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Abstract  24 

Coherent genomic groups are frequently used as a proxy for bacterial species delineation   25 

through computation of overall genome relatedness indices (OGRI). Average nucleotidic 26 

identity (ANI) is the method of choice for estimating relatedness between genomic 27 

sequences. However, pairwise comparisons of genome sequences based on ANI is relatively 28 

computationally intensive and therefore precludes analyses of large datasets composed of 29 

thousand genomes sequences. 30 

In this work we evaluated an alternative OGRI based on k-mers counts to study prokaryotic 31 

species delimitation. A dataset containing more than 3,500 Pseudomonas genome 32 

sequences was successfully classified in few hours with the same precision than ANI. A new 33 

visualization method based on zoomable circle packing was employed for assessing 34 

relationships between the 350 cliques generated. Amendment of databases with these 35 

Pseudomonas cliques greatly improve classification of metagenomic read sets with k-mers-36 

based classifier.  37 

The developed workflow was integrated in the user-friendly KI-S tool that is available at the 38 

following address: https://iris.angers.inra.fr/galaxypub-cfbp.  39 

 40 
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Background 44 

Species is the unit of biological diversity. Species delineation of Bacteria and Archaea 45 

historically relies on a polyphasic approach based on a range of genotypic, phenotypic and 46 

chemo-taxonomic (e.g. fatty acid profiles) data of cultured specimen. According to the List of 47 

Prokaryotic Names with Standing in Nomenclature (LPSN), approximately 15,500 bacterial 48 

species names have been currently validated within this theoretical framework [1]. Since the 49 

number of bacterial species inhabiting planet Earth is predicted to range between 107 to 1012 50 

species according to different estimates [2,3], the genomics revolution provides an 51 

opportunity to accelerate the pace of species description.  52 

 Prokaryotic species are primarily described as cohesive genomic groups and 53 

approaches based on similarity of whole genome sequence, also known as overall genome 54 

relatedness indices (OGRI), have been proposed for delineating species. Average nucleotidic 55 

identity (ANI) is nowadays the mostly acknowledged OGRI for assessing relatedness 56 

between genomic sequences. Distinct ANI algorithms such as ANI based on BLAST (ANIb 57 

[4]), ANI based on MUMmer (ANIm [5]) or ANI based on orthologous gene (OrthoANIb [6]; 58 

OrthoANIu [7]; gANI,AF [8]), which differ in their precisions but more importantly on their 59 

calculation times [7], have been developed. Indeed, improvement of calculation time for 60 

whole genomic comparison of large datasets is an essential parameter. As of November 61 

2018, the total number of prokaryotic genome sequences publicly available in the NBCI 62 

database is 170,728. Considering an average time of 1 second for calculating ANI values of 63 

one pair of genome sequence, it would take approximately 1,000 years for obtaining ANI 64 

values for all pairwise comparisons.  65 

 The number of words of length k (k-mers) shared between read sets [9] or genomic 66 

sequences [10] is an alignment-free alternative for assessing the dis(similarities) between 67 

entities. Methods based on k-mers counts, such as SIMKA [9], can quickly compute pairwise 68 

comparison of multiple metagenome read sets with high accuracy. In addition, specific k-69 

mers profiles are now routinely employed by multiple read classifiers for estimating the 70 
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taxonomic structure of metagenome read sets [11–13]. While these k-mers based classifiers 71 

differ in term of sensitivity and specificity [14], they rely on accurate genome databases for 72 

affiliating read to a taxonomic rank. 73 

 The objective of the current work was to evaluate an alternative method based on k-74 

mers counts to study species delimitation on extensive genome datasets. We therefore 75 

decided to employ k-mers counts for assessing similarity between genome sequences 76 

belonging to the Pseudomonas genus. Indeed, this genus contains an important diversity of 77 

species (n = 207), whose taxonomic affiliation is under constant evolution [15–21], and 78 

numerous genome sequences are available in public databases. We also proposed an 79 

original visualization tool based on D3 Zoomable Circle Packing 80 

(https://gist.github.com/mbostock/7607535) for assessing relatedness of thousands of 81 

genomes sequences. Finally, the benefit of taxonomic curation of reference database on the 82 

taxonomic affiliation of metagenomics read sets was assessed. The developed workflow was 83 

integrated in the user-friendly KI-S tool which is available in the galaxy toolbox of CIRM-84 

CFBP (https://iris.angers.inra.fr/galaxypub-cfbp). 85 

 86 
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Methods 87 

 88 

Genomic dataset 89 

All genome sequences (n=3,623 as of April 2017) from Pseudomonas genus were 90 

downloaded from the NCBI database 91 

(https://www.ncbi.nlm.nih.gov/genome/browse#!/overview/). 92 

 93 

Calculation of Overall Genome Relatedness Indices  94 

The percentage of shared k-mers between genome sequences was calculated with Simka 95 

version 1.4 [9] with the following parameters (abundance-min 1 and k-mers length ranging 96 

from 10 to 20). The percentage of shared k-mers was compared to ANIb values calculated 97 

with PYANI version 0.2.3 (https://github.com/widdowquinn/pyani). Due to the computing time 98 

required for ANIb calculation, only a subset of Pseudomonas genomic sequences (n=934) 99 

was selected for this comparison. This subset was composed of genome sequences 100 

containing less than 150 scaffolds.  101 

 102 

Development of KI-S tool 103 

An integrative tool named KI-S was developed. The number of shared k-mers between 104 

genome sequences is first calculated with Simka [9]. A custom R script is then employed to 105 

cluster the genome sequences according to their connected components at different selected 106 

threshold (e.g. 50% of shared 15-mers). The clustering result is visualized with Zoomable 107 

Circle Packing representation with the D3.js JavaScript library 108 

(https://gist.github.com/mbostock/7607535). The source code of the KI-S tool is available at 109 

the following address: https://sourcesup.renater.fr/projects/ki-s/. A wrapper for accessing KI-S 110 

in a user-friendly Galaxy tool is also available at the following address: 111 

https://iris.angers.inra.fr/galaxypub-cfbp. 112 

 113 
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Taxonomic inference of metagenomic read sets 114 

The taxonomic profiles of 9 metagenome read sets derived from seed, germinating seeds 115 

and seedlings of common bean (Phaseolus vulgaris var. Flavert) were estimated with Clark 116 

version 1.2.4 [13]. These metagenome datasets were selected because of the high relative 117 

abundance of reads affiliated to Pseudomonas [22]. The following Clark default parameters –118 

k 31 –t <minFreqTarget> 0 and -o <minFreqtObject> 0 were used for the taxonomic profiling. 119 

Three distinct Clark databases were employed: (i) the original Clark database from 120 

NCBI/RefSeq at the species level (ii) the original Clark database supplemented with the 121 

3,623 Pseudomonas genome sequences and their original NCBI taxonomic affiliation (iii) the 122 

original Clark database supplemented with the 3,623 Pseudomonas genome sequences 123 

whose taxonomic affiliation was corrected according to the reclassification based on the 124 

number of shared k-mers. For this third database, genome sequences were clustered at 125 

>50% of 15-mers. 126 

 127 
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Results 128 

Selection of optimal k-mers size and percentage of shared k-mers  129 

Using the percentage of shared k-mers as an OGRI for species delineation first required to 130 

determine the optimal k-mers size. This was performed by comparing the percentage of 131 

shared k-mers to a widely acknowledged OGRI, ANIb [4], between 934 Pseudomonas 132 

genome sequences. Since species delineation threshold was initially proposed following the 133 

observation of a gap in the distribution of pairwise comparison values [23], the distribution 134 

profiles obtained with k-mers lengths ranging from 10 to 20 were compared to ANIb values. 135 

Short k-mers (k < 12) were evenly shared by most strains and then not discriminative (Fig. 136 

1). As the size of the k-mers increased, a multimodal distribution based on four peaks were 137 

observed (Fig. 1). The first peak is related to genomes sequences that do not belong to the 138 

same species. Then, depending on k length, the second and third peaks (e.g. 50% and  80% 139 

for k = 15) corresponded to genome sequences associated to the same species and 140 

subspecies, respectively. The fourth peak at 100% of shared k-mers was related to identical 141 

genome sequences. 142 

 Fifty percent of 15-mers is closed to ANIb value of 0.95 (Fig. 2), a threshold 143 

commonly employed for delineating bacterial species level [4]. More precisely the median 144 

percentage of shared 15-mers is 49% [34%-66%] for ANIb value ranging from 0.94 to 0.96. In 145 

addition, 15-mers allows the investigation of inter-and infra-specific relationship at lower and 146 

higher percentage of shared 15-mers, respectively.  147 

 Computing time of 15-mers for 934 genome sequences was 4 hours on a DELL 148 

Power Edge R510 server, while it took approximately 3 months for obtaining all ANIb pairwise 149 

comparisons (500-fold decrease of computing time).  150 

 151 

Classification of Pseudomonas genomes  152 

The percentage of shared 15-mers was then used to investigate relatedness between 3,623 153 

Pseudomonas genome sequences publicly available. At a threshold of 50% of 15-mers, we 154 
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identified 350 cliques. The clique containing the most abundant number of genome 155 

sequences was by far related to P. aeruginosa species (n = 2,341), followed by the 156 

phylogroups PG1 (n = 111), PG3 (n = 92) and PG2 (n = 74) of P. syringae species complex 157 

([16]; Table S1). At the clustering threshold employed, 185 cliques were composed of a 158 

single genome sequence, therefore highlighting the high Pseudomonas strain diversity. 159 

Moreover, according to Chao1 index, Pseudomonas species richness is estimated at 629 160 

cliques [+ 57], which indicates that additional strain isolations and sequencing effort are 161 

needed to cover the whole diversity of this bacterial genus. Graphical representation of 162 

hierarchical clustering by dendrogram for a large dataset is generally not optimal. Here we 163 

employed Zoomable circle packing as an alternative to dendrogram for representing similarity 164 

between genome sequences (Fig. 3 and FigS1.html). The different clustering thresholds that 165 

can be superimposed on the same graphical representation allow the investigation of inter- 166 

and intra- groups relationships (Fig. 3 and FigS1.html). This is useful for affiliating specific 167 

clique to a group or subgroup of Pseudomonas species.  168 

 169 

Improvement of taxonomic affiliation of metagenomic read sets. 170 

The taxonomic composition of metagenome read sets is frequently estimated with k-mers 171 

based classifiers. While these k-mers based classifiers differ in term of sensitivity and 172 

specificity, they all rely on accurate genome databases for affiliating read to a taxonomic 173 

rank. Here, we investigated the impact of database content and curation on taxonomic 174 

affiliation. Using Clark [13] as a taxonomic profiler with the original Clark database, we 175 

classified metagenome read sets derived from bean seeds, germinating seeds and seedlings 176 

[22]. Adding the 3,623 Pseudomonas genomes with their original taxonomic affiliation from 177 

NCBI to the original Clark database did not increase the percentage of classified reads (Fig. 178 

4). However, adding the same genome sequences reclassified in cliques according to their 179 

percentage of shared k-mers (k=15; threshold= 50%) increased 1.4-fold on average the 180 

number of classified reads (Fig. 4). 181 
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Discussion 184 

Classification of bacterial strains on the basis on their genome sequences similarities has 185 

emerged since a decade as an alternative to the cumbersome DNA-DNA hybridizations [24]. 186 

Although ANIb is the current gold-standard method for investigating these genomic 187 

relatedness, its intensive computational time prohibited its used for comparing large genome 188 

datasets [7]. In contrast, investigating the percentage of shared k-mers is scalable for 189 

comparing thousands of genome sequences.  190 

 In a method based on k-mers counts, choosing the length of k is a compromise 191 

between accuracy and speed. The distribution of shared k-mers values between genome 192 

sequences is impacted by k length. For k = 15, four peaks were observed at 15%, 50%, 80% 193 

and 100% of shared k-mers. The second peak is closed to ANIb value of 0.95 and falls in the 194 

so called grey or fuzzy zone [24] where taxonomists might decide to split or merge species. 195 

Hence, according to our working dataset, it seems that 50% of 15-mers is a good proxy for 196 

estimating Pseudomonas clique. Despite the diverse range of habitats colonized by different 197 

Pseudomonas populations [19], it is likely that the percentage of shared k-mers has to be 198 

adapted when investigating other bacterial genera. Indeed, since population dynamics, 199 

lifestyle and location impact molecular evolution, it is somewhat illusory to define a fixed 200 

threshold for species delineation [25]. While 15-mers is a good starting point for investigating 201 

infra-specific to infra-generic relationships between genome sequences, the computational 202 

speed of KI-S offers the possibility to perform large scale genomic comparisons at different k 203 

sizes to select the most appropriate threshold.  204 

 Genomic relatedness using whole genome sequences becomes a standard for 205 

bacterial strain identification and bacterial taxonomy [24,26]. This proposition is primarily 206 

motivated by fast and inexpensive sequencing of bacterial genome together with the limited 207 

availability of cultured specimen for performing classical polyphasic approach. Whether full 208 

genome sequences should represent the basis of taxonomic classification is an ongoing 209 

debate between systematicians [27]. While this consideration is well beyond the objectives of 210 
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this work, obtaining a classification of bacterial genome sequences into coherent groups is of 211 

general interest. Indeed, the number of misidentified genomes sequences is exponentially 212 

growing in public databases. A number of initiatives such as Digital Protologue Database 213 

(DPD [28]), Microbial Genomes Atlas (MiGA [29]), Life Identification Numbers database 214 

(LINbase [30]) or the Genome Taxonomy Database (GTDB [26]) proposed services to 215 

classify and rename bacterial strains based ANIb values or single copy marker proteins. 216 

Using the percentage of shared k-mers between unknown bacterial genome sequences and 217 

reference genome sequences associated to these databases could provide a rapid 218 

complementary approach for bacterial classification. Moreover, KI-S tool, provides a friendly 219 

visualization interface that could help systematicians to curate whole genome databases. 220 

Indeed, zoomable circle packing could be employed for highlighting (i) misidentified strains, 221 

(ii) bacterial taxa that possess representative type strains or (iii) bacterial taxa that contain 222 

few genomes sequences.  223 

 Association between a taxonomic group and its distribution across a range of habitats 224 

is useful for inferring the role of this taxa on its host or environment. For instance, community 225 

profiling approaches based on molecular marker such as hypervariable regions of 16S rRNA 226 

gene have been helpful for highlighting correlations between host fitness and microbiome 227 

composition. Finer-grained taxonomic resolution of microbiome composition could be 228 

achieved with metagenomics through k-mers based classification of reads. In this study we 229 

demonstrate that employing a database with a classification of strains reflecting their 230 

genomic relatedness greatly improve taxonomic assignments of reads. Therefore, 231 

investigating relationship between bacterial genome sequences not only benefits bacterial 232 

taxonomy but also deserves microbial ecology.  233 
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Figures and Supplemental files  244 

Figure 1: Distribution of shared k-mers values. Relatedness between genome sequences 245 

were estimated with ANIb (green) or shared k-mers (blue). The x axis represents ANIb or 246 

percentage of shared k-mers while the y axis represents the number of values by class in the 247 

subset of 934 Pseudomonas genomic comparison. 248 

Figure 2: Comparison of various k-mers length and ANIb values. Pairwise similarities 249 

between genome sequences were assessed with average nucleotidic identity based on 250 

BLAST (ANIb, x-axis) and percentage of shared k-mers of length 10 (A), 15 (B) and 20 (C). 251 

The red line corresponds to ANIb of 0.95, a threshold commonly employed for delineating 252 

species level.  253 

Figure 3: Hierarchical clustering of Pseudomonas genome sequences. Zoomable circle 254 

packing representation of Pseudomonas genome sequences (n = 3,623). Similarities 255 

between genome sequences were assessed by comparing the percentage of shared 15-256 

mers. Each dot represents a genome sequence, which is colored according to its group of 257 

species [16,21]. These genome sequences have been grouped at three distinct thresholds 258 

for assessing infraspecific (0.75), species-specific (0.5) and interspecies relationships (0.25).  259 

Figure 4: Percentage of classified reads. Classification of metagenome read sets derived 260 

from bean seeds, germinating seeds and seedlings with Clark [13]. Three distinct databases 261 

were employed for read classification: the original Clark database (red), Clark database 262 

supplemented with 3,623 Pseudomonas genome sequences (green) and the Clark database 263 

supplemented with 3,623 Pseudomonas genome sequences that were classified according 264 

to their percentage of shared k-mers (blue).  265 

TableS1.csv : Pseudomonas cliques. Description of the 350 cliques obtained after 266 

clustering at 50% of shared 15-mers. For each clique, the Pseudomonas group [21] and 267 

subgroup [16,21] are displayed. 268 

FigureS1.html: Zoomable circle packing representation of Pseudomonas genome 269 

sequences. Similarities between genome sequences were assessed by comparing the 270 
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percentage of shared 15-mers. Each dot represents a genome sequence, which is colored 271 

according to its group of species [16,21]. These genome sequences have been grouped at 272 

three distinct thresholds for assessing infraspecific (0.75), species-specific (0.5) and 273 

interspecies relationships (0.25).  274 

 275 
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