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Abstract

Two-dimensional sample entropy (SampEn2D) is a recently developed method
in the field of information theory for evaluating the regularity or predictabil-
ity of images. SampEn2D, though powerful, has two key limitations: 1)
SampEn2D values are undefined for small-sized images; and 2) SampEn2D

is computationally expensive for several real-world applications. To over-
come these drawbacks, we introduce the two-dimensional dispersion en-
tropy (DispEn2D) measure. To evaluate the ability of DispEn2D, in com-
parison with SampEn2D, we use various synthetic and real datasets. The
results demonstrate that DispEn2D distinguishes different amounts of white
Gaussian and salt and pepper noise. The periodic images, compared with
their corresponding synthesized ones, have lower DispEn2D values. The re-
sults for Kylberg texture dataset show the ability of DispEn2D to differentiate
various textures. Although the results based on DispEn2D and SampEn2D

for both the synthetic and real datasets are consistent in that they lead to
similar findings about the irregularity of images, DispEn2D has three main
advantages over SampEn2D: 1) DispEn2D, unlike SampEn2D, does not lead
to undefined values; 2) DispEn2D is noticeably quicker; and 3) The coeffi-
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cient of variations and Mann-Whitney U test-based p-values for DispEn2D

are considerably smaller, showing the more stability of the DispEn2D results.
Overall, thanks to its successful performance and low computational time,
DispEn2D opens up a new way to analyze the uncertainty of images.

Keywords:
Biomedical image processing, texture analysis, irregularity, two-dimensional
dispersion entropy, two-dimensional sample entropy

1. Introduction

In the field of signal and image processing, information theory provides
tools for information representation and manipulation [1, 2]. Entropy, as
a prominent concept in information theory, is a measure of the uncertainty
or irregularity of a system or data [2, 3]. Following the concept of entropy
introduced by Shannon, several methods, such as one-dimensional approx-
imate entropy (ApEn1D) [4], sample entropy (SampEn1D) [3], permutation
entropy (PerEn1D) [5], distribution entropy (DistrEn1D) [6], and dispersion
entropy (DispEn1D) [7] have been introduced.

ApEn1D was proposed in 1991 to estimate the irregularity of time se-
ries [4]. ApEn1D is based on the negative average natural logarithm of the
conditional probability that two sequences that are similar for m points re-
main similar, within a tolerance r, at the next point. SampEn1D overcomes
the problem of counting self-similar patterns in ApEn1D, leading to more re-
liable estimations [3]. SampEn1D has been widely employed in many biomed-
ical signal processing applications [8, 9, 10, 11].

Nevertheless, SampEn1D is not fast enough for long time series and its
values may be undefined for short signals [7]. PerEn1D is on the basis of
permutations defined by the order relations among values of a signal [5].
PerEn1D has been broadly used in many signal processing analyses and cog-
nitive neuroscience studies to detect different dynamics of various signals [12].
PerEn1D is computationally fast (computation cost of O(N)) [26]. Neverthe-
less, it has three key deficiencies: i) when a time series is symbolized based on
its permutation patterns, only the order of the amplitude values is considered
and some information about the amplitude values is ignored [12, 13], ii) the
effect of equal amplitude values in each embedding vector was not addressed
in PerEn [12, 13]; and iii) the most important shortcoming of PerEn is its
high sensitivity to noise. This occurs because a small change in amplitude
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value may vary the order relations among amplitudes [13], even when the
signal-to-noise ratio (SNR) of a signal is high (for more information, please
see Figure 9 in [13]).

To overcome the shortcomings of PerEn1D and SampEn1D, DispEn1D has
been very recently introduced as a fast and powerful technique to quantify
the irregularity of signals [7]. The dependency of DispEn1D on a number of
straightforward signal processing concepts via a set of synthetic time series
and three real publicly-available datasets was previously evaluated. The re-
sults showed that the DispEn1D technique noticeably outperforms PerEn1D in
terms of detection of dynamics of signals [7]. Also, the results demonstrated
that DispEn1D is sensitive to changes in frequency, simultaneous amplitude
and frequency, noise power, and noise bandwidth. Moreover, the computa-
tional time for DispEn1D is considerably lower than that for SampEn1D [7].
It was also found that DispEn1D, compared with PerEn1D and SampEn1D, is
the most consistent technique to discriminate young from elderly children’s
stride-to-stride recordings, and the salt-sensitive from salt protected rats’
blood pressure data [13].

Some of the above-mentioned entropy measures for the analysis of signals
have recently been extended to their corresponding bi-dimensional cases to
process images. Thus, multi-dimensional ApEn was introduced and applied
to the biomedical field [18, 19, 20]. Two-dimensional SampEn (SampEn2D),
as an extension of SampEn1D, has been recently proposed to take into ac-
count the predictability of patterns within images [21, 22]. It has been
demonstrated that SampEn2D, as a powerful tool for the feature extraction
of images, follows SampEn1D for different straight-forward concepts in signal
and image processing such as noise, nonlinearity, and randomness, and can
be considered as an irregularity measure of images [22]. Another advantage
of SampEn2D is its invariance to rotation and translation [22]. Moreover,
two-dimensional PerEn (PerEn2D) was also proposed as an extension of its
one-dimensional entropy counterpart [23, 24, 25]. Thus, a generalization of
the complexity-entropy causality plane to 2D maps was developed. PerEn2D

was able to detect different kinds of two-dimensional patterns [23].
To take advantages of the performance of DispEn1D over SampEn1D and

PerEn1D [7], we introduce here two-dimensional DispEn (DispEn2D), as an
extension of DispEn1D. In this paper, we evaluate DispEn2D on synthetic
images and Brodatz and Kylberg publicly-available texture datasets, as
well as on a real dataset of histological cardiac images. We show that
the main advantages of the proposed DispEn2D are: i) DispEn2D, unlike
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SampEn2D, does not result in undefined values for small images; ii) DispEn2D

is noticeably faster than SampEn2D; and iii) DispEn2D leads to more stable
results than SampEn2D.

We have very recently introduced the bi-dimensional version of the
distribution entropy (DistrEn2D) [27]. In spite of its interesting results, we
will not compare DispEn2D with DistrEn2D because DistrEn2D is interesting
mainly for small-sized textures [27], whereas DispEn2D can take into account
both small and large images. Furthermore, randomly shuffling an image does
not change considerably the value of DistrEn2D. However, the correlations
among the image pixels are destroyed in shuffles, and the irregularity of the
image surrogates should be higher than that of the original image (except
2-D random images). Moreover, due to the drawbacks of PerEn1D mentioned
above, we do not compare DispEn2D with PerEn2D. DispEn2D is also not
compared to the bi-dimensional version of multiscale SampEn2D [28] as the
latter relies on a multiscale approach and is therefore a measure of image
complexity, whereas DispEn2D is a single-scale approach.

The remaining of the paper is organized as follows. Section 2 details
DispEn1D and SampEn2D. The datasets used to evaluate DispEn2D are de-
scribed in Section 3. In Section 4, the results for DispEn2D, in comparison
of SampEn2D, are shown and discussed. We finally end with a conclusion.

2. Two-dimensional Dispersion Entropy and Sample Entropy Mea-
sures

2.1. The Proposed Algorithm: Two-dimensional Dispersion Entropy

DispEn2D is an extension of DispEn1D for two-dimensional data. Assume
we have an image of size h×w: U = {ui,j}j=1,2,... ,w

i=1,2,... ,h , defined on a domain R2.
DispEn2D of U is defined as follows:

1) First, ui,j are mapped to c classes with integer indices from 1 to c.
To this aim, there are a number of linear and nonlinear mapping approaches
used in the DispEn-based methods [13]. Some linear and nonlinear algorithms
can be used to map the original image to the classified image. The simplest
and fastest algorithm is the linear mapping. However, when maximum or
minimum values are noticeably larger or smaller than the mean/median value
of the signal, the majority of values are mapped to only a few classes [13]. On
the other hand, a large number of natural processes show a progression from
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small beginnings that accelerates and approaches a climax over time (e.g.,
a sigmoid function) [14, 15]. When there is not a detailed description, a
sigmoid function is frequently used [16, 15, 17]. Thus, we take the normal
cumulative distribution function (NCDF) of pixels to map the image into the
classes, as this function naturally raises in a sigmoidal shape. NCDF maps
U into Y = {yi,j}j=1,2,... ,w

i=1,2,... ,h from 0 to 1 as follows

yi,j =
1

σ
√

2π

xi,j∫
−∞

e
−(t−µ)2

2σ2 dt, (1)

where µ and σ are the average and standard deviation of U, respectively.
Next, we use a linear algorithm to assign each yi,j to an integer from 1 to
c. To this end, for each xi,j, we use zci,j = round(c × yi,j + 0.5), where zci,j
shows the (i, j)th pixel of the classified image and rounding involves either
increasing or decreasing a number to the next digit.

2) zm,c
k,l are made with the embedding dimension vector m = [mh,mw]

according to

zm,c
k,l = {zck,l, zck,l+1, ..., z

c
k,l+(mw−1),

zck+1,l, z
c
k+1,l+1, ..., z

c
k+1,l+(mw−1), ...,

zck+(mh−1),l, z
c
k+(mh−1),l+1, ..., z

c
k+(mh−1),l+(mw−1)},

(2)

where k = 1, 2, . . . , w − (mw − 1) and l = 1, 2, . . . , h − (mh − 1). Each
matrix zm,ck,l is mapped to a dispersion pattern πv0v1...vmh×mw−1 , where zck,l = v0,
zck,l+1 = v1,. . . , zck+(mh−1),l+(mw−1) = vmh×mw−1. The number of possible

dispersion patterns that can be assigned to each matrix zm,c
k,l is equal to

cmh×mw , since the matrix z has mh ×mw members and each member can be
one of the integers from 1 to c [7].

3) For each cmh×mw potential dispersion patterns πv0...vmh×mw−1 , relative
frequency is obtained as follows

p(πv0...vmh×mw−1) =

#{k, l
∣∣∣∣k ≤ h− (mh − 1)
l ≤ w − (mw − 1)

, zm,c
k,l has type πv0...vmh.mw−1 }

(h− (mh − 1))(w − (mw − 1))
.

(3)

In fact, p(πv0...vmh.mw−1) shows the number of dispersion patterns of
πv0...vmh.mw−1 that is assigned to zm,c

k,l , divided by the total number of em-
bedded vectors with embedding dimension m.
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4) Finally, based on Shannon’s definition of entropy, DispEn2D is com-
puted as follows

DispEn2D(U,m, c) =

−
cmw×mh∑
π=1

p(πv0...vmw×mh−1)× ln
(
p(πv0...vmw×mh−1)

)
.

(4)

When all possible two-dimensional dispersion patterns of an image have
equal probability value, the highest value of DispEn2D is reached, which has
a value of ln(cmh×mw). However, if there is only one p(πv0...vmh×mw−1) different
from zero, showing a completely regular and certain image, the smallest value
of DispEn2D is obtained.

As for DispEn1D [7], the number of classes for DispEn2D can be chosen
from 3 to 9. The number of classes (c) in DispEn algorithms is inversely
related to the threshold value r used in the SampEn approaches [13]. Thus,
when the signal-to-noise ratio (SNR) is high, it is recommended to choose a
large value of c, while a small c is more appropriate for signals with low SNR.
Nevertheless, for convenience, we can set c = 5 for all images according to [7].
To work with reliable statistics to calculate DispEn2D, it is recommended
that the number of potential patterns (cmh×mw) is smaller than the number
of patterns of an image ((h− (mh − 1))× (w − (mw − 1))).

2.2. Two-dimensional Sample Entropy

Assume an image of size h×w: U = {ui,j}j=1,2,... ,w
i=1,2,... ,h , defined on a domain

R2. To compute SampEn2D, first all two-dimensional matrices Xm
k,l (k =

1, 2, ..., h− (mh−1) and l = 1, 2, ..., w− (mw−1)) with size mh×mw, named
template matrices, are created as

Xm
k,l =


uk,l uk,l+1 . . . uk,l+(mw−1)

uk+1,l uk+1,l+1 . . . uk+1,l+(mw−1)
...

...
...

...

uk+(mh−1),l uk+(mh−1),l+1 . . . uk+(mh−1),l+(mw−1)

 , (5)

where m = [mh,mw] is the embedding dimension vector [22].
Then, the number of element pairs in template matrices of size mh×mw

having d[Xm
k,l,X

m
a,b] ≤ r is computed as
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φm
k,l(r) =

[# of Xm
a,b | d[ Xm

k,l,X
m
a,b] ≤ r]

(h−mh)(w −mw)− 1
, (6)

where a and b respectively change from 1 to h −mh and w −mw ((a, b) 6=
(k, l)), d[Xm

k,l,X
m
a,b] denotes the greatest element of the absolute differences

between Xm
k,l and Xm

a,b, and r is the predefined threshold (tolerance factor)
[22].
Next, φm(r) is calculated as

φm(r) =

1

(h−mh)(w −mw)

k=h−mh∑
k=1

l=w−mw∑
l=1

φm
k,l(r).

(7)

Then, φm+1(r) is computed in the same way, increasing m to m+ 1 where
m + 1 = [mh + 1,mw + 1] and φm+1

k,l (r) is as follows

φm+1
k,l (r) =

[# of Xm+1
a,b | d[ Xm+1

k,l ,Xm+1
a,b ] ≤ r]

(h−mh)(w −mw)− 1
. (8)

Finally, SampEn2D is defined as follows [22]

SampEn2D(U,m, r) = − ln
φm+1(r)

φm(r)
. (9)

The parameter m indicates the size of the matrices which are analyzed or
compared along images. In previous studies [22, 21], m was chosen to obtain
squared template matrices, i.e. mh = mw.

The parameter r is chosen to balance the quality of the logarithmic likeli-
hood estimates with the loss of signals’ or images’ information. When r is
too small (smaller than 0.1 of the standard deviation of an image), poor con-
ditional probability estimates are achieved. Furthermore, to avoid the effect
of noise on data, larger r is recommended. In contrast, for r values larger
than 0.4 of the standard deviation, too much detailed data information is
lost. Therefore, a trade-off between large and small r values is needed. For
a deeper discussion on the effect of those parameters in SampEn2D, please
refer to [22].
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Figure 1: Example of a reference image, sized 256 × 256 pixels, on which different levels
of WGN2D and SPN2D were added.

3. Synthetic and Real Image Datasets

In this section, the synthetic and real images used to evaluate the perfor-
mance of DispEn2D are described.

3.1. Synthetic Datasets

3.1.1. Texture Image with Additive Noise

To evaluate the dependency of DispEn2D on two-dimensional white Gaus-
sian noise (WGN2D) and salt and pepper noise (SPN2D; sparsely occurring
white and black pixels), we employed Lenna as a standard widely-used im-
age, sized 256× 256 pixels, shown in Figure 1. After normalizing the image
in the range 0 to 1, we added different levels of uniform WGN2D with mean
(variance) equals to 0.01 (0.01), 0.05 (0.05), and 0.09 (0.09). We also added
SPN2D with different noise density values of 0.01, 0.05, and 0.09 to the ref-
erence normalized image.

3.1.2. Artificial Periodic and Synthesized Textures

To show how DispEn2D changes when a periodic texture image turns into
its synthesized one, we used four pairs of periodic and their corresponding
synthesized textures from [29]. The original and their synthesized textures,
sized 256× 256 pixels, are depicted in Figure 2(a) to (d), and Figure 2(e) to
(h), in that order. The synthesis algorithm, which is based on Markov ran-
dom field texture models, generated textures through a deterministic search
process [30]. Note that each local region of the synthesized texture based on
this algorithm is similar to another region from the input (original periodic)
texture.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Texture synthesis examples: (a), (b), (c), and (d) periodic textures and (e),
(f), (g), and (h) their corresponding synthesized textures [29]. All images have a size of
256×256 pixels.

3.1.3. Two-dimensional MIX Process (MIX2D)

We also compare the performance of DispEn2D and SampEn2D using the
MIX processes. For the one-dimensional case, MIX(p) is a family of processes
that interleave samples of a sine wave and sample of independent identically
distributed (i.i.d.) uniform random variables. The variable p can vary from
0 to 1 and intuitively the process becomes more irregular as p increases [32].
MIX(p) is defined as [32]

MIX(p)j = (1− zj)xj + zjyj, (10)

where xj =
√

2× sin(2πj
12

) for all j, and yj = i.i.d. uniform random variables

on [−
√

3,
√

3]. zj is a binary variable where zj = 1 with probability p and
zj = 0 with probability 1−p. The appellation MIX indicates that the process
is a mixture of deterministic and stochastic components. For the 2D case, we
use the MIX2D(p) process [22]. The latter is based on the one-dimensional
definition [22]

MIX2D(p)i,j = (1− zi,j)xi,j + zi,jyi,j, (11)

where xi,j = sin(2πi
12

) + sin(2πj
12

) is a sinusoidal image, and Y = {yi,j} is

an image containing uniform white noise in the range [−
√

3,
√

3]. zi,j = 1
with probability p and zi,j = 0 with probability 1 − p. Depending on the
p value, the resulting image presents a specific degree of spatial regularity:
when p = 1, MIX2D(p) is a purely random function (highly irregular image);
when p = 0, we obtain a bi-dimensional sine function (a perfectly regular
periodic image), as it is the case for the one-dimensional case; see examples
of such images in Figure 3. In our work, various realizations of MIX2D images
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Figure 3: Examples of MIX2D images for different p values.

blanket1 canvas1 ceiling1 floor1 floor2

rice1 rug1 scarf1 scarf2 screen1

Figure 4: One sample of each of the ten selected groups from Kylberg textures [31]. All
images have a size of 576×576 pixels.

of size 256× 256 pixels were generated and analyzed (one MIX2D per set of
parameter values).

3.2. Real Datasets

3.2.1. Kylberg Texture Dataset

We also used a subset of the Kylberg texture dataset. We selected 10 groups
of images, each one includes 1000 samples, representing fabrics and surfaces
of rotated images, namely floor1, floor2, scarf1, scarf2, rug1, rice1, screen1,
ceiling1, blanket1, and canvas1 [31]. One sample, sized 576 × 576 pixels,
of each of them is depicted in Figure 4. The dataset is publicly available
at http://www.cb.uu.se/~gustaf/texture. For more information, please
refer to [31].
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Figure 5: The Brodatz image dataset used. Each image is 128× 128 pixels.

3.2.2. Brodatz Image Dataset

The DispEn2D method was also compared with SampEn2D on the Brodatz
grayscale texture album [33]. This dataset is composed of 112 grayscale
images representing a large variety of natural textures. This album is now
widely used in the literature (see, e.g., [34, 35, 36]). From this album we
extracted 9 groups of images, as already performed in another study dealing
with SampEn2D [22]. From each group, we used one arbitrary sample image
sized 128× 128 pixels, as shown in Figure 5.

3.2.3. Cardiac Histological Images from Rats

We also evaluated DispEn2D and SampEn2D in a biomedical application.
Thus, cardiac histological images from rats were processed. The acquisition
procedure is described below.

Myocardial Infarction in Rats:. Fourteen male Wistar rats (280-300 g) were
submitted to myocardial infarction (MI group; 8 rats) or sham surgery pro-
cedures (SHAM group; 6 rats). Myocardial infarction was produced by a
method similar to the one described in [37]. Briefly, the rats were anes-
thetized with ketamine (50 mg/kg, intraperitoneal) and xilazine (10 mg/kg,
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intraperitoneal), endotracheally intubated and mechanically ventilated with
room air. A left thoracotomy was performed at the fifth intercostal space
and the left anterior descending coronary artery was ligated between the pul-
monary artery outflow tract and the left atrium with a polyester suture. The
thorax was immediately closed after coronary ligation. Control (SHAM) rats
were submitted to the same operative procedures as MI rats with exception
of the coronary artery ligation. Experimental protocol was reviewed and
approved by the Committee of Ethics in Animal Research of the School of
Medicine of Ribeirao Preto, University of Sao Paulo, SP, Brazil (Protocol
#165/2016).

Morphological Analysis:. After four weeks of MI or SHAM surgeries, rats
were euthanized with an overdose of anesthetic (tribomoethanol, 250 mg/kg,
intraperitoneal). The hearts were withdrawn from the thoracic cavity, cut
transversely, fixed in phosphate-buffered 10% formalin and submitted to
paraffin inclusion for histological study. Sections of 7 µm thick were cut and
stained with Masson’s trichrome stain to identify and quantify interstitial
collagen fibers which plays an important role in the structural organization
of the heart. Stained cross-sections were captured using light microscopy
(Leica DM5500B; Leica Microsystem, Wetzlar, Germany) at ×40 magnifica-
tion. For each heart, one image from the septum of the left ventricle was
selected for posterior analysis.

During images acquisition, it was observed that histological tissue process-
ing was deficient, which resulted in poor quality images. This fact makes
this dataset particularly interesting to the present study, creating a scenario
where it is possible to evaluate the performance of the two-dimensional en-
tropy measures (DispEn2D and SampEn2D) for the classification of low qual-
ity images obtained from different sources, i.e. pathological (MI) and non
pathological (SHAM) groups.

All the histological images were originally sized 2048 × 1536 pixels and
RGB-colored. To reduce the computational time, the entire dataset was
downsampled to 1024 × 768 pixels with a linear interpolation and converted
to a 8-bit grayscale representation prior to the analyzes. Figure 6 shows one
representative image from each group (SHAM and MI).

Comparisons of entropy values between groups in the cardiac histological
image dataset were performed with Mann-Whitney rank sum test due to the
small sample size. Significance was set at P < 0.05.
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Figure 6: Representative examples of cardiac histological image dataset used in this study,
obtained from SHAM (upper image) and myocardial infarction (lower image) groups. All
images have a size of 1024×768 pixels.

4. Results and Discussion

In this Section, we assess the ability of DispEn2D to characterize different
kinds of synthetic and real datasets described in Section 3. Note that for
simplicity, we set m = [2, 2] and c = 5 for DispEn2D in all simulations below,
even though the ranges 3 ≤ c ≤ 8 and [1, 1] ≤ [m,m] ≤ [5, 5] lead to similar
findings (data not shown).

4.1. Synthetic Datasets

4.1.1. Texture Image with Additive Noise

The two-dimensional entropy values obtained from the Lenna image with
different amounts of WGN2D and SPN2D are shown in Table 1. They reveal
that the addition of WGN2D of larger mean and variance leads to higher
entropy values for both the DispEn2D and SampEn2D methods. There is
an overlap between the SampEn2D values with mean and variance 0.05 and
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Table 1: Mean value and standard deviation (40 realizations) of DispEn2D and SampEn2D

computed from the reference image (Lenna, Figure 1) on which different levels of bi-
dimensional white Gaussian noise (WGN2D) and salt and pepper noise (SPN2D) were
added. We used m = [2, 2] for and c = 5 for DispEn2D. The parameters were set to
m = [2, 2] for both the methods, c = 5 for DispEn2D and r = 0.24 of image standard
deviation for SampEn2D.

Type of noise Level added DispEn2D SampEn2D

WGN2D mean and variance 0.01 5.0555±0.0074 6.5653±0.0204
WGN2D mean and variance 0.05 5.9766±0.0075 8.1864±0.0567
WGN2D mean and variance 0.09 6.1006±0.0049 8.2703±0.1020
SPN2D density 0.01 3.2805±0.0045 0.7715±0.0057
SPN2D density 0.05 3.6846±0.0100 1.1095±0.0146
SPN2D density 0.09 4.0077±0.0107 1.4911±0.0229

those for mean and variance 0.09. However, there is no overlap between any
two groups for DispEn2D, demonstrating its advantage over SampEn2D.

Likewise, adding SPN2D with larger noise density results in higher entropy
values. Both evidence that DispEn2D can detect different levels of WGN2D

and SPN2D, where the greater the amount of noise, the higher the DispEn2D

value. For SPN with density d, the noise is applied to d multiplied by the
number of pixels of an image. However, for the WGN case, the noise is added
to almost every pixel of an image. Thus, the DispEn2D and SampEn2D values
for WGN, compared with their counterparts for SPN, are larger. It is worth
noting that the results for various images lead to similar findings as well (for
briefness reasons, we do not show them here).

4.1.2. Artificial Periodic and Synthesized Textures

Table 2 shows that the DispEn2D, like SampEn2D, of a periodic texture
image is lower than that of its corresponding synthesized one. This fact sug-
gests that DispEn2D and SampEn2D can be considered as metrics to quantify
the regularity or predictability of images.

4.1.3. Two-dimensional MIX Process (MIX2D)

Figure 7 shows the entropy of MIX2D process using DispEn2D (c = 5) and
SampEn2D (r = 0.24) for m = {[1, 1], [2, 2], [3, 3]}. The parameters used for
SampEn2D were chosen according to [22]. The MIX2D process goes from the
absolutely regular (p = 0) to the completely random (p = 1) and one expects
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Table 2: DispEn2D and SampEn2D of (a), (b), (c), and (d) periodic textures and their
(e), (f), (g), and (h) synthesized corresponding textures; see Figure 2. The parameters
were set to m = [2, 2] for both the methods, c = 5 for DispEn2D and r = 0.24 of image
standard deviation for SampEn2D.

Texture (a) Texture (b) Texture (c) Texture (d)
DispEn2D 1.018 1.110 2.445 4.124

Texture (e) Texture (f) Texture (g) Texture (h)
DispEn2D 1.088 1.203 2.664 4.305

Texture (a) Texture (b) Texture (c) Texture (d)
SampEn2D 0.0885 0.1818 0.1647 0.1187

Texture (e) Texture (f) Texture (g) Texture (h)
SampEn2D 0.1025 0.1827 0.3123 0.1310

entropy to increase for increasing p. This is the case for both evaluated mea-
surements, except for DispEn2D with m = [1, 1]. Since dispersion patterns
should have at least two elements, the embedding dimension for DispEn2D

has to be set at least to [2, 2]. For this reason, the DispEn2D values for
m = [1, 1] are almost constant. According to Gonzalez [38], “a pattern is
essentially an arrangement and it is characterized by the order of the ele-
ments of which it is made”. Thus, it is highly recommended to have at least
two elements in a pattern, as suggested to set m > 1 for DispEn1D [7, 13].
The reason behind the constant value is that ln(cmh×mw) = ln(5) = 1.6094
is the maximum DispEn2D value for m = [1, 1]. In addition, SampEn2D for
m = [3, 3] and p = 0.5 shows instability. The curve for SampEn2D with
m = [3, 3] is not a monotonic increase for p > 0.5 and there is a missing
value at p = 0.95. This is explained by the fact that patterns become harder
to find in SampEn2D as m increases [22]. Therefore, SampEn2D becomes
poorly estimated for increasing m, especially for small images.

4.2. Real Datasets

4.2.1. Kylberg Texture Dataset

To assess the ability of DispEn2D to be used as a feature extraction method
for images or textures, we used the popular publicly-available Kylberg Tex-
ture Dataset. The DispEn2D values for the selected Kylberg texture groups
are demonstrated in Table 3. The results illustrate that there are no overlaps
between entropy values of the ten selected groups, showing that DispEn2D

may be a useful metric to distinguish different patterns of fabrics and sur-
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Figure 7: DispEn2D (left panel) and SampEn2D (right panel) calculated from MIX2D

processes of size 256 × 256 pixels. The parameters were set to m = {[1, 1], [2, 2], [3, 3]}
for both the methods, c = 5 for DispEn2D and r = 0.24 of image standard deviation for
SampEn2D.
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Figure 8: DispEn2D (left panel) and SampEn2D (right panel) calculated from the Brodatz
dataset presented in Figure 5. The parameters were set to m = {[1, 1], [2, 2], [3, 3]} for both
methods, c = 5 for DispEn2D and r = 0.24 of image standard deviation for SampEn2D.
For SampEn2D and data 93 at m = [3, 3] the computation leads to infinite value.

4.2.2. Brodatz Image Dataset

Results for the Brodatz dataset are depicted in Figure 8. The pa-
rameters values for both the entropy approaches are equal to those pre-
viously used, i.e. c = 5 (DispEn2D) and r = 0.24 of image stan-
dard deviation (SampEn2D). Interestingly, the orders of the entropy val-
ues obtained by DispEn2D and SampEn2D of the images are quite sim-
ilar. The difference between DispEn2D and SampEn2D was found only
for the orders assigned with the three lowest entropy values. More-
over, both measurements show relative consistency. Relative consis-
tency implies that, if SampEn2D(m1, r1)(S) > SampEn2D(m1, r1)(T ),
then SampEn2D(m2, r2)(S) > SampEn2D(m2, r2)(T ). Likewise, if
DispEn2D(m1, c1)(S) > DispEn2D(m1, c1)(T ), then DispEn2D(m2, c2)(S) >
DispEn2D(m2, c2)(T ) [3].

It is worth pointing out that DispEn2D and SampEn2D are based on dif-
ferent concept in entropy. While SampEn2D is a conditional entropy, i.e.
estimates the conditional probability that similar m-size patterns will still
be similar for m + 1, DispEn2D is based on the definition of Shannon’s en-
tropy, and takes into account only the matches of patterns of size m. The
inconsistencies found for DispEn2D for m = [1, 1] might be the result of the
entropy estimation method, which is based only on the single pixels distri-
butions, whereas SampEn2D, even for m = [1, 1], takes into account some
information on patterns with m = [2, 2].
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Figure 9: DispEn2D (top panels) and SampEn2D (bottom panels) calculated from the
cardiac histological images from rats. The median value of the entropy for each group is
presented here, as well as the 25th and 75th percentiles. ∗ means P < 0.05. Parameters
were set to m = {[1, 1], [2, 2], [3, 3]} for both methods, c = 5 for DispEn2D and r = 0.24 of
image standard deviation for SampEn2D.

4.2.3. Cardiac Histological Images from Rats

The results obtained by DispEn2D and SampEn2D for the cardiac histolog-
ical image dataset are depicted in Figure 9. In general, the pixel patterns of
cardiac fibers from SHAM animals present more irregularity (higher entropy)
when compared to MI animals. The SampEn2D of the SHAM animals pre-
sented a tendency to higher values compared to the MI, although no statisti-
cal significance was found for m = [1, 1], m = [2, 2], or m = [3, 3]. DispEn2D

led to higher values for the SHAM compared to the MI for m = [2, 2] and
m = [3, 3]. The lack of difference for m = [1, 1] is not surprising as m = [1, 1]
was identified not to be a good choice for DispEn2D. Therefore, we can say
that DispEn2D is a valuable measurement to distinguish the SHAM to MI.
Even though the DispEn2D curves of the SHAM and MI are closer compared
to the respective SampEn2D curves, one must be aware that DispEn2D has a
much lower standard deviation (or CV, see Tables 5 and 6). Therefore, the
scaling of DispEn2D and SampEn2D are different and must not be directly
compared.

The Hedges’ g effect size [40] was also employed to quantify the differences
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Table 4: Differences between the DispEn2D and SampEn2D results for the cardiac histo-
logical images from SHAM vs. MI rats based on the Hedges’ g effect size.

Method m = [1, 1] m = [2, 2] m = [3, 3]

DispEn2D 0.6667 1.1896 1.3015

SampEn2D 1 1.1836 1.2051

between the results for SHAM vs. MI. The Hedges’ g test shows the difference
between the means of two groups, divided by the weighted average of stan-
dard deviations for these two groups. The differences, illustrated in Table 4,
show that the highest effect size is obtained by DispEn2D with m = [3, 3],
suggesting the advantage of this method over SampEn2D.

Results with the cardiac histological dataset give strength to the assump-
tion that irregularity may be a valuable source of information to distinguish
the dynamics of images [22]. Even if the present dataset includes low quality
images, DispEn2D was able to differentiate pathological from non pathological
conditions. This opens new possibilities for application of two-dimensional
entropy measurements, even for noisy and corrupted images.

4.3. Sensitivity of DispEn2D and SampEn2D to Image Sizes

To evaluate the sensitivity of DispEn2D and SampEn2D to the size of im-
ages, we created 40 different WGN2D and 40 MIX2D(0.5) with sizes vary-
ing from 10 × 10 to 200 × 200 pixels. The Parameters c and r were re-
spectively 5 and 0.24 of the standard deviation of images and m varied in
{[1, 1], [2, 2], [3, 3]}. The mean and standard deviation values of the results
for WGN2D and MIX2D(0.5) are shown in Figure 10.

As mentioned before, SampEn2D counts element pairs in template matri-
ces having d[Xm, d

k,l ,Xm,d
a,b ] ≤ r. In case the size of an image is small, the

probability for this number of being equal to zero is higher, leading to un-
defined values. Accordingly, the entropy values for small-sized images using
SampEn2D with m = [2, 2] and all values for SampEn2D with m = [3, 3] are
undefined, as can be seen in Figure 10. In contrast, the DispEn2D-based val-
ues are always defined, showing an advantage of DispEn2D over SampEn2D.

As mentioned previously, to obtain reliable statistics to calculate DispEn2D,
the number of patterns in an image, i.e. (h− (mh−1))× (w− (mw−1)), has
to be greater than the number of potential patterns (cmh×mw). In Figure 10,
for m = [2, 2] and for image sizes varying from 40×40 to 200×200 pixels, we
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Figure 10: Mean and standard deviation for DispEn2D (c = 5) and SampEn2D (r = 0.24×
standard deviation of the image) with embedding dimensions [1,1], [2,2], and [3,3] as
functions of image size changing from 10 × 10 to 200 × 200 pixels computed from 40
different WGN2D and MIX2D(0.5). SampEn2D values for image sizes of 10× 10 pixels and
20× 20 pixels with m = [2, 2] and all SampEn2D values for m = [3, 3] are undefined.

have between 1521 and 39601 patterns in the images, respectively, with 625
potential patterns defined in DispEn2D. The statistics obtained can therefore
be considered as reliable. However, for m = [3, 3], we have between 1444 (for
an image size of 40 × 40 pixels) and 39204 (for an image size of 200 × 200
pixels) patterns in the images, with 1953125 potential patterns in DispEn2D.
The number of potential dispersion patterns is therefore much larger than the
number of patterns extracted from the image. This explains why DispEn2D

values for m = [3, 3] shows a different behavior for image sizes larger than
40× 40 pixels. The maximum DispEn2D value is ln(cmh×mw). For c = 5 and
m = [2, 2] this gives a maximum entropy value of 6.43 (value nearly observed
in Figure 10 for m = [2, 2] and image sizes larger than 40 × 40 pixels). For
c = 5 and m = [3, 3], the maximum entropy value is 14.48. For c = 5 and
m = [3, 3], we may need images larger than 1400× 1400 pixels to reach this
maximum value.

To compare the stability of the results obtained by DispEn2D and
SampEn2D, we used the coefficient of variation (CV) defined as the standard
deviation divided by the mean. The CV permits comparison of variability es-
timates regardless of the magnitude values [39]. The CV values of the results
for sizes 50 × 50, 100 × 100, 150 × 150, and 200 × 200 pixels using WGN2D

and MIX2D(0.5) are shown in Tables 5 and 6, respectively. Forty realizations
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Table 5: Coefficient of variation (CV) values for the DispEn2D and SampEn2D for different
sizes of WGN2D for 40 realizations of each size. r and c were respectively 0.24 of the
standard deviation of images and 5.

Methods 50×50 100×100 150×150 200×200
DispEn2D with m=[1, 1] 23e-05 4e-05 2e-05 1e-05
DispEn2D with m=[2, 2] 140e-05 32e-05 12e-05 6e-05
DispEn2D with m=[3, 3] 9.9535e-05 6e-05 6e-05 6e-05
SampEn2D with m=[1, 1] 990e-05 5000e-05 420e-05 280e-05
SampEn2D with m=[2, 2] 3460e-05 790e-05 630e-05 340e-05
SampEn2D with m=[3, 3] undefined undefined undefined undefined

Table 6: Coefficient of variation (CV) values for the DispEn2D and SampEn2D for different
sizes of MIX2D(p = 0.5) (40 realizations of each size). r and c were respectively 0.24 of
the standard deviation of images and 5.

Methods 50×50 100×100 150×150 200×200
DispEn2D with m=[1, 1] 0.0021 0.0007 0.0026 0.0008
DispEn2D with m=[2, 2] 0.0054 0.0017 0.0043 0.0012
DispEn2D with m=[3, 3] 0.0011 0.0004 0.0017 0.0004
SampEn2D with m=[1, 1] 0.0872 0.0280 0.0091 0.0094
SampEn2D with m=[2, 2] 0.0135 0.0066 0.0014 0.0008
SampEn2D with m=[3, 3] undefined undefined undefined undefined

of each type of synthetic image were used. DispEn2D (c = 5) and SampEn2D

(r = 0.24 of images standard deviation) were calculated for different values
of m. Generally, for WGN2D, the larger the image size, the smaller the CV
value for both DispEn2D and SampEn2D. For both WGN2D and MIX2D(0.5),
the CV values obtained with DispEn2D are noticeably smaller than those
obtained with SampEn2D. Moreover, the CVs for SampEn2D with m = [3, 3]
are undefined.

4.4. Computational Time

Figure 11 shows the computational time (in seconds) to calculate DispEn2D

and SampEn2D in the Brodatz dataset, as a function of c or r, and differ-
ent values of m. The time to compute DispEn2D increases exponentially
with c and is very sensitive to m. In contrast, the computational time of
SampEn2D increases linearly with r and is much less sensitive to m. How-
ever, the time required to calculate DispEn2D is markedly lower than the
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Figure 11: Computational time for DispEn2D (left panels) and SampEn2D (right panels)
calculated using the Brodatz dataset (images sized 128 × 128 pixels), for different values
of parameters m, c and r.

time required to compute SampEn2D. In the conditions of Figure 8, in case
m = [3, 3], the computation of DispEn2D (c = 5) takes around 45 s, whereas
that of SampEn2D (r = 0.24) takes from roughly 250 to 500 s (approximately
8 times higher computational time). The computational time is an impor-
tant limitation of SampEn2D that DispEn2D notably outperforms. Moreover,
Figure 11 shows that there is no major difference in the computational times
using DispEn2D for different images. However, in SampEn2D, because there
is a difference in the number of patterns considered as similar in each image,
the computational time depends on the image processed.

DispEn2D and SampEn2D have the following advantages as image process-
ing tools: 1) they are entropy measurements that take into account the
spatial properties of pixels; 2) they are not very sensitive to noise; and 3)
they are insensitive to translation and rotation. DispEn2D and SampEn2D

may be helpful in several applications of image processing field, such as pat-
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tern recognition, segmentation and event detection, considering that the one-
dimensional version of those methods have been successfully applied in such
problems [41, 42]. DispEn2D is much faster than SampEn2D and will never
return an undefined entropy value.

We have very recently introduced the bi-dimensional distribution entropy
(DistrEn2D) for small-sized images [27]. In spite of its interesting results,
as can be seen in Table 5 in [27] compared with Figure 11, DispEn2D is
considerably faster than DistrEn2D. Additionally, as the total number of
elements in distance matrix D is about h2w2, the computation of DistrEn2D

for large-sized images requires the storage of a huge number of elements. It
is one reason that we stressed the importance of DistrEn2D for only small-
sized textures [27], whereas DispEn2D can take into account both small and
large images. More importantly, according to the DistrEn2D algorithm, new
images created simply by random permutations of an original image have
DistrEn2D values close to the original image. For instance, if the elements
of MIX2D(0.5) are sorted, its DistrEn2D value is not changed considerably.
However, as expected theoretically, sorting leads to a lower entropy value.

5. Conclusion

The aim of this study was to develop DispEn2D based on Shannon’s def-
inition of entropy and the recently introduced dispersion patterns to quan-
tify the irregularity or uncertainty of images. We evaluated the DispEn2D

method on synthetic and real datasets. The study done here has the follow-
ing implications for the estimation of images’ irregularity. First, DispEn2D

distinguished different amounts of WGN2D and SPN2D and discriminated
the periodic images from their corresponding synthesized ones. Moreover,
DispEn2D was found to be a powerful feature extraction method to detect
the patterns of images from different kinds of Kylberg textures. Further-
more, DispEn2D detected different degrees of irregularity of MIX2D. Also,
the results from the Brodatz dataset showed the stability of DispEn2D-based
results. In addition, DispEn2D, unlike SampEn2D, significantly discriminated
the pathological from non pathological conditions in a dataset composed
of low quality images. Finally, DispEn2D has three key advantages over
SampEn2D: 1) DispEn2D, unlike SampEn2D, does not result in undefined
values; 2) DispEn2D is noticeably faster; and 3) DispEn2D-based values are
noticeably more stable than those obtained by SampEn2D based on the co-
efficient of variation test.
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Overall, due to its ability to detect different kinds of dynamics of images,
DispEn2D has a great potential to analyze various images with low compu-
tational time.
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