

Proof. We use in the proof the shortcut W∞ := W∞(ρN , ρ). Let x ∈ R3, we have∣∣KNρN(x)−Kρ(x)
∣∣ ≤ 6πr0

∫
supp ρ

|χΦ(x− T (y))− Φ(x− y)| ρ(y)dy.

We split the integral into two disjoint domains J := {y ∈ supp ρ , |x− y| ≤ 3W∞} and its
complementary. Note that on J , according to the definition of the truncation function χ,
we have χΦ(x− T (y)) = 0 for all y ∈ J such that |x− T (y)| ≤ dmin

4
. We can then bound

directly the first integral as follows∫
J

|χΦ(x− T (y))− Φ(x− y)| ρ(y)dy ≤
∫
J

|χΦ(x− T (y))| ρ(y)dy +

∫
J

|Φ(x− y)| ρ(y)dy

. ‖ρ‖∞
(
|B(x, 3W∞)| 4

dmin

+

∫
B(x,3W∞)

1

|x− y|
dy

)
.

Direct computations yields∫
J

|χΦ(x− T (y))− Φ(x− y)| . ‖ρ‖∞
(
W 3
∞

dmin

+W 2
∞

)
.

We focus now on the remaining term, note that for all y ∈ cJ := cB(x, 3W∞) we have

|x− T (y)| ≥ |x− y| − |T (y)− y| ≥ 2W∞ ≥ dmin,

which yields that χΦ(x−T (y)) = Φ(x−T (y)) on cJ . Moreover, we have |x−T (y)| ≥ 1
2
|x−y|

on cJ . We have then∫
cJ

|χΦ(x− T (y))− Φ(x− y)| =
∫
cJ

|Φ(x− T (y))− Φ(x− y)| ,

≤ K

∫
cJ

(
1

|x− T (y)|2
+

1

|x− y|2

)
|y − T (y)|ρ(y)dy,

. W∞‖ρ‖∞
∫
cJ

1

|x− y|2
dy,

. W∞‖ρ‖∞.

In the last line we use the fact that 1
|x−y|2 is integrable on cB(x, 3W∞). The proof for

the second estimate is analogous to the first one. The main difference occurs for the last
estimate where the log term appears. This is due to the fact that we integrate 1

|x−y|3 on
cB(x, 3W∞). �
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We present now an estimate for the conservation of the particle configuration. This esti-
mate combined with Proposition B.1 shows that the dilution regime is conserved provided
that we have a control on the infinite Wasserstein distance.

Proposition B.3. For all 1 ≤ i ≤ N and j 6= i we have

|ξ̇i| . ‖∇KNρN‖∞ |ξi|+O (dmin) ,∣∣ẋi+ − ẋj+∣∣ . ‖∇KNρN‖∞ |xi+ − x
j
+|+ |ξi − ξj|+O(R),∣∣∣ξ̇i − ξ̇j∣∣∣ . ‖∇KNρN‖∞ |ξi − ξj|+ ‖∇2KNρN‖∞

∣∣xi+ − xj+∣∣+O (dmin) .

We remark that the conservation of the infinite Wasserstein distance, which is initially
of order 1

N1/3 , ensures the control of the particle distance. Unfortunately, due to the log
term appearing in Proposition B.2 we are not able to prove the conservation in time of the
infinite Wasserstein distance.

Appendix C. Existence, uniqueness and some stability properties

In this section we present some existence, uniqueness and stability estimates.

Proposition C.1. Let p > 3. Given F0 ∈ W 2,p(R3) and u ∈ L∞(0, T ;W 3,p(R3)), there
exists a time T > 0 such that F ∈ L∞(0, T ;W 2,p(R3)) is the unique local solution of

(61)

{
∂tF +∇F · (A−1(F )κg + u) = ∇u · F, on [0, T ]× R3,

F (0, ·) = F0, on R3.

We have the following stability estimates

‖F1 − F2‖L∞(0,T ;W 1,p(R3)) ≤ C1T‖u1 − u2‖L∞(0,T ;W 2,p(R3))e
C2T ,

with C1 and C2 depending on ‖A−1‖2,∞, ‖ui‖L∞(0,T ;W 3,p(R3)), ‖Fi‖L∞(0,T ;W 2,p(R3)).

Proof. Since p > 3, we have F0 ∈ W 2,p(R3) ↪→ W 1,∞(R3) and u ∈ W 2,∞(R3). We can
apply the existence proof analogous to the existence proof of Proposition 5.1 to get a
unique solution F ∈ L∞(0, T ;W 1,∞(R3)) for a given T > 0. It remains to show that
F ∈ L∞(0, T ;W 2,p(R3)) for a finite time interval. We have for α = 0, 1, 2

∂tD
αF +∇DαF

(
A−1(F )κg + u

)
= −∇F ·Dα

(
A−1(F )κg + u

)
+ (Dα∇u)F + (∇u)DαF.
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Multiplying by |DαF |p−1 and integrating by parts the second term using the fact that
div(u) = 0, we get

1

p

d

dt

∫
|DαF |p =

1

p

∫
|DαF |p div

(
A−1(F )

)
+∇F · |DαF |p−1

(
Dα
[
A−1(F )

]
κg +Dαu

)
+ (Dα∇u)F |DαF |p−1 + (∇u)DαF |DαF |p−1,
. ‖F‖p2,p

(
‖∇A−1‖∞‖F‖1,∞ + ‖∇u‖∞

)
+ ‖DαF‖p−1

(
‖A−1‖2,∞ + 1

)(
‖∇F‖∞

{
‖∇F‖p + ‖∇F‖∞‖∇F‖p + ‖∇2F‖p + ‖Dαu‖p

}
+ ‖F‖∞‖Dα∇u‖p

)
.

Since ‖F‖1,∞ . ‖F‖2,p, ‖u‖1,∞ . ‖F‖2,p, we get up to a constant depending on ‖A−1‖2,∞
d

dt
‖DαF‖pp . ‖DαF‖pp (‖F‖2,p + ‖u‖3,p) + ‖DαF‖p−1p ‖F‖2,p (‖F‖2,p + ‖u‖3,p) .

Applying Young’s inequality and summing over α = 0, 1, 2 we get

‖F‖L∞(0,T ;W 2,p(R3)) . ‖F0‖2,peC(p,‖F‖2,p,‖u‖3,p,‖A−1‖2,∞)T ,

which shows that F ∈ L∞(0, T ;W 2,p(R3)) for a finite time T > 0. Now consider two
divergence free velocity fields u1, u2 ∈ L∞(0, T ;W 3,p(R3)) and denote by Fi the solution to
(61). We have

∂t(F1 − F2) + (∇F1 −∇F2)(A−1(F1)κg + u1)

= ∇F2

(
A−1(F1)− A−1(F2) + u1 − u2

)
+ (∇u1 −∇u2)F1 + (F1 − F2)∇u2.

Multiplying by |F1−F2|p−1 and integrating by parts the second term in the left hand side
using the divergence free property of u, we get

d

dt
‖F1 − F2‖pp . ‖F1 − F2‖pp

(
‖∇A−1‖∞(‖∇F1‖∞ + ‖∇F2‖∞) + ‖∇u2‖∞

)
+ ‖F1 − F2‖p−1p ‖u1 − u2‖2,p(‖∇F1‖∞ + ‖∇F2‖∞).

For the derivative we have

∂t(∇F1 −∇F2) +∇(∇F1 −∇F2)(A−1(F )κg + u1)

= −(∇F1 −∇F2)(∇A−1(F1)∇F1κg +∇u1) +∇2F2

(
A−1(F1)− A−1(F2) + u1 − u2

)
+∇F2

({[
∇A−1(F1)−∇A−1(F2)

]
∇F1 +∇A−1(F2)(∇F1 −∇F2)

}
κg +∇u1 −∇u2

)
+ (∇2u1 −∇2u2)F1 + (∇u1 −∇u2)∇F1 +∇u2(∇F1 −∇F2) +∇2u2(F1 − F2).

Using the same estimates as previously, we obtain

d

dt
‖F1 − F2‖p1,p ≤ C1‖F1 − F2‖p1,p + C2‖F1 − F2‖p−11,p ‖u1 − u2‖2,p,

where C1, C2 depend on ‖A−1‖2,∞, ‖ui‖3,p, ‖Fi‖2,p. We conclude by integrating with respect
to time and apply Gronwall’s inequality. �
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Proposition C.2. Let T > 0, p > 3. We consider ρ0 ∈ W 1,p(R3), u ∈ L∞(0, T ;W 3,p(R3))
and F ∈ L∞(0, T ;W 2,p(R3)). There exists a unique solution ρ ∈ L∞(0, T ;W 1,p(R3)) to the
transport equation

(62)

{
∂tρ+ div((A−1(F )κg + u)ρ) = 0,

ρ(0, ·) = ρ0,

for all T > 0. ρ satisfies

‖ρ(t, ·)‖L∞(0,T ;W 1,p) ≤ ‖ρ0‖1,peCt,
where C depends on p, ‖A−1‖2,∞, ‖F‖L∞(0,T ;W 2,p(R3)), ‖u‖L∞(0,T ;W 2,p(R3)). In addition, we
have the following stability estimate

‖ρ1 − ρ2‖L∞(0,T ;Lp(R3)) ≤ C1T
(
‖u1 − u2‖L∞(0,T ;W 1,p(R3)) + ‖F1 − F2‖L∞(0,T ;W 1,p(R3))

)
eC2T ,

with constants depending on ‖A−1‖1,∞, ‖ρi‖L∞(0,T ;W 1,p(R3)),‖Fi‖L∞(0,T ;W 1,p(R3)).

Remark C.1. If we assume in addition that ρ0 is compactly supported then classical trans-
port theory ensures that ρ(t, ·) is compactly supported and using the characteristic flow,
which is well defined since F , u ∈ W 1,∞, one can show that

diam(supp(ρ(t, ·))) ≤ diam(supp(ρ0))e
Ct,

with C = C(‖∇A−1‖∞, ‖∇F‖L∞(0,t;L∞(R3)), ‖∇u‖L∞(0,t;L∞(R3))).

Proof. Since g = −|g|e3, we have the following formula

div(A−1(F )κg) = −∇A−13 (F ) · ∇Fκ|g|,
where A−13 is the third column of A−1. Note that since p > 3, we have the following Sobolev
embedding

‖F‖1,∞ . ‖F‖2,p, ‖u‖1,∞ . ‖u‖2,p, ‖ρ‖∞ . ‖ρ‖1,p.(63)

The idea is to apply a fixed point argument. We define the operator A which maps any
ρ ∈ L∞(0, T ;W 1,p) to the unique density A(ρ) solution of

(64) ∂tA(ρ) +∇A(ρ) · (A−1(F )κg + u) =
(
∇A−13 (F ) · ∇Fκ|g|

)
ρ.

Thanks to (63), u ∈ W 1,∞(R3) and F ∈ W 1,∞(R3), hence DiPerna-Lions renormalization
theory ensures the existence of A(ρ) ∈ L∞(0, T ;Lp(R3)). Multiplying (64) by |A(ρ)|p−1,
integrating by parts and using Young’s inequality we get

1

p
‖A(ρ)‖pp ≤

1

p
‖ρ0‖pp +

1

p

∫ t

0

‖A(ρ)‖pp‖A−1‖∞‖∇F‖∞ +

∫ t

0

‖A−1‖∞‖∇F‖∞‖ρ‖p‖A(ρ)‖p−1p ,

≤ 1

p
‖ρ0‖pp + C

∫ t

0

(
1

p
‖A(ρ)‖pp +

1

p
‖ρ‖pp +

p− 1

p
‖A(ρ)‖pp

)
,

≤ 1

p
‖ρ0‖pp + C

∫ t

0

‖A(ρ)‖pp +
C

p
t‖ρ‖pL∞(Lp)

with C = C(‖A−1‖∞, ‖∇F‖L∞(0,T ;L∞(R3))). Hence, Gronwall’s inequality yields

‖A(ρ)‖p ≤ (‖ρ0‖p + TC‖ρ‖p)eCt.
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Moreover, we have

∂t∇A(ρ) +∇(∇A(ρ)) · (A−1(F )κg + u)

= −∇A(ρ)∇(A−1(F )κg + u) +∇2A−13 (F )κ|g|∇F∇Fρ
+∇A−13 (F )κ|g|∇2Fρ+∇A−13 (F ) · ∇Fκ|g|∇ρ.

Multiplying by |∇A(ρ)|p−1 and reproducing the same computations as before we get

‖∇A(ρ)‖p ≤ (‖∇ρ0‖p + TC1‖ρ‖1,p)eC2t,

where we used (63). The constants C1, C2 depend on‖u‖L∞(0,T ;W 2,p(R3)), ‖F‖L∞(0,T ;W 2,p(R3)),
‖A−1‖2,∞, p and ‖ρ‖L∞(0,T ;W 1,p(R3)). Gathering the two estimates we obtain

(65) ‖A(ρ))‖L∞(0,T ;W 1,p) ≤ (‖ρ0‖1,p + TC1‖ρ‖1,p)eC2T .

Given ρ1, ρ2, since equation (64) is linear, A(ρ1) − A(ρ2) satisfies the same equation with
ρ0 = 0. Consequently, for T > 0 small enough, estimate (65) shows that the mapping A is
a contraction and hence there exists a unique fixed point. Estimate (65) shows also global
existence.
Let ui ∈ L∞(0, T,W 3,p(R3)) and Fi ∈ L∞(0, T,W 2,p(R3)) for i = 1, 2. Denote by ρi the
unique solution to equation (62). We have

∂t(ρ1 − ρ2) +∇(ρ1 − ρ2) · (A−1(F1)κg + u1)

= −∇ρ2 ·
(
[A1(F1)− A−1(F2)]κg + u1 − u2

)
+ (ρ1 − ρ2)∇A−13 (F1)κ|g|
+ ρ1

([
(∇A−13 (F1)−∇A−13 (F2))

]
∇F1 +∇A−13 (F2)(∇F1 −∇F2)

)
κ|g|.

Multiplying by |ρ1 − ρ2|p−1 and integrating we get

d

dt
‖ρ1−ρ2‖pp . C1‖ρ1−ρ2‖pp+C2 (‖u1 − u2‖∞ + ‖F1 − F2‖∞ + ‖∇F1 −∇F2‖p) ‖ρ1−ρ2‖p−1p ,

with constants depending on ‖A−1‖1,∞, ‖ρi‖1,p,‖Fi‖1,p. We conclude using again the em-
bedding ‖F1 − F2‖∞ ≤ C‖F1 − F2‖1,p and analogously for ‖u1 − u2‖∞. �
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[29] T. Lévy and E. Sánchez-Palencia, Einstein-like approximation for homogenization with small
concentration. ii. navier-stokes equation., Nonlinear Anal., 9(11), (1985), pp. [1255–1268].

[30] Jonathan H. C. Luke. Convergence of a multiple reflection method for calculating Stokes flow in a
suspension. Society for Industrial and Applied Mathematics, 1989.

[31] A. Mecherbet. Sedimentation of particles in stokes flow. Kinetic & Related Models 12(5), 995-1044
(2019).

[32] B. Niethammer and R. Schubert, A local version of einstein’s formula for the effective viscosity
of suspensions, arXiv:1903.08554, (2019).

[33] J. Rubinstein. On the macroscopic description of slow viscous flow past a random array of spheres.
J. Stat. Phys. 44, 849–863 (1986).

[34] J. Rubinstein and J. Keller. Particle distribution functions in suspensions. Phys. Fluids A 1,
1632–1641 (1989).
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