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Two-dimensional sample entropy (SampEn 2D ) is a recently developed method in the field of information theory for evaluating the regularity or predictability of images. SampEn 2D , though powerful, has two key limitations: 1) SampEn 2D values are undefined for small-sized images; and 2) SampEn 2D is computationally expensive for several real-world applications. To overcome these drawbacks, we introduce the two-dimensional dispersion entropy (DispEn 2D ) measure. To evaluate the ability of DispEn 2D , in comparison with SampEn 2D , we use various synthetic and real datasets. The results demonstrate that DispEn 2D distinguishes different amounts of white Gaussian and salt and pepper noise. The periodic images, compared with their corresponding synthesized ones, have lower DispEn 2D values. The results for Kylberg texture dataset show the ability of DispEn 2D to differentiate various textures. Although the results based on DispEn 2D and SampEn 2D for both the synthetic and real datasets are consistent in that they lead to similar findings about the irregularity of images, DispEn 2D has three main advantages over SampEn 2D : 1) DispEn 2D , unlike SampEn 2D , does not lead to undefined values; 2) DispEn 2D is noticeably quicker; and 3) The coeffi-

Introduction

In the field of signal and image processing, information theory provides tools for information representation and manipulation [START_REF] Gonzalez | Image processing[END_REF][START_REF] Shannon | A mathematical theory of communication[END_REF]. Entropy, as a prominent concept in information theory, is a measure of the uncertainty or irregularity of a system or data [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. Following the concept of entropy introduced by Shannon, several methods, such as one-dimensional approximate entropy (ApEn 1D ) [START_REF] Pincus | Approximate entropy as a measure of system complexity[END_REF], sample entropy (SampEn 1D ) [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF], permutation entropy (PerEn 1D ) [START_REF] Bandt | Permutation entropy: a natural complexity measure for time series[END_REF], distribution entropy (DistrEn 1D ) [START_REF] Li | Assessing the complexity of short-term heartbeat interval series by distribution entropy[END_REF], and dispersion entropy (DispEn 1D ) [START_REF] Rostaghi | Dispersion entropy: A measure for time series analysis[END_REF] have been introduced.

ApEn 1D was proposed in 1991 to estimate the irregularity of time series [START_REF] Pincus | Approximate entropy as a measure of system complexity[END_REF]. ApEn 1D is based on the negative average natural logarithm of the conditional probability that two sequences that are similar for m points remain similar, within a tolerance r, at the next point. SampEn 1D overcomes the problem of counting self-similar patterns in ApEn 1D , leading to more reliable estimations [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. SampEn 1D has been widely employed in many biomedical signal processing applications [START_REF] Platisa | Dependence of heart rate variability on heart period in disease and aging[END_REF][START_REF] Abásolo | Entropy analysis of the EEG background activity in Alzheimer's disease patients[END_REF][START_REF] Sokunbi | Sample entropy reveals high discriminative power between young and elderly adults in short fMRI data sets[END_REF][START_REF] Humeau | Multifractality, sample entropy, and wavelet analyses for age-related changes in the peripheral cardiovascular system: Preliminary results[END_REF].

Nevertheless, SampEn 1D is not fast enough for long time series and its values may be undefined for short signals [START_REF] Rostaghi | Dispersion entropy: A measure for time series analysis[END_REF]. PerEn 1D is on the basis of permutations defined by the order relations among values of a signal [START_REF] Bandt | Permutation entropy: a natural complexity measure for time series[END_REF]. PerEn 1D has been broadly used in many signal processing analyses and cognitive neuroscience studies to detect different dynamics of various signals [START_REF] Zanin | Permutation entropy and its main biomedical and econophysics applications: a review[END_REF]. PerEn 1D is computationally fast (computation cost of O(N )) [START_REF] Wu | Refined scaledependent permutation entropy to analyze systems complexity[END_REF]. Nevertheless, it has three key deficiencies: i) when a time series is symbolized based on its permutation patterns, only the order of the amplitude values is considered and some information about the amplitude values is ignored [START_REF] Zanin | Permutation entropy and its main biomedical and econophysics applications: a review[END_REF][START_REF] Azami | Amplitude-and fluctuation-based dispersion entropy[END_REF], ii) the effect of equal amplitude values in each embedding vector was not addressed in PerEn [START_REF] Zanin | Permutation entropy and its main biomedical and econophysics applications: a review[END_REF][START_REF] Azami | Amplitude-and fluctuation-based dispersion entropy[END_REF]; and iii) the most important shortcoming of PerEn is its high sensitivity to noise. This occurs because a small change in amplitude value may vary the order relations among amplitudes [START_REF] Azami | Amplitude-and fluctuation-based dispersion entropy[END_REF], even when the signal-to-noise ratio (SNR) of a signal is high (for more information, please see Figure 9 in [START_REF] Azami | Amplitude-and fluctuation-based dispersion entropy[END_REF]).

To overcome the shortcomings of PerEn 1D and SampEn 1D , DispEn 1D has been very recently introduced as a fast and powerful technique to quantify the irregularity of signals [START_REF] Rostaghi | Dispersion entropy: A measure for time series analysis[END_REF]. The dependency of DispEn 1D on a number of straightforward signal processing concepts via a set of synthetic time series and three real publicly-available datasets was previously evaluated. The results showed that the DispEn 1D technique noticeably outperforms PerEn 1D in terms of detection of dynamics of signals [START_REF] Rostaghi | Dispersion entropy: A measure for time series analysis[END_REF]. Also, the results demonstrated that DispEn 1D is sensitive to changes in frequency, simultaneous amplitude and frequency, noise power, and noise bandwidth. Moreover, the computational time for DispEn 1D is considerably lower than that for SampEn 1D [START_REF] Rostaghi | Dispersion entropy: A measure for time series analysis[END_REF]. It was also found that DispEn 1D , compared with PerEn 1D and SampEn 1D , is the most consistent technique to discriminate young from elderly children's stride-to-stride recordings, and the salt-sensitive from salt protected rats' blood pressure data [START_REF] Azami | Amplitude-and fluctuation-based dispersion entropy[END_REF]. Some of the above-mentioned entropy measures for the analysis of signals have recently been extended to their corresponding bi-dimensional cases to process images. Thus, multi-dimensional ApEn was introduced and applied to the biomedical field [START_REF] Marchant | Quantifying structure regularity in fluorescence microscopy cell images using a novel multi-dimensional approximate entropy metric[END_REF][START_REF] Moore | A threshold structure metric for medical image interrogation: The 2D extension of approximate entropy[END_REF][START_REF] Moore | The approximate entropy concept extended to three dimensions for calibrated, single parameter structural complexity interrogation of volumetric images[END_REF]. Two-dimensional SampEn (SampEn 2D ), as an extension of SampEn 1D , has been recently proposed to take into account the predictability of patterns within images [START_REF] Da Silva | Two-dimensional sample entropy analysis of rat sural nerve aging[END_REF][START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF]. It has been demonstrated that SampEn 2D , as a powerful tool for the feature extraction of images, follows SampEn 1D for different straight-forward concepts in signal and image processing such as noise, nonlinearity, and randomness, and can be considered as an irregularity measure of images [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF]. Another advantage of SampEn 2D is its invariance to rotation and translation [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF]. Moreover, two-dimensional PerEn (PerEn 2D ) was also proposed as an extension of its one-dimensional entropy counterpart [START_REF] Ribeiro | Complexity-entropy causality plane as a complexity measure for twodimensional patterns[END_REF][START_REF] Zunino | Discriminating image textures with the multiscale two-dimensional complexity-entropy causality plane[END_REF][START_REF] Sigaki | History of art paintings through the lens of entropy and complexity[END_REF]. Thus, a generalization of the complexity-entropy causality plane to 2D maps was developed. PerEn 2D was able to detect different kinds of two-dimensional patterns [START_REF] Ribeiro | Complexity-entropy causality plane as a complexity measure for twodimensional patterns[END_REF].

To take advantages of the performance of DispEn 1D over SampEn 1D and PerEn 1D [START_REF] Rostaghi | Dispersion entropy: A measure for time series analysis[END_REF], we introduce here two-dimensional DispEn (DispEn 2D ), as an extension of DispEn 1D . In this paper, we evaluate DispEn 2D on synthetic images and Brodatz and Kylberg publicly-available texture datasets, as well as on a real dataset of histological cardiac images. We show that the main advantages of the proposed DispEn 2D are: i) DispEn 2D , unlike SampEn 2D , does not result in undefined values for small images; ii) DispEn 2D is noticeably faster than SampEn 2D ; and iii) DispEn 2D leads to more stable results than SampEn 2D .

We have very recently introduced the bi-dimensional version of the distribution entropy (DistrEn 2D ) [START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF]. In spite of its interesting results, we will not compare DispEn 2D with DistrEn 2D because DistrEn 2D is interesting mainly for small-sized textures [START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF], whereas DispEn 2D can take into account both small and large images. Furthermore, randomly shuffling an image does not change considerably the value of DistrEn 2D . However, the correlations among the image pixels are destroyed in shuffles, and the irregularity of the image surrogates should be higher than that of the original image (except 2-D random images). Moreover, due to the drawbacks of PerEn 1D mentioned above, we do not compare DispEn 2D with PerEn 2D . DispEn 2D is also not compared to the bi-dimensional version of multiscale SampEn 2D [START_REF] Silva | Two-dimensional multiscale entropy analysis: Applications to image texture evaluation[END_REF] as the latter relies on a multiscale approach and is therefore a measure of image complexity, whereas DispEn 2D is a single-scale approach.

The remaining of the paper is organized as follows. Section 2 details DispEn 1D and SampEn 2D . The datasets used to evaluate DispEn 2D are described in Section 3. In Section 4, the results for DispEn 2D , in comparison of SampEn 2D , are shown and discussed. We finally end with a conclusion.

Two-dimensional Dispersion Entropy and Sample Entropy Measures

2.1. The Proposed Algorithm: Two-dimensional Dispersion Entropy DispEn 2D is an extension of DispEn 1D for two-dimensional data. Assume we have an image of size h × w: U = {u i,j } j=1,2,... ,w i=1,2,... ,h , defined on a domain R 2 . DispEn 2D of U is defined as follows:

1) First, u i,j are mapped to c classes with integer indices from 1 to c. To this aim, there are a number of linear and nonlinear mapping approaches used in the DispEn-based methods [START_REF] Azami | Amplitude-and fluctuation-based dispersion entropy[END_REF]. Some linear and nonlinear algorithms can be used to map the original image to the classified image. The simplest and fastest algorithm is the linear mapping. However, when maximum or minimum values are noticeably larger or smaller than the mean/median value of the signal, the majority of values are mapped to only a few classes [START_REF] Azami | Amplitude-and fluctuation-based dispersion entropy[END_REF]. On the other hand, a large number of natural processes show a progression from small beginnings that accelerates and approaches a climax over time (e.g., a sigmoid function) [START_REF] Tufféry | Data mining and statistics for decision making[END_REF][START_REF] Baranwal | Admission control in cloud computing using game theory[END_REF]. When there is not a detailed description, a sigmoid function is frequently used [START_REF] Gibbs | Variational Gaussian process classifiers[END_REF][START_REF] Baranwal | Admission control in cloud computing using game theory[END_REF][START_REF] Duch | Uncertainty of data, fuzzy membership functions, and multilayer perceptrons[END_REF]. Thus, we take the normal cumulative distribution function (NCDF) of pixels to map the image into the classes, as this function naturally raises in a sigmoidal shape. NCDF maps U into Y = {y i,j } j=1,2,... ,w i=1,2,... ,h from 0 to 1 as follows

y i,j = 1 σ √ 2π x i,j -∞ e -(t-µ) 2 2σ 2 dt, (1) 
where µ and σ are the average and standard deviation of U, respectively. Next, we use a linear algorithm to assign each y i,j to an integer from 1 to c. To this end, for each x i,j , we use z c i,j = round(c × y i,j + 0.5), where z c i,j

shows the (i, j) th pixel of the classified image and rounding involves either increasing or decreasing a number to the next digit.

2) z m,c k,l are made with the embedding dimension vector m = [m h , m w ] according to

z m,c k,l = {z c k,l , z c k,l+1 , ..., z c k,l+(mw-1) , z c
k+1,l , z c k+1,l+1 , ..., z c k+1,l+(mw-1) , ..., z c k+(m h -1),l , z c k+(m h -1),l+1 , ..., z c k+(m h -1),l+(mw-1) },

where k = 1, 2, . . . , w -(m w -1) and l = 1, 2, . . . , h -(m h -1). Each matrix z m,c k,l is mapped to a dispersion pattern

π v 0 v 1 ...v m h ×mw -1 , where z c k,l = v 0 , z c k,l+1 = v 1 ,. . . , z c k+(m h -1),l+(mw-1) = v m h ×mw-1 .
The number of possible dispersion patterns that can be assigned to each matrix z m,c k,l is equal to c m h ×mw , since the matrix z has m h × m w members and each member can be one of the integers from 1 to c [START_REF] Rostaghi | Dispersion entropy: A measure for time series analysis[END_REF].

3) For each c m h ×mw potential dispersion patterns π v 0 ...v m h ×mw -1 , relative frequency is obtained as follows

p(π v 0 ...v m h ×mw -1 ) = #{k, l k ≤ h -(m h -1) l ≤ w -(m w -1) , z m,c k,l has type π v 0 ...v m h .mw -1 } (h -(m h -1))(w -(m w -1)) . (3) 
In fact, p(π v 0 ...v m h .mw -1 ) shows the number of dispersion patterns of π v 0 ...v m h .mw -1 that is assigned to z m,c k,l , divided by the total number of embedded vectors with embedding dimension m. 4) Finally, based on Shannon's definition of entropy, DispEn 2D is computed as follows

DispEn 2D (U, m, c) = - c mw ×m h π=1 p(π v 0 ...v mw ×m h -1 ) × ln p(π v 0 ...v mw ×m h -1 ) . (4) 
When all possible two-dimensional dispersion patterns of an image have equal probability value, the highest value of DispEn 2D is reached, which has a value of ln(c m h ×mw ). However, if there is only one p(π v 0 ...v m h ×mw -1 ) different from zero, showing a completely regular and certain image, the smallest value of DispEn 2D is obtained.

As for DispEn 1D [START_REF] Rostaghi | Dispersion entropy: A measure for time series analysis[END_REF], the number of classes for DispEn 2D can be chosen from 3 to 9. The number of classes (c) in DispEn algorithms is inversely related to the threshold value r used in the SampEn approaches [START_REF] Azami | Amplitude-and fluctuation-based dispersion entropy[END_REF]. Thus, when the signal-to-noise ratio (SNR) is high, it is recommended to choose a large value of c, while a small c is more appropriate for signals with low SNR. Nevertheless, for convenience, we can set c = 5 for all images according to [START_REF] Rostaghi | Dispersion entropy: A measure for time series analysis[END_REF].

To work with reliable statistics to calculate DispEn 2D , it is recommended that the number of potential patterns (c m h ×mw ) is smaller than the number of patterns of an image ((h -(m h -1)) × (w -(m w -1))).

Two-dimensional Sample Entropy

Assume an image of size h × w: U = {u i,j } j=1,2,... ,w i=1,2,... ,h , defined on a domain R 2 . To compute SampEn 2D , first all two-dimensional matrices X m k,l (k = 1, 2, ..., h -(m h -1) and l = 1, 2, ..., w -(m w -1)) with size m h × m w , named template matrices, are created as

X m k,l =       u k,l u k,l+1 . . . u k,l+(mw-1) u k+1,l u k+1,l+1 . . . u k+1,l+(mw-1) . . . . . . . . . . . . u k+(m h -1),l u k+(m h -1),l+1 . . . u k+(m h -1),l+(mw-1)       , (5) 
where m = [m h , m w ] is the embedding dimension vector [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF].

Then, the number of element pairs in template matrices of size

m h × m w having d[X m k,l , X m a,b ] ≤ r is computed as φ m k,l (r) = [# of X m a,b | d[ X m k,l , X m a,b ] ≤ r] (h -m h )(w -m w ) -1 , (6) 
where a and b respectively change from

1 to h -m h and w -m w ((a, b) = (k, l)), d[X m k,l , X m a,b
] denotes the greatest element of the absolute differences between X m k,l and X m a,b , and r is the predefined threshold (tolerance factor) [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF]. Next, φ m (r) is calculated as

φ m (r) = 1 (h -m h )(w -m w ) k=h-m h k=1 l=w-mw l=1 φ m k,l (r). (7) 
Then, φ m+1 (r) is computed in the same way, increasing m to m + 1 where

m + 1 = [m h + 1, m w + 1] and φ m+1 k,l (r) is as follows φ m+1 k,l (r) = [# of X m+1 a,b | d[ X m+1 k,l , X m+1 a,b ] ≤ r] (h -m h )(w -m w ) -1 . (8) 
Finally, SampEn 2D is defined as follows [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF] 

SampEn 2D (U, m, r) = -ln φ m+1 (r) φ m (r) . (9) 
The parameter m indicates the size of the matrices which are analyzed or compared along images. In previous studies [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF][START_REF] Da Silva | Two-dimensional sample entropy analysis of rat sural nerve aging[END_REF], m was chosen to obtain squared template matrices, i.e. m h = m w .

The parameter r is chosen to balance the quality of the logarithmic likelihood estimates with the loss of signals' or images' information. When r is too small (smaller than 0.1 of the standard deviation of an image), poor conditional probability estimates are achieved. Furthermore, to avoid the effect of noise on data, larger r is recommended. In contrast, for r values larger than 0.4 of the standard deviation, too much detailed data information is lost. Therefore, a trade-off between large and small r values is needed. For a deeper discussion on the effect of those parameters in SampEn 2D , please refer to [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF]. 

Synthetic and Real Image Datasets

In this section, the synthetic and real images used to evaluate the performance of DispEn 2D are described.

Synthetic Datasets 3.1.1. Texture Image with Additive Noise

To evaluate the dependency of DispEn 2D on two-dimensional white Gaussian noise (WGN 2D ) and salt and pepper noise (SPN 2D ; sparsely occurring white and black pixels), we employed Lenna as a standard widely-used image, sized 256 × 256 pixels, shown in Figure 1. After normalizing the image in the range 0 to 1, we added different levels of uniform WGN 2D with mean (variance) equals to 0.01 (0.01), 0.05 (0.05), and 0.09 (0.09). We also added SPN 2D with different noise density values of 0.01, 0.05, and 0.09 to the reference normalized image.

Artificial Periodic and Synthesized Textures

To show how DispEn 2D changes when a periodic texture image turns into its synthesized one, we used four pairs of periodic and their corresponding synthesized textures from [29]. The original and their synthesized textures, sized 256 × 256 pixels, are depicted in Figure 2(a) to (d), and Figure 2(e) to (h), in that order. The synthesis algorithm, which is based on Markov random field texture models, generated textures through a deterministic search process [START_REF] Wei | Fast texture synthesis using tree-structured vector quantization[END_REF]. Note that each local region of the synthesized texture based on this algorithm is similar to another region from the input (original periodic) texture. 

(a) (b) (c) (d) (e) (f) (g) (h)

Two-dimensional MIX Process (MIX 2D )

We also compare the performance of DispEn 2D and SampEn 2D using the MIX processes. For the one-dimensional case, MIX(p) is a family of processes that interleave samples of a sine wave and sample of independent identically distributed (i.i.d.) uniform random variables. The variable p can vary from 0 to 1 and intuitively the process becomes more irregular as p increases [START_REF] Pincus | Physiological time-series analysis: what does regularity quantify?[END_REF]. MIX(p) is defined as [START_REF] Pincus | Physiological time-series analysis: what does regularity quantify?[END_REF] MIX(p) j = (1 -z j )x j + z j y j , [START_REF] Sokunbi | Sample entropy reveals high discriminative power between young and elderly adults in short fMRI data sets[END_REF] where

x j = √ 2 × sin( 2πj 12
) for all j, and y j = i.i.d. uniform random variables on [-√ 3, √ 3]. z j is a binary variable where z j = 1 with probability p and z j = 0 with probability 1-p. The appellation MIX indicates that the process is a mixture of deterministic and stochastic components. For the 2D case, we use the MIX 2D (p) process [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF]. The latter is based on the one-dimensional definition [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF] MIX

2D (p) i,j = (1 -z i,j )x i,j + z i,j y i,j , (11) 
where x i,j = sin( 2πi 12 ) + sin( 2πj 12 ) is a sinusoidal image, and Y = {y i,j } is an image containing uniform white noise in the range [-√ 3, √ 3]. z i,j = 1 with probability p and z i,j = 0 with probability 1 -p. Depending on the p value, the resulting image presents a specific degree of spatial regularity: when p = 1, MIX 2D (p) is a purely random function (highly irregular image); when p = 0, we obtain a bi-dimensional sine function (a perfectly regular periodic image), as it is the case for the one-dimensional case; see examples of such images in Figure 3. In our work, various realizations of MIX 2D images of size 256 × 256 pixels were generated and analyzed (one MIX 2D per set of parameter values).

Real Datasets 3.2.1. Kylberg Texture Dataset

We also used a subset of the Kylberg texture dataset. We selected 10 groups of images, each one includes 1000 samples, representing fabrics and surfaces of rotated images, namely floor1, floor2, scarf1, scarf2, rug1, rice1, screen1, ceiling1, blanket1, and canvas1 [START_REF] Kylberg | Kylberg Texture Dataset v. 1.0[END_REF]. One sample, sized 576 × 576 pixels, of each of them is depicted in Figure 4. The dataset is publicly available at http://www.cb.uu.se/ ~gustaf/texture. For more information, please refer to [START_REF] Kylberg | Kylberg Texture Dataset v. 1.0[END_REF]. 

Brodatz Image Dataset

The DispEn 2D method was also compared with SampEn 2D on the Brodatz grayscale texture album [START_REF] Brodatz | Textures: a photographic album for artist & designers[END_REF]. This dataset is composed of 112 grayscale images representing a large variety of natural textures. This album is now widely used in the literature (see, e.g., [START_REF] Lee | A robust algorithm for the fractal dimension of images and its applications to the classification of natural images and ultrasonic liver images[END_REF][START_REF] Florindo | Fractal descriptors based on Fourier spectrum applied to texture analysis[END_REF][START_REF] Davarzani | Scale-and rotationinvariant texture description with improved local binary pattern features[END_REF]). From this album we extracted 9 groups of images, as already performed in another study dealing with SampEn 2D [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF]. From each group, we used one arbitrary sample image sized 128 × 128 pixels, as shown in Figure 5.

Cardiac Histological Images from Rats

We also evaluated DispEn 2D and SampEn 2D in a biomedical application. Thus, cardiac histological images from rats were processed. The acquisition procedure is described below.

Myocardial Infarction in Rats:. Fourteen male Wistar rats (280-300 g) were submitted to myocardial infarction (MI group; 8 rats) or sham surgery procedures (SHAM group; 6 rats). Myocardial infarction was produced by a method similar to the one described in [START_REF] Pfeffer | Myocardial infarct size and ventricular function in rats[END_REF]. Briefly, the rats were anesthetized with ketamine (50 mg/kg, intraperitoneal) and xilazine (10 mg/kg, intraperitoneal), endotracheally intubated and mechanically ventilated with room air. A left thoracotomy was performed at the fifth intercostal space and the left anterior descending coronary artery was ligated between the pulmonary artery outflow tract and the left atrium with a polyester suture. The thorax was immediately closed after coronary ligation. Control (SHAM) rats were submitted to the same operative procedures as MI rats with exception of the coronary artery ligation. Experimental protocol was reviewed and approved by the Committee of Ethics in Animal Research of the School of Medicine of Ribeirao Preto, University of Sao Paulo, SP, Brazil (Protocol #165/2016).

Morphological Analysis:. After four weeks of MI or SHAM surgeries, rats were euthanized with an overdose of anesthetic (tribomoethanol, 250 mg/kg, intraperitoneal). The hearts were withdrawn from the thoracic cavity, cut transversely, fixed in phosphate-buffered 10% formalin and submitted to paraffin inclusion for histological study. Sections of 7 µm thick were cut and stained with Masson's trichrome stain to identify and quantify interstitial collagen fibers which plays an important role in the structural organization of the heart. Stained cross-sections were captured using light microscopy (Leica DM5500B; Leica Microsystem, Wetzlar, Germany) at ×40 magnification. For each heart, one image from the septum of the left ventricle was selected for posterior analysis.

During images acquisition, it was observed that histological tissue processing was deficient, which resulted in poor quality images. This fact makes this dataset particularly interesting to the present study, creating a scenario where it is possible to evaluate the performance of the two-dimensional entropy measures (DispEn 2D and SampEn 2D ) for the classification of low quality images obtained from different sources, i.e. pathological (MI) and non pathological (SHAM) groups.

All the histological images were originally sized 2048 × 1536 pixels and RGB-colored. To reduce the computational time, the entire dataset was downsampled to 1024 × 768 pixels with a linear interpolation and converted to a 8-bit grayscale representation prior to the analyzes. Figure 6 shows one representative image from each group (SHAM and MI).

Comparisons of entropy values between groups in the cardiac histological image dataset were performed with Mann-Whitney rank sum test due to the small sample size. Significance was set at P < 0.05. 

Results and Discussion

In this Section, we assess the ability of DispEn 2D to characterize different kinds of synthetic and real datasets described in Section 3. Note that for simplicity, we set m = [2, 2] and c = 5 for DispEn 2D in all simulations below, even though the ranges 3 ≤ c ≤ 8 and [1, 1] ≤ [m, m] ≤ [START_REF] Bandt | Permutation entropy: a natural complexity measure for time series[END_REF][START_REF] Bandt | Permutation entropy: a natural complexity measure for time series[END_REF] lead to similar findings (data not shown).

Synthetic Datasets 4.1.1. Texture Image with Additive Noise

The two-dimensional entropy values obtained from the Lenna image with different amounts of WGN 2D and SPN 2D are shown in Table 1. They reveal that the addition of WGN 2D of larger mean and variance leads to higher entropy values for both the DispEn 2D and SampEn 2D methods. There is an overlap between the SampEn 2D values with mean and variance 0.05 and Table 1: Mean value and standard deviation (40 realizations) of DispEn 2D and SampEn 2D computed from the reference image (Lenna, Figure 1) on which different levels of bidimensional white Gaussian noise (WGN 2D ) and salt and pepper noise (SPN 2D ) were added. We used m = [2, 2] for and c = 5 for DispEn 2D . The parameters were set to m = [2, 2] for both the methods, c = 5 for DispEn 2D and r = 0.24 of image standard deviation for SampEn 2D . and SPN 2D , where the greater the amount of noise, the higher the DispEn 2D value. For SPN with density d, the noise is applied to d multiplied by the number of pixels of an image. However, for the WGN case, the noise is added to almost every pixel of an image. Thus, the DispEn 2D and SampEn 2D values for WGN, compared with their counterparts for SPN, are larger. It is worth noting that the results for various images lead to similar findings as well (for briefness reasons, we do not show them here).

Type of noise

Artificial Periodic and Synthesized Textures

Table 2 shows that the DispEn 2D , like SampEn 2D , of a periodic texture image is lower than that of its corresponding synthesized one. This fact suggests that DispEn 2D and SampEn 2D can be considered as metrics to quantify the regularity or predictability of images.

Two-dimensional MIX Process (MIX 2D )

Figure 7 shows the entropy of MIX 2D process using DispEn 2D (c = 5) and SampEn 2D (r = 0.24) for m = {[1, 1], [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Shannon | A mathematical theory of communication[END_REF], [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]}. The parameters used for SampEn 2D were chosen according to [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF]. The MIX 2D process goes from the absolutely regular (p = 0) to the completely random (p = 1) and one expects Table 2: DispEn 2D and SampEn 2D of (a), (b), (c), and (d) periodic textures and their (e), (f), (g), and (h) synthesized corresponding textures; see Figure 2 has to be set at least to [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Shannon | A mathematical theory of communication[END_REF]. For this reason, the DispEn 2D values for m = [START_REF] Gonzalez | Image processing[END_REF][START_REF] Gonzalez | Image processing[END_REF] are almost constant. According to Gonzalez [START_REF] Gonzalez | Object Recognition[END_REF], "a pattern is essentially an arrangement and it is characterized by the order of the elements of which it is made". Thus, it is highly recommended to have at least two elements in a pattern, as suggested to set m > 1 for DispEn 1D [START_REF] Rostaghi | Dispersion entropy: A measure for time series analysis[END_REF][START_REF] Azami | Amplitude-and fluctuation-based dispersion entropy[END_REF].

The reason behind the constant value is that ln(c m h ×mw ) = ln(5) = 1.6094 is the maximum DispEn 2D value for m = [START_REF] Gonzalez | Image processing[END_REF][START_REF] Gonzalez | Image processing[END_REF]. In addition, SampEn 2D for m = [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF] and p = 0.5 shows instability. The curve for SampEn 2D with m = [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF] is not a monotonic increase for p > 0.5 and there is a missing value at p = 0.95. This is explained by the fact that patterns become harder to find in SampEn 2D as m increases [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF]. Therefore, SampEn 2D becomes poorly estimated for increasing m, especially for small images.

Real Datasets 4.2.1. Kylberg Texture Dataset

To assess the ability of DispEn 2D to be used as a feature extraction method for images or textures, we used the popular publicly-available Kylberg Texture Dataset. The DispEn 2D values for the selected Kylberg texture groups are demonstrated in Table 3. The results illustrate that there are no overlaps between entropy values of the ten selected groups, showing that DispEn 2D may be a useful metric to distinguish different patterns of fabrics and sur- 

Brodatz Image Dataset

Results for the Brodatz dataset are depicted in Figure 8. The parameters values for both the entropy approaches are equal to those previously used, i.e. c = 5 (DispEn 2D ) and r = 0.24 of image standard deviation (SampEn 2D ). Interestingly, the orders of the entropy values obtained by DispEn 2D and SampEn 2D of the images are quite similar. The difference between DispEn 2D and SampEn 2D was found only for the orders assigned with the three lowest entropy values. Moreover, both measurements show relative consistency.

Relative consistency implies that, if SampEn 2D (m1, r1

)(S) > SampEn 2D (m1, r1)(T ), then SampEn 2D (m 2 , r 2 )(S) > SampEn 2D (m 2 , r 2 )(T ). Likewise, if DispEn 2D (m 1 , c 1 )(S) > DispEn 2D (m 1 , c 1 )(T ), then DispEn 2D (m 2 , c 2 )(S) > DispEn 2D (m 2 , c 2 )(T ) [3].
It is worth pointing out that DispEn 2D and SampEn 2D are based on different concept in entropy. While SampEn 2D is a conditional entropy, i.e. estimates the conditional probability that similar m-size patterns will still be similar for m + 1, DispEn 2D is based on the definition of Shannon's entropy, and takes into account only the matches of patterns of size m. The inconsistencies found for DispEn 2D for m = [1, 1] might be the result of the entropy estimation method, which is based only on the single pixels distributions, whereas SampEn 2D , even for m = [START_REF] Gonzalez | Image processing[END_REF][START_REF] Gonzalez | Image processing[END_REF], takes into account some information on patterns with m = [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Shannon | A mathematical theory of communication[END_REF]. 

} for both methods, c = 5 for DispEn 2D and r = 0.24 of image standard deviation for SampEn 2D .

Cardiac Histological Images from Rats

The results obtained by DispEn 2D and SampEn 2D for the cardiac histological image dataset are depicted in Figure 9. In general, the pixel patterns of cardiac fibers from SHAM animals present more irregularity (higher entropy) when compared to MI animals. The SampEn 2D of the SHAM animals presented a tendency to higher values compared to the MI, although no statistical significance was found for m = [1, 1], m = [START_REF] Shannon | A mathematical theory of communication[END_REF][START_REF] Shannon | A mathematical theory of communication[END_REF], or m = [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. DispEn 2D led to higher values for the SHAM compared to the MI for m = [2, 2] and m = [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF]. The lack of difference for m = [1, 1] is not surprising as m = [1, 1] was identified not to be a good choice for DispEn 2D . Therefore, we can say that DispEn 2D is a valuable measurement to distinguish the SHAM to MI. Even though the DispEn 2D curves of the SHAM and MI are closer compared to the respective SampEn 2D curves, one must be aware that DispEn 2D has a much lower standard deviation (or CV, see Tables 5 and6). Therefore, the scaling of DispEn 2D and SampEn 2D are different and must not be directly compared.

The Hedges' g effect size [START_REF] Rosenthal | Parametric measures of effect size[END_REF] was also employed to quantify the differences between the results for SHAM vs. MI. The Hedges' g test shows the difference between the means of two groups, divided by the weighted average of standard deviations for these two groups. The differences, illustrated in Table 4, show that the highest effect size is obtained by DispEn 2D with m = [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF], suggesting the advantage of this method over SampEn 2D .

Results with the cardiac histological dataset give strength to the assumption that irregularity may be a valuable source of information to distinguish the dynamics of images [START_REF] Silva | Twodimensional sample entropy: assessing image texture through irregularity[END_REF]. Even if the present dataset includes low quality images, DispEn 2D was able to differentiate pathological from non pathological conditions. This opens new possibilities for application of two-dimensional entropy measurements, even for noisy and corrupted images. As mentioned before, SampEn 2D counts element pairs in template matrices having d[X m, d k,l , X m,d a,b ] ≤ r. In case the size of an image is small, the probability for this number of being equal to zero is higher, leading to undefined values. Accordingly, the entropy values for small-sized images using SampEn 2D with m = [2, 2] and all values for SampEn 2D with m = [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF] are undefined, as can be seen in Figure 10. In contrast, the DispEn 2D -based values are always defined, showing an advantage of DispEn 2D over SampEn 2D .

As mentioned previously, to obtain reliable statistics to calculate DispEn 2D , the number of patterns in an image, i.e. (h -(m h -1)) × (w -(m w -1)), has to be greater than the number of potential patterns (c m h ×mw ). In Figure 10 To compare the stability of the results obtained by DispEn 2D and SampEn 2D , we used the coefficient of variation (CV) defined as the standard deviation divided by the mean. The CV permits comparison of variability estimates regardless of the magnitude values [START_REF] Reed | Use of coefficient of variation in assessing variability of quantitative assays[END_REF]. The CV values of the results for sizes 50 × 50, 100 × 100, 150 × 150, and 200 × 200 pixels using WGN 2D and MIX 2D (0.5) are shown in Tables 5 and6, respectively. Forty realizations [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF] undefined undefined undefined undefined of each type of synthetic image were used. DispEn 2D (c = 5) and SampEn 2D (r = 0.24 of images standard deviation) were calculated for different values of m. Generally, for WGN 2D , the larger the image size, the smaller the CV value for both DispEn 2D and SampEn 2D . For both WGN 2D and MIX 2D (0.5), the CV values obtained with DispEn 2D are noticeably smaller than those obtained with SampEn 2D . Moreover, the CVs for SampEn 2D with m = [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF] are undefined.

Computational Time

Figure 11 shows the computational time (in seconds) to calculate DispEn 2D and SampEn 2D in the Brodatz dataset, as a function of c or r, and different values of m. The time to compute DispEn 2D increases exponentially with c and is very sensitive to m. In contrast, the computational time of SampEn 2D increases linearly with r and is much less sensitive to m. However, the time required to calculate DispEn 2D is markedly lower than the time required to compute SampEn 2D . In the conditions of Figure 8, in case m = [START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF][START_REF] Richman | Physiological time-series analysis using approximate entropy and sample entropy[END_REF], the computation of DispEn 2D (c = 5) takes around 45 s, whereas that of SampEn 2D (r = 0.24) takes from roughly 250 to 500 s (approximately 8 times higher computational time). The computational time is an important limitation of SampEn 2D that DispEn 2D notably outperforms. Moreover, Figure 11 shows that there is no major difference in the computational times using DispEn 2D for different images. However, in SampEn 2D , because there is a difference in the number of patterns considered as similar in each image, the computational time depends on the image processed. DispEn 2D and SampEn 2D have the following advantages as image processing tools: 1) they are entropy measurements that take into account the spatial properties of pixels; 2) they are not very sensitive to noise; and 3) they are insensitive to translation and rotation. DispEn 2D and SampEn 2D may be helpful in several applications of image processing field, such as pat-tern recognition, segmentation and event detection, considering that the onedimensional version of those methods have been successfully applied in such problems [START_REF] Micó | Automatic segmentation of long-term ecg signals corrupted with broadband noise based on sample entropy[END_REF][START_REF] Azami | Amplitude-aware permutation entropy: Illustration in spike detection and signal segmentation[END_REF]. DispEn 2D is much faster than SampEn 2D and will never return an undefined entropy value.

We have very recently introduced the bi-dimensional distribution entropy (DistrEn 2D ) for small-sized images [START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF]. In spite of its interesting results, as can be seen in Table 5 in [START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF] compared with Figure 11, DispEn 2D is considerably faster than DistrEn 2D . Additionally, as the total number of elements in distance matrix D is about h 2 w 2 , the computation of DistrEn 2D for large-sized images requires the storage of a huge number of elements. It is one reason that we stressed the importance of DistrEn 2D for only smallsized textures [START_REF] Azami | Bidimensional distribution entropy to analyze the irregularity of small-sized textures[END_REF], whereas DispEn 2D can take into account both small and large images. More importantly, according to the DistrEn 2D algorithm, new images created simply by random permutations of an original image have DistrEn 2D values close to the original image. For instance, if the elements of MIX 2D (0.5) are sorted, its DistrEn 2D value is not changed considerably. However, as expected theoretically, sorting leads to a lower entropy value.

Conclusion

The aim of this study was to develop DispEn 2D based on Shannon's definition of entropy and the recently introduced dispersion patterns to quantify the irregularity or uncertainty of images. We evaluated the DispEn 2D method on synthetic and real datasets. The study done here has the following implications for the estimation of images' irregularity. First, DispEn 2D distinguished different amounts of WGN 2D and SPN 2D and discriminated the periodic images from their corresponding synthesized ones. Moreover, DispEn 2D was found to be a powerful feature extraction method to detect the patterns of images from different kinds of Kylberg textures. Furthermore, DispEn 2D detected different degrees of irregularity of MIX 2D . Also, the results from the Brodatz dataset showed the stability of DispEn 2D -based results. In addition, DispEn 2D , unlike SampEn 2D , significantly discriminated the pathological from non pathological conditions in a dataset composed of low quality images. Finally, DispEn 2D has three key advantages over SampEn 2D : 1) DispEn 2D , unlike SampEn 2D , does not result in undefined values; 2) DispEn 2D is noticeably faster; and 3) DispEn 2D -based values are noticeably more stable than those obtained by SampEn 2D based on the coefficient of variation test.

Figure 1 :

 1 Figure 1: Example of a reference image, sized 256 × 256 pixels, on which different levels of WGN 2D and SPN 2D were added.

Figure 2 :

 2 Figure 2: Texture synthesis examples: (a), (b), (c), and (d) periodic textures and (e), (f), (g), and (h) their corresponding synthesized textures [29]. All images have a size of 256×256 pixels.

Figure 3 :

 3 Figure 3: Examples of MIX 2D images for different p values.

Figure 4 :

 4 Figure 4: One sample of each of the ten selected groups from Kylberg textures [31]. All images have a size of 576×576 pixels.

Figure 5 :

 5 Figure 5: The Brodatz image dataset used. Each image is 128 × 128 pixels.

Figure 6 :

 6 Figure 6: Representative examples of cardiac histological image dataset used in this study, obtained from SHAM (upper image) and myocardial infarction (lower image) groups. All images have a size of 1024×768 pixels.

  . The parameters were set to m = [2, 2] for both the methods, c = 5 for DispEn 2D and r = 0.24 of image standard deviation for SampEn 2D . Texture (a) Texture (b) Texture (c) Texture (d) DispEn 2D

Figure 7 :

 7 Figure 7: DispEn 2D (left panel) and SampEn 2D (right panel) calculated from MIX 2D processes of size 256 × 256 pixels. The parameters were set to m = {[1, 1], [2, 2], [3, 3]} for both the methods, c = 5 for DispEn 2D and r = 0.24 of image standard deviation for SampEn 2D .
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 3218 Figure 8: DispEn 2D (left panel) and SampEn 2D (right panel) calculated from the Brodatz dataset presented in Figure 5. The parameters were set to m = {[1, 1], [2, 2], [3, 3]} for both methods, c = 5 for DispEn 2D and r = 0.24 of image standard deviation for SampEn 2D . For SampEn 2D and data 93 at m = [3, 3] the computation leads to infinite value.

Figure 9 :

 9 Figure 9: DispEn 2D (top panels) and SampEn 2D (bottom panels) calculated from the cardiac histological images from rats. The median value of the entropy for each group is presented here, as well as the 25 th and 75 th percentiles. * means P < 0.05. Parameters were set to m = {[1, 1], [2, 2], [3, 3]} for both methods, c = 5 for DispEn 2D and r = 0.24 of image standard deviation for SampEn 2D .
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 3 Sensitivity of DispEn2D and SampEn 2D to Image Sizes To evaluate the sensitivity of DispEn 2D and SampEn 2D to the size of images, we created 40 different WGN 2D and 40 MIX 2D (0.5) with sizes varying from 10 × 10 to 200 × 200 pixels. The Parameters c and r were respectively 5 and 0.24 of the standard deviation of images and m varied in {[1, 1], [2, 2], [3, 3]}. The mean and standard deviation values of the results for WGN 2D and MIX 2D (0.5) are shown in Figure 10.

Figure 10 :

 10 Figure 10: Mean and standard deviation for DispEn 2D (c = 5) and SampEn 2D (r = 0.24× standard deviation of the image) with embedding dimensions [1,1], [2,2], and [3,3] as functions of image size changing from 10 × 10 to 200 × 200 pixels computed from 40 different WGN 2D and MIX 2D (0.5). SampEn 2D values for image sizes of 10 × 10 pixels and 20 × 20 pixels with m = [2, 2] and all SampEn 2D values for m = [3, 3] are undefined.

  DispEn 2D with m = [3, 3] 9.9535e-05 6e-05 6e-05 6e-05 SampEn 2D with m = [1, 1] 990e-05 5000e-05 420e-05 280e-05 SampEn 2D with m = [2, 2] 3460e-05 790e-05 630e-05 340e-05 SampEn 2D with m = [3, 3] undefined undefined undefined undefined

Figure 11 :

 11 Figure 11: Computational time for DispEn 2D (left panels) and SampEn 2D (right panels) calculated using the Brodatz dataset (images sized 128 × 128 pixels), for different values of parameters m, c and r.

  However, there is no overlap between any two groups for DispEn 2D , demonstrating its advantage over SampEn 2D .Likewise, adding SPN 2D with larger noise density results in higher entropy values. Both evidence that DispEn 2D can detect different levels of WGN 2D

		Level added	DispEn 2D	SampEn 2D
	WGN 2D	mean and variance 0.01 5.0555±0.0074 6.5653±0.0204
	WGN 2D	mean and variance 0.05 5.9766±0.0075 8.1864±0.0567
	WGN 2D	mean and variance 0.09 6.1006±0.0049 8.2703±0.1020
	SPN 2D	density 0.01	3.2805±0.0045 0.7715±0.0057
	SPN 2D	density 0.05	3.6846±0.0100 1.1095±0.0146
	SPN 2D	density 0.09	4.0077±0.0107 1.4911±0.0229
	those for mean and variance 0.09.	

Table 4 :

 4 Differences between the DispEn 2D and SampEn 2D results for the cardiac histological images from SHAM vs. MI rats based on the Hedges' g effect size.

	Method m = [1, 1] m = [2, 2] m = [3, 3]
	DispEn 2D	0.6667	1.1896	1.3015
	SampEn 2D	1	1.1836	1.2051

Table 5 :

 5 Coefficient of variation (CV) values for the DispEn 2D and SampEn 2D for different sizes of WGN 2D for 40 realizations of each size. r and c were respectively 0.24 of the standard deviation of images and 5.

Table 6 :

 6 Coefficient of variation (CV) values for the DispEn 2D and SampEn 2D for different sizes of MIX 2D (p = 0.5) (40 realizations of each size). r and c were respectively 0.24 of the standard deviation of images and 5.

	Methods	50×50 100×100 150×150 200×200
	DispEn 2D with m = [1, 1] 0.0021	0.0007	0.0026	0.0008
	DispEn 2D with m = [2, 2] 0.0054	0.0017	0.0043	0.0012
	DispEn 2D with m = [3, 3] 0.0011	0.0004	0.0017	0.0004
	SampEn 2D with m = [1, 1] 0.0872	0.0280	0.0091	0.0094
	SampEn 2D with m = [2, 2] 0.0135	0.0066	0.0014	0.0008
	SampEn 2D with m =			

Overall, due to its ability to detect different kinds of dynamics of images, DispEn 2D has a great potential to analyze various images with low computational time.