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Data-Free and Data-Driven RANS Predictions
with Quantified Uncertainty

W. N. Edeling1 · G. Iaccarino1 · P. Cinnella2

Abstract For the purpose of estimating the epistemic model-form uncertainty in Reynolds-
Averaged Navier-Stokes closures, we propose two transport equations to locally perturb
the Reynolds stress tensor of a given baseline eddy-viscosity model. The spatial structure
of the perturbations is determined by the proposed transport equations, and thus does not
have to be inferred from full-field reference data. Depending on a small number of model
parameters and the local flow conditions, a ’return to eddy viscosity’ is described, and the
underlying baseline state can be recovered. In order to make predictions with quantified
uncertainty, we identify two separate methods, i.e. a data-free and data-driven approach.
In the former no reference data is required and computationally inexpensive intervals are
computed. When reference data is available, Bayesian inference can be applied to obtained
informed distributions of the model parameters and simulation output.

Keywords RANS modeling · Uncertainty quantification · Bayesian inference · Return to
eddy viscosity · Lag model

1 Introduction

Despite the increasing availability of high-performance computational resources, Reynolds-
Averaged Navier-Stokes (RANS) closure models are projected to remain a widely used
option for the prediction of turbulent flows [1]. However, it is well known that the resulting
predictions are potentially sensitive to parametric and model-form uncertainty. The former
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concerns imperfectly known closure coefficients, while the latter deals with the uncer-
tainty due to assumptions made in the mathematical formulation of the model itself. A user
of RANS models should therefore be aware of flow-dependent performance, and expect
to obtain predictions which can be trustworthy for certain regions of a flow domain, yet
erroneous elsewhere.

Over the years various attempts have been made to quantify the uncertainty in RANS
closures. One might consider the closure coefficients as random variables, and perform a
Bayesian inference procedure to learn their posterior distribution from reference data [2, 3].
To also obtain a measure for the model-form uncertainty, it is possible to combine multiple
closure models in a single predictive framework using Bayesian model averaging [4]. More-
over, in traditional turbulence modeling practices, closure models are calibrated on a small
set of canonical flow cases. The assumption is then made that these calibrated models can
be applied to flows different from those in the training set. To relax this assumption, one can
also average over different training scenarios as well in an attempt to broaden the predictive
capability, see [5]. The downside of an ensemble approach is if all models in the chosen set
are linear eddy-viscosity models, the underlying Boussinesq hypothesis is not challenged,
thus resulting in a potential bias in the predictions.

We will build upon the work of [6, 7], in which perturbations in the eigenvalues of
the Boussinesq anisotropy tensor are introduced. The perturbations were either homoge-
neous, or informed by ad-hoc marker functions. To make the perturbations representative of
local flow features, we introduce two additional transport equations for linear combinations
of these aforementioned eigenvalues. This limits the amount of information that must be
extracted from reference data, since the spatial structure of the perturbations is now embed-
ded in the mathematical form of the transport equations. The use of transport equations to
prescribe the local perturbations also tends to impose a regularity in the solution, avoiding
oscillatory Reynolds stress components. Our model form is similar to the lag model of [8],
which can be derived from an argument involving a correction to the Boussinesq hypothe-
sis. The location, magnitude and direction of the eigenvalue perturbations are now governed
by the two model transport equations. The general behavior of our discrepancy model is
determined by two coefficients, resulting in a low-dimensional Uncertainty Quantification
(UQ) problem. Depending on the value of these coefficients and the local flow physics, our
transport equations will revert to the underlying baseline Boussinesq state. In a manner sim-
ilar to return to isotropy models, our transport equations therefore describe a ’return to eddy
viscosity’.

The low-dimensional nature of our model allows for two distinct applications in a predic-
tive setting, which we denote the data-free and data-driven predictions. If no reference data
is available for the flow case at hand (or for a closely related flow), cheap uncertainty inter-
vals can be computed. When we do have access to data, a Bayesian inference procedure can
be applied in order to obtain informed probability distributions describing the uncertainty
in the coefficients and Quantity-of-Interest (QoI). Although this data-driven approach is
more expensive, accurate surrogate models can be readily constructed with O(100) RANS
samples. Markov-chain Monte-Carlo (McMC) methods, or other common sampling tech-
niques, are then available to obtain posterior distributions of the model coefficients. These
distributions are easily interpreted from a physical point of view, as the values of the model
coefficients can be directly related to a state of anisotropy. As validation cases we will con-
sider a backward facing step and a subsonic jet, for which it is known that Boussinesq-type
models struggle to accurately capture all relevant flow physics.

This paper is organized as follows. First, we will very briefly describe the RANS model-
ing framework. Sections 3 and 4 then deal with the eigenvalue perturbations, and describe



various aspects (e.g. realizability and effect of model coefficients) of the proposed model.
Next, the data-free and data-driven methods are outlined, followed by the obtained results
in Section 6. Finally, we give our conclusions in Section 7.

2 Reynolds-Averaged Navier-Stokes Equations

The well-known Reynolds-Averaged Navier-Stokes equations [9] are given by

∂ρ

∂t
+ ∂ρ 〈Ui〉

∂xi

= 0,

∂ρ 〈Ui〉
∂t

+ ∂ρ 〈Ui〉
〈
Uj

〉

∂xj

= ∂

∂xj

[
σij − 〈p〉 δij − ρ

〈
uiuj

〉]
. (1)

Here, ρ is the density, 〈Ui〉 is the mean velocity in xi direction and μ is the viscosity. The
three terms on the right-hand side represent the viscous stress tensor, the isotropic stress due
to the average pressure field 〈p〉, and the apparent stress

〈
uiuj

〉
arising from the fluctuations

in the velocity. To close (1), one must model the Reynolds stress tensor
〈
uiuj

〉
in terms of

mean-field quantities. A common RANS closure is the Boussinesq hypothesis, i.e.

〈
uiuj

〉 ≈ 〈
uiuj

〉(bl) = 2

3
kδij − 2νT Sij . (2)

Here, k is the turbulent kinetic energy, δij the Kronecker delta, and Sij is the mean
strain-rate tensor, defined as Sij := 1

2

(
∂ 〈Ui〉/∂xj + ∂

〈
Uj

〉
/∂xi

)− 1
3∂ 〈Uk〉 /∂xkδij in com-

pressible flows. The superscript (bl) stands for baseline, and denotes a quantity computed
using the Boussinesq hypothesis.

The scalar quantity νT is the eddy-viscosity, which must be computed by means of some
chosen turbulence model, e.g. the k − ε, k − ω or Spalart-Allmaras models, see [10] for an
overview. Besides the approximate nature of these transport equations, several closure coef-
ficients and corresponding uncertainties are also present, ultimately leading to an uncertain
νT [3, 5]. Instead of focusing on one model-specific form of νT , we will inject uncertainty
directly into

〈
uiuj

〉
, by adding a tensorial discrepancy model Dij to the right-hand side of

Eq. 2, i.e. we set
〈
uiuj

〉 = 〈
uiuj

〉(bl) + Dij . (3)

We therefore leave any chosen baseline turbulence model and its coefficients unper-
turbed, and instead focus on estimating Dij . Specifically, Dij will be specified (see Section
4) based on perturbations in the eigenvalues of the Reynolds-stress anisotropy tensor bij . It
is important to note that we do not perturb the corresponding eigenvectors. As a result, we

therefore enforce that
〈
uiuj

〉
is aligned with

〈
uiuj

〉(bl) throughout the flow domain.
To perform the simulations the commercial code ANSYS Fluent v16.1 was used. Our

model was implemented into Fluent by means of a set of User-Defined Functions (UDFs).
These UDFs are available from the authors upon request.

3 Reynolds Stress Anisotropy and the Barycentric Map

Let us define the normalized anisotropy tensor bij as

bij :=
〈
uiuj

〉

2k
− 1

3
δij ; −1

3
≤ bαα ≤ 2

3
; −1

2
≤ bαβ ≤ 1

2
; (4)



which is a symmetric, deviatoric (zero trace) tensor. Greek subscripts are excluded from the
summation convention.

Banerjee et al. express the anisotropy tensor as a convex combination of three basis
tensors b̂1c, b̂2c, b̂3c, i.e.,

b̂ij = C1cb̂1c + C2cb̂2c + C3cb̂3c. (5)

These basis tensors represent the three limiting states of componentality (relative

strengths of components in
〈̂
uiuj

〉
), i.e., they represent one-, two- and three-component

turbulence. A circumflex (̂· ) represents the tensor (·) expressed in principal axes, e.g.

b̂ij = diag (λ1, λ2, λ3) , (6)

where λ1 ≥ λ2 ≥ λ3 are the eigenvalues of bij .
The basis tensors of Eq. 5 are given by

– One-component limiting state (1C): b̂1c := diag
(

2
3 ,− 1

3 ,− 1
3

)
. One component (and

one eigenvalue) of
〈
uiuj

〉
is nonzero. Note that a zero eigenvalue of

〈̂
uiuj

〉
leads to an

eigenvalue of − 1
3 for b̂ij .

– Two-component axi-symmetric limiting state (2C): b̂2c :=
(

1
6 , 1

6 ,− 1
3

)
. Two compo-

nents of
〈̂
uiuj

〉
are nonzero.

– Three-component limiting state (3C): b̂3c := (0, 0, 0). All three components of
〈̂
uiuj

〉

are equal, where the limiting basis tensor corresponds to isotropic turbulence.

From Eq. 5 it is clear that the coefficients C1c, C2c and C3c measure how close b̂ij is to
any of the three limiting states. Since Eq. 5 is required to be a convex combination, we have
by definition:

C1c + C2c + C3c = 1 and C1c ≥ 0 C2c ≥ 0 C3c ≥ 0. (7)

C1c = λ1 − λ2 λ1 = C1c + C2c

2
+ C3c

3
− 1

3

C2c = 2 (λ2 − λ3) ⇔ λ2 = C2c

2
+ C3c

3
− 1

3

C3c = 3λ3 + 1 λ3 = C3c

3
− 1

3
(8)

Due to Eq. 7, again only two coefficients are needed to quantify the state of anisotropy.
To visualize the nature of the anisotropy implied by these coefficients, a barycentric map

can be defined as ([11])

xb = C1cx1c + C2cx2c + C3cx3c,

yb = C1cy1c + C2cy2c + C3cy3c. (9)

Here, (x1c, y1c), (x2c, y2c) and (x3c, y3c) are the three corner points corresponding to the
limiting states of componentality. They can be chosen arbitrarily, but are commonly set to
the corner points of an equilateral triangle. In Fig. 1 the barycentric map is depicted along
with the variation of the coefficients along its edges. Each point x ∈ R

N in the spatial
flow domain has its own coefficients and thus can be mapped to a location (xb, yb) in the
barycentric map using Eq. 9. Since Eq. 5 is a convex combination of limiting states, all pos-
sible realizable states of

〈
uiuj

〉
are therefore contained within the borders of the barycentric

map.



Fig. 1 The barycentric map with the one-, two- and three-component corners, and the variation of its coef-
ficients. Arrows indicates directions along which the corresponding coefficient linearly decreases from one
toward zero

4 Reynolds Stress Perturbation

4.1 Anisotropy tensor decomposition

The eigen decomposition of the anisotropy tensor reads

bij = vik�klvjl, (10)

where vij are the eigenvectors and �ij the diagonal matrix of eigenvalues, ordered as λ1 ≥
λ2 ≥ λ3. Hence, from Eq. 4 we see that the Reynolds stress tensor can be written as

〈
uiuj

〉 = 2k

(
vik�klvjl + 1

3
δij

)
(11)

Here, the turbulent kinetic energy, eigenvectors and eigenvalues represent the magnitude,
orientation and shape of the Reynolds stress respectively. As noted, we keep the alignment
(vij = v

(bl)
ij ), and perturb the eigenvalues �ij , such that

〈
uiuj

〉 = 〈
uiuj

〉(bl) + Dij = 2k

(
v

(bl)
ik �

(bl)
kl v

(bl)
j l + 1

3
δij

)
+ 2k

(
v

(bl)
ik �klv

(bl)
j l

)
, (12)

where �ij is the diagonal tensor containing the perturbations in the eigenvalues. To be
clear, what we denote as uncertainty here is thus related to the uncertain shape of

〈
uiuj

〉
. The

Boussinesq hypothesis restricts this shape to a relative small subset of all possible tensor
shapes, see Fig. 2. By including �ij , we aim to break away from this particular restriction
of the Boussinesq model. It should also be noted that what matters to the QoIs might not be
reflected in the Reynolds stresses. Uncertainties in boundary- or inflow conditions can also
significantly impact the solution, and may act in locations where the epistemic model form
error is relatively small.

Emory and Iaccarino [6, 14] also used Eq. 11 to perturb the baseline eigenvalues. The
perturbation direction and magnitude was either specified homogeneously or allowed to
vary spatially through ad hoc sensors based on wall distance [14] or streamline curvature



a b

Fig. 2 Tensor shapes of
〈
uiuj

〉
/2k visualized using super-quadratic tensor glyphs [12], figure generated

with Mayavi [13]. The 1C, 2C and 3C limiting shapes are clearly visible on the right

[15]. Instead, we will propose transport equations to specify the magnitude, direction and
spatial distribution of the eigenvalue perturbations.

4.2 Return to eddy viscosity model

Since the Boussinesq hypothesis incorporates a direct proportionality between
〈
uiuj

〉
and

the mean strain-rate tensor Sij (see Eq. 2), the turbulence reacts directly to changes in the
mean flow. Strictly speaking, this is only a valid approximation under equilibrium condi-
tions, for example when the time scale of the turbulence is much smaller than that of the
mean flow. Our perturbation framework is based upon the lag-type models, which modulate
the response through simple linear PDE’s on νt [8] or

〈
uiuj

〉
[16], effectively slowing down

the response when appropriate.
We prescribe the following lag equations for the coefficients of the barycentric map

DC1c

Dt
= a1c

1

τ

(
C

(bl)
1c − C1c

)
,

DC2c

Dt
= a2c

1

τ

(
C

(bl)
2c − C2c

)
. (13)

It is important to note that this model is first and foremost an inspiration to construct
spatially dependent eigenvalue perturbations suitable for the purpose of uncertainty quantifi-
cation, rather than a formal framework to build a new turbulence closure. The quantity τ−1

is an inverse turbulent time scale (modeled as ε/k or ω) and C
(bl)
1c , C

(bl)
2c are the coefficients

computed using the eigenvalues of the Boussinesq anisotropy tensor, i.e. from

b
(bl)
ij = −νT

k
Sij . (14)

The right-hand side of Eq. 13 is similar to that of a linear return to isotropy model, see
e.g. Rotta’s model [17]. However, we consider a baseline eddy-viscosity model which can
be erroneous at certain locations, but which is able to yield accurate predictions outside
these regions. The transport equations for C1c and C2c are therefore meant to describe a
’return to eddy viscosity’ when the Boussinesq hypothesis (2) is expected to be valid. Along
a streamline, a perturbed barycentric coefficient will go to its baseline value with a time
scale τ . The rate of return for each Cαc is independently controlled by two coefficients aαc.
This enables (13) to explore a larger area of the barycentric map, making the lag concept
amenable for uncertainty quantification, see the discussion in Section 4.3.



We define the boundary conditions following an approach similar to the original lag
model [8]. At a solid smooth wall, we set the values of C1c and C2c equal to the baseline
values C

(bl)
1c and C

(bl)
2c . If the turbulence model equations are integrated down to the wall

using damping functions, this essentially sets the values equal to zero. However, if wall
functions are used, non zero values of C1c and C2c are obtained. At an inflow boundary, it
is assumed that the freestream turbulence is isotropic, i.e.

〈
uiuj

〉 = 2
3k∞δij , yielding again

C1c = C2c = 0. An isotropic inflow condition is equivalent to the option of specifying the
turbulence intensity at an inlet, which can be done in many solvers. This is not expected
to be universally valid, but this is also not the only option. If one has an informed guess,
from higher-fidelity simulations for instance, specifying a profile is also possible. Outflow
boundary values are extrapolated from internal cells.

Since the Cαc are such simple linear combinations of the eigenvalues (see Eq. 8), an
equivalent approach would be to write lag equations for λα , α = 1, 2. We prefer the use of
the barycentric coefficients due to their intuitive properties. All 3 have realizable values in
the same range ([0, 1]), and each one measures the distance from the corresponding limiting
state of anisotropy, being 1 if at the limit and 0 if completely removed from it.

Finally, it should be noted that lag models have been further developed since the intro-
duction of the lag concept, see for instance the stress-strain lag model of [18]. We use the
original form proposed by [8] as a proof of concept for the use of the lag concept as a tool
for uncertainty quantification.

4.3 Effect of lag coefficients

The original default values of the lag coefficients, as defined by [8], are

a1c = a2c = 0.35. (15)

Let us instead investigate the model behavior for three cases that represent limiting
trajectories:

– Case 1 (plane-strain): a1c = a2c = 0.35,
– Case 2 (axi-symmetric contraction): a1c = 0, a2c = 0.35,
– Case 3 (axi-symmetric expansion): a1c = 0.35, a2c = 0.

The typical resulting trajectories in the barycentric map are shown in Fig. 3. A model
will follow the plane strain turbulence line when at least one eigenvalue of bij is zero [11].

Fig. 3 The trajectories in the barycentric map of the three coefficient cases. The dashed line denotes the
plane strain line where λ2 = 0



Note that the Boussinesq anisotropy tensor (14) will yield a zero eigenvalue when one of
the Sμμ equals zero. So all two-dimensional flow cases (or three-dimensional flows like the
fully-developed square duct where S11 = 0) will yield trajectories along the plane stain line
when a Boussinesq model is used, and b̂

(bl)
ij = diag(λ1, 0, −λ1). When a1c = a2c (case 1),

both transport equations in Eq. 13 return to the Boussinesq solution at the same rate. As a
result, the trajectory in the barycentric map still lies along the plane strain line (see Fig. 3).
Along this line the distribution is different than that of the unperturbed model, depending
on the values of a1c and a2c.

To observe larger deviations from the results of the baseline model, unequal lag coeffi-
cients are required. Remember from Fig. 1 that C1c = 0 along the axi-symmetric contraction
boundary. In the second limiting case we enforce a homogeneous solution C1c = 0 by set-
ting a1c = 0. This therefore forces the trajectory to follow the axi-symmetric contraction
border (see Fig. 3). Similarly, setting a2c = 0 results in a trajectory along the axi-symmetric
expansion border, where C2c = 0. Setting two nonzero, unequal, values for a1c and a2c will
result in curved trajectories.

4.4 Spatial distribution of the perturbations

The error in any given baseline model will display a complex spatial distribution, which is
dependent on the local flow physics [19]. The perturbations in the Boussinesq eigenvalues
should reflect this localized behavior, and ideally be concentrated in those areas of the flow
domain where a failure of the Boussinesq hypothesis might reasonably be expected. Besides
determining the direction and the magnitude of the perturbations in λ

(bl)
α , the lag terms also

dictate the spatial distribution. The exact distribution will be dependent upon the values
of a1c and a2c. As an example, consider the contour plots of |λ1| := |λ1 − λ

(bl)
1 | and

|λ2| := |λ2 − λ
(bl)
2 |, for an axisymmetric jet with an exit Mach number of approximately

0.51 [20], and a backward facing step with a Reynolds number based on the step height h

of Reh = 5100 in Fig. 4. Note that for the jet flow only at the nozzle exit and in the mixing
layer do we find significant perturbations. Where the flow is essentially uniform (and in the
potential core), no perturbations are made in λ1. In the backstep case, the local perturbations
are made near and after the separation point. Still, when moving away from the wall, the
perturbations in λ2 approach zero.

a b

Fig. 4 Examples of |λα | := |λα − λ
(eq)
α | for a subsonic jet (left), and a backward facing step (right)



4.5 Symmetry around a1c = a2c

In two-dimensional flows, when the baseline state lies on the plane-strain line, certain QoIs
will display symmetry in the stochastic domain around a1c = a2c. Specifically,

– case (1): a1c = α, a2c = β,
– case (2): a1c = β, a2c = α,

for any chosen values α, β will cause the so-called eigengaps δ1 := λ1 − λ2 and δ2 :=
λ2 − λ3 to switch between case (1) and (2). The following three statements are then all
equivalent

δ
(1)
1 = δ

(2)
2 and δ

(1)
2 = δ

(2)
1 ,

C
(1)
1c = 1

2
C

(2)
2c and C

(1)
2c = 2C

(2)
1c ,

λ
(1)
1 = −λ

(2)
3 , λ

(1)
2 = −λ

(2)
2 and λ

(1)
3 = −λ

(2)
1 . (16)

Here, δ
(2)
1 denotes the first eigengap of case (2), and likewise for the other quantities. To

prove the above, use the relations δ1 = C1c and δ2 = C2c/2 together with (13) to obtain the
following transport equations

Dδ
(1)
1

Dt
= αω

(
δ
(bl)
1 − δ

(1)
1

)
and

Dδ
(2)
2

Dt
= αω

(
δ
(bl)
2 − δ

(2)
2

)
. (17)

Clearly, both transport equations have the same form. In addition, the boundary condi-
tions are equal and along the plane-strain line (where λ

(bl)
2 = 0 by definition), both baseline

eigengaps are always the same due to b̂
(bl)
ij = diag(λ

(bl)
1 , 0, −λ

(bl)
1 ). Thus, Eq. 17 essentially

displays the same right-hand side twice, implying δ
(1)
1 = δ

(2)
2 . A similar argument can be

formed for the second equality δ
(1)
2 = δ

(2)
1 of Eq. 16.

If Eq. 16 is satisfied, 〈u1u2〉 is the same for case (1) and (2), which in turn can cause very
similar solutions for other QoI. To see this, denote α1 ∈ [−π, π] be the minimum angle from
the horizontal axis to the eigenvector v1, which corresponds to the largest eigenvalue λ1.
The angle α3 is likewise defined in relation to v3. Since bij is real and symmetric, any two
eigenvectors from different eigenspaces are orthogonal to each other [21]. Moreover, any
two orthogonal eigenvectors in the x-y plane can be described by v1 = (cos α1, sin α1, 0)T

and v3 = (cos α3, sin α3, 0)T , where α1 = α3 ± π/2. The remaining eigenvector must be
orthogonal to the x-y plane, and thus v2 = (0, 0, 1)T is also an eigenvector. Now we can
write bij as

bij =
⎛

⎝
cos α1 0 cos α3
sin α1 0 sin α3

0 1 0

⎞

⎠

⎛

⎝
λ1 0 0
0 λ2 0
0 0 λ3

⎞

⎠

⎛

⎝
cos α1 sin α1 0

0 0 1
cos α3 sin α3 0

⎞

⎠ . (18)

From Eq. 18, we can extract the following expression for the Reynolds shear-stress
component after some manipulation

〈u1u2〉
k

= 2 (λ3 − λ1) sin (2α3) = −
(

C1c + 1

2
C2c

)
sin (2α3) . (19)

Provided that we do not perturb the eigenvectors, 〈u1u2〉 /k is determined by the coef-
ficient C1c + C2c/2 only. From the relations in Eq. 16) it is readily determined that this
coefficient is the same for both case (1) and (2). As a verification exercise we randomly
picked values for α and β, and compared the C1c + C2c/2 and 〈u1u2〉 profiles from the



backward facing step flow of Fig. 4. We found that the results for case (1) and (2) indeed
overlap.

4.6 Realizability with an unrealizable baseline model

To obtain physically feasible values for the components of the Reynolds stress tensor, the
realizability constraints first defined by [22] must hold, i.e.

〈
uμuμ

〉 ≥ 0
〈
uμuν

〉2 ≤ 〈
uμuμ

〉 〈uνuν〉 det
〈
uiuj

〉 ≥ 0, μ, ν ∈ {1, 2, 3}.
(20)

Weak realizability conditions can be derived for second-order closures [23], and for
Eq. 13 as well [24]. We now investigate weak realizability of our perturbation model on
the backstep case, when the chosen baseline model is unrealizable. In this case C

(bl)
1c > 1

3
along the plane-strain line for locations of unrealizable turbulence. This surely can occur,
see for instance the trajectory of the baseline k − ε model for the backward-facing step flow
in Fig. 5a, and the corresponding spatial locations of unrealizable turbulence in Fig. 6. We
selected the k − ε model precisely because it shows such a pronounced violation of realiz-
ability for this particular flow case, making it a good model to showcase the ability of the
lag equations to retrieve a realizable state. For the predictions of Section 5 we used the k−ω

SST model.
Luckily, we can control the similarity to the Boussinesq solution through the lag coef-

ficients, and limiting the values of a1c and a2c can prove sufficient to not follow an
unrealizable baseline model across the two-component boundary. Hence, the approach does
not only perturb the assumptions in the Boussinesq hypothesis, but also provides an easy
means to correct violations of realizability. In Fig. 6 we show how much we have to increase
the lag coefficients in order to obtain an unrealizable

〈
uiuj

〉
for the same backward-facing

a b

Fig. 5 Unrealizable turbulence. a The barycentric map for the baseline k − ε model when simulating the
backwards-facing step flow of [25] (Reh = 5100, where h is the step height). b The spatial locations of
unrealizable turbulence (C3c < 0) for the k − ε model



Fig. 6 Three simulations where a1c = a2c ∈ [0.35, 2.0, 5.0] with an unrealizable baseline k − ε model

step flow of Fig. 5a. Note that simply turning on model (13) with the default lag coeffi-
cient values yields a realizable result, even with the highly unrealizable baseline model. We
have to increase a1c, a2c by an order of magnitude in order to force the result across the
two-component boundary.

5 Predictions

The final goal of all preceding analysis, is to use Eq. 13 to make predictions with quanti-
fied uncertainty. We choose our method of prediction based on the availability of reference
data. If no data is available, we will not attempt to extrapolate from other calibrated cases
to the prediction scenario at hand. Instead, we compute conservative intervals, based on
the method described in Section 5.1. Otherwise, we use the Bayesian inference procedure
outlined in Section 5.2.

5.1 Data-free prediction

In order to compute the data-free intervals, let us determine the possibility of a priori iden-
tifying the lag coefficients a1c and a2c that will yield the maximum and minimum bound
on the perturbed eigenvalues that can be achieved with model (13). As noted in Eq. 12, we
decompose the anisotropy tensor as

bij = b
(bl)
ij + v

(bl)
ik �klv

(bl)
j l . (21)

Where �ij := diag (λ1, λ2,λ3), and λα is the perturbation such that λα =
λ

(bl)
α + λα . Assuming again that the baseline model will follow the plane strain line in the

barycentric map, �ij can be written as

�ij =

⎛

⎜⎜
⎝

2
3

[
C1c − 3

2C
(bl)
1c

]
+ 1

6C2c 0 0

0 − 1
3C1c + 1

6C2c 0

0 0 − 1
3

[
C1c − 3C

(bl)
1c

]
− 1

3C2c

⎞

⎟⎟
⎠ .

(22)
By fixing the baseline coefficient to an arbitrary value C

(bl)
1c ∈ [0, 1/3], we can plot

the isocontours of the λα in order to identify the directions of maximum and minimum
perturbation. The chosen value of C

(bl)
1c will affect the scale but not the shape of the iso-

contours. The results are shown in Fig. 7. Clearly, λ1 is maximized in the direction of
1C, and minimized toward 3C. The perturbation λ2 is maximized at 2C and minimized



Fig. 7 Isocontours of eigenvalue perturbations for a given value of C
(bl)
1c , which this case is set to zero

at 1C. Finally, the maximum of λ3 is located at 3C, and its minimum is found anywhere
along the 2C boundary. Thus, straight lines in the direction of minimum/maximum λα are
the axi-symmetric expansion, contraction and the plane-strain line. Trajectories along these
lines can be obtained with a priori known values for a1c and a2c (see Fig. 3). The maximum
values we use for aαc are discussed in Section 6.1.2.

5.2 Data-driven prediction

5.2.1 Bayesian calibration

In a Bayesian approach all sources of uncertainty (parametric, model form and experimen-
tal) are condensed into a single expression, i.e Bayes’ rule [26], given by

p (θ | z) = p(z|θ)p(θ)

p(z)
. (23)

Here, θ ∈ R

C is a vector containing the model coefficients to be inferred, z ∈ R

N is a
vector of high-fidelity reference data, and p (θ) is the prior distribution.

The likelihood function p(z|θ) is found by specifying a relation between the true process
ζ , the corresponding QoI q from the code, and the data z as [27]

z = ζ(x) + e. (24)

Here, x are the spatial coordinates and e represents the uncertainty in z due to measure-
ment noise, commonly modeled as a zero-mean Gaussian e ∼ N (0,�), � := diag(λi). In
[28], the true process was modeled as

ζ(x) = (1 + δm(x; γ )) q(x; θ), (25)

but other forms are also possible. The quantity δm is a multiplicative model error term
superposed on the code output, again distributed as a zero-mean Gaussian, and dependent
upon a set of hyper parameters γ . Note that without this term we would state that the true
process equals our RANS code, which is unlikely to be an accurate assumption. In turn, this
yields a Gaussian likelihood such that z|θ ∼ N (q,K). The covariance of the likelihood is
K = � + Km, where the entries of Km are given by the function

km(x′, x) = q(x′; θ)
〈
δm(x′; γ )δm(b; γ )

〉
q(x; θ). (26)

Here,
〈
δm(b′; γ )δm(b; γ )

〉
is the covariance of the model error term, which remains to be

specified.
Since Eq. 13 already injects perturbations in the Boussinesq assumption, it can be con-

sidered as an internal model error term. However, it is still dependent upon a1c and a2c. To
prevent the posterior distribution of these coefficients from becoming overly confident, we



use a simple spatially uncorrelated model
〈
δm(b′; γ )δm(b; γ )

〉 := σ 2δ(x′ − x) when per-
forming the Bayesian inference. Here, σ is a hyper parameter that is calibrated alongside
a1c and a2c, and δ(x′ − x) is the Dirac delta function. The parameter σ has the effect of
broadening the posterior p(θ |z).

The Markov-chain Monte Carlo (McMC) method [29] is often used to draw samples
θ i; i = 1, · · · , N , from the posterior density (23). The posterior density itself is therefore
not inferred directly, and can only be estimated using a kernel density estimation after suf-
ficient samples have been drawn, making McMC an expensive method to use in a RANS
context.

A common practice is therefore to construct a polynomial approximation of the forward
problem over the support of the prior distribution [30]. This approximation then replaces the
full RANS code in the likelihood function, yielding a surrogate posterior distribution which
can be sampled at minimal cost. We use the Stochastic Collocation (SC) expansion, formed
by approximating the forward problem as the sum of Np (multidimensional) Lagrange inter-
polation polynomials [31]. This technique is well known and not new, and many alternatives
to the SC expansion exist, see e.g. [32–35]. We therefore refer to [31] for details.

Constructing a SC surrogate requires Np := m1 × m2 evaluations of the RANS code,
which in our case corresponds to running the simulation on the collocation points of the
tensor grid a

i1
1c ⊗ a

i2
2c, i1 = 1, · · · ,m1, i2 = 1, · · · ,m2. Let q̃Np denote the corresponding

surrogate for some RANS output q. The hierarchical surplus error for the backstep case

Esurplus = ‖q̃Np

(
a

i1
1c, a

i2
2c

)
− q̃Np−1

(
a

i1
1c, a

i2
2c

)
‖2, (27)

evaluated at the collocation points of q̃Np , was O(10−3) for mean velocity profiles and
O(10−5) for

〈
uiuj

〉
components, when using Np = 144 and Np−1 = 121. Note that a

SC surrogate is exact (q̃Np = q), when evaluated at its collocation points. We selected the
surrogate with Np = 144 for use in the likelihood function.

6 Results

6.1 Application to a subsonic jet

6.1.1 Flow case description

This flow a well-known NASA validation case for which the settings and computational
grids can be found in [20]. The jet exit Mach number is approximately 0.51. For com-
putational stability, the jet does not flow into quiescent air, and a small reference Mach
number Mref = 0.01 is applied to the farfield. No-slip boundary conditions are applied
to the walls of the nozzle, and at the nozzle inlet the total- to reference pressure ratio is
pt/pref = 1.19671, which yields the correct jet exit Mach number. Experimental Particle
Image Velocimetry (PIV) data for several quantities, including uncertainty estimates on the
data, are available for this flow case from [36]. A selection of experimental results, nor-
malized by the centerline jet-exit velocity Ujet and nozzle diameter Djet , are depicted in
Fig. 8.



Fig. 8 The experimentally-determined normalized axial velocity (top) and Reynolds stress component
(bottom). Source: [36]

6.1.2 Data-free prediction

Let us start by displaying the baseline results as computed with the k−ω SST closure model.
Figure 9 shows the normalized axial velocity 〈U〉 /Ujet and Reynolds stress component
〈u1u1〉 /U2

jet . Note that for the axial velocity, the results agree fairly well with the reference
data at x/Djet = 2. However, the accuracy of the baseline prediction deteriorates when
we move away from the nozzle exit. In the case of the Reynolds stress component, clear
discrepancies can be observed along all profiles.

We now compute the intervals due to the 4 code solves that are predicted to yield the
maximum and minimum eigenvalues. i.e. the solves corresponding to the tensor product
[a1c,min, a1c,max]⊗[a2c,min, a2c,max]. We select the support of the lag coefficients based on
two limiting cases. The first case is the straightforward choice of isotropic turbulence, and
thus a1c,min = a2c,min = 0. Second, for a1c = a2c � 0 the baseline state is approached.
It makes sense that the baseline state should also be included in the interval. We therefore

a b

Fig. 9 Several SST baseline profiles (solid lines) along directions normal to the centerline, compared to the
corresponding PIV data



a b

Fig. 10 A comparison between the baseline model (dots), and the results obtained when setting a1c = a2c =
1.0 (solid lines)

select a maximum cutoff value for aαc for which a quantity of interest is sufficiently close
to the Boussinesq result. Already for a1c,max = a2c,max = 1.0, the velocity components
are almost indistinguishable from those obtained with the unperturbed SST model, and only
minor differences are observed in the Reynolds stresses, see Fig. 10. Hence we compute the
results for the combinations shown in Table 1, and form an envelope from the corresponding
outputs. The results for the normalized axial velocity are shown in Fig. 11. Almost every-
where the envelope intersects the region of experimental uncertainty, and where there is no
overlap the discrepancy is small. Moreover, as we move away from the nozzle exit (where
the baseline model becomes less accurate, see Fig. 9a), the uncertainty bounds increase. We
also show the results for the normal Reynolds stress component 〈u1u1〉 /U2

jet in Fig. 12.
The width of the intervals is more pronounced than in the case of the velocity profile, and
the experimental data are completely enveloped. While it is certainly true that the Reynolds
stress components have a very large interval, the width of velocity intervals is less pro-
nounced. Thus, one way to interpret the Reynolds stress intervals is that, in the absence of
reference data, large intervals can be advantageous in order to capture the model inadequacy
in other quantities which are less sensitive to

〈
uiuj

〉
, at least for this particular flow case.

6.1.3 Data-driven predictions

We will compute the posterior distribution of θ = [a1c, a2c]T , using Eq. 23. As mentioned,
the surrogate q̃ will replace the full RANS code in the likelihood function such that we
have: z|θ ∼ N (q̃, K). Here, K = � + Km, and z will be experimental 〈U1〉 data from
[36]. The reported experimental accuracy is used to specify the diagonal �. Km is given
by Eq. 26, where

〈
δm(b′; γ )δm(b; γ )

〉 = σ 2δ(x′ − x). The hyper parameter σ (with prior

Table 1 Combinations of
parameters used for computing
the intervals in the jet case

[a1c, a2c] state

[0, 0] isotropic

[1, 1] baseline

[0, 1] max axisymmetric contraction

[1, 0] max axisymmetric expansion,



Fig. 11 Experimental axial PIV
velocity (squares), and the
uncertainty intervals (shaded)

σ ∼ U [0, 3]) is calibrated alongside θ . Since in general it will be difficult to a-priori say
which coefficients will be most likely, we use a uniform prior p(θ) which is defined on the
same range as displayed in Table 1.

We performed a single calibration using the 〈U1〉 PIV data at x/Djet =
{2, 12, 22, 32, 42}. The resulting posteriors are depicted in Fig. 13. The axisymmetric state
is preferred by the data. As a result, p(α1c|z) resembles a delta distribution centered at 0.
The posterior 〈U1〉 results are shown in Fig. 14, the variance of which is greatly reduced
compared to the interval results of Fig. 11.

Fig. 12 The uncertainty intervals and PIV data of 〈u1u1〉 /U2
jet along 4 centerline-normal directions. The

squares represent the PIV data plus the experimental error, and the shaded area is the RANS uncertainty
interval



Fig. 13 The posterior distributions of the jet case

6.1.4 Cost overhead

Finally, we use the jet case to briefly give an indication of the cost overhead of our approach.
Table 2 displays the relative cost overhead of the four cases of Table 1, compared to the
runtime of the jet case using just the baseline SST model. All cases were run for 6000
iterations, and roughly add a 30 % increase to the baseline runtime.

Generally speaking, no convergence issues were encountered for all considered flows
and a1c, a2c combinations, with the exception of a1c = a2c = 0. Depending on the flow
case, perturbing all points to the 3C corner can require an increase in the under-relaxation
factor of Eq. 13 in order to reach a converged solution. If reducing the under-relaxation is

not enough to stabilize the solution, one might employ
〈
uiuj

〉(bl) + α(
〈
uiuj

〉 − 〈
uiuj

〉(bl)
)

with α < 1 as a momentum source term, after applying the divergence theorem. Since this

is not true under relaxation (due to the
〈
uiuj

〉(bl) terms), it is important to keep γ as close to
1 as possible.

Fig. 14 The posterior
〈U1〉 /Ujet trace of the jet case



Table 2 The relative
computational overhead t

compared to the runtime of the
baseline SST model

[a1c, a2c] t

[0, 0] +32.3%

[0, 1] +30.8%

[1, 0] +28.1%

[1, 1] +32.6%

6.2 Application to a backward facing step

6.2.1 Flow case description

This is a well-known backward-facing step case with Reh = 5100, where h represents the
step height. DNS data from [37] is available for this flow, as well as experiments performed
by [38]. At the bottom wall no-slip boundary conditions are applied, and the top boundary
a parallel slip condition is prescribed in order to match the DNS setup. The computational
domain extends to 40 step heights after the backstep, which is located at x/h = 0.

6.2.2 Reattachment length

Eddy-viscosity models are known to provide inaccurate predictions of the reattachment
location, see e.g. [39]. The mean calculated reattachment length from the DNS data is
l = 6.28h [37]. We now examine the range in l when using our return to eddy viscosity
framework. The baseline model is the SST model, and we estimate the reattachment length
by the location for which we have a zero skin-friction coefficient, i.e. cf = 0. Figure 15
shows a contour plot of the reattachment length l versus a1c and a2c, as well as various
skin-friction profiles. From this figure it becomes clear that two different states exist. Fairly
similar results are obtained throughout most of the [a1c, a2c] domain. However, close to
the axi-symmetric borders, distinctly different results are obtained. Here, the reattachment
length is highly over predicted, leading to significantly larger recirculation bubbles. The
maximum occurs at the 3C corner, with a reattachment length close to x/h = 10. For com-
parison, we show the streamlines in Fig. 16 of the velocity field for representative samples
of the aforementioned two states.

The transition between the two states is very sharp. Let us examine this transition by
visualizing the difference between trajectories for a2c = ε and a2c = 0, where ε is a small
parameter and a1c > 0 is kept constant. Figure 17 shows the trajectories in the barycentric
map for ε = 10−3 and ε = 10−4, computed from the flow in wall-normal direction at x/h =
4. For a2c = ε = 10−3, the source term for DC2c/Dt is still active, and the corresponding
trajectory is different from that of the full axi-symmetric state, which is also depicted in
Fig. 17. This effect is still present for ε = 10−4, although much less pronounced. Hence,
a sharp gradient exists in the space of the aαc coefficients as an axi-symmetric boundary is
approached.

6.2.3 Data-free prediction

Let us briefly discuss the data-free results for the backward facing step, which were com-
puted in the same way as discussed in Section 6.1.2. The results for several QoI are displayed
in Fig. 18. For 〈U2〉 /Uref , there is a region where there is no overlap between our interval



Fig. 15 Left: Skin-friction profiles and the computed reattachment length l. Note the different shape of the
axi-symmetric and isotropic profiles compared to those computed with a1c > 0 and a2c > 0. Right: a contour
plot of l

and the experimental error bars. This indicates that, given the current SST baseline model,
other uncertainties besides the shape of the Reynolds stresses must be taken into account if
〈U2〉 /Uref is considered important. For the other QoI the overlap is reasonable, although it
occurs at the edges of the computed intervals. We can therefore already expect the posterior
distributions to be skewed toward the edge of the prior domain.

6.2.4 Data-driven predictions

For this case, z will be experimental 〈u1u2〉 data from [38]. We performed 5 calibrations,
at x/h ∈ {4, 6, 10, 15, 19}, and the posterior distributions are plotted in Fig. 19. Despite
the fact that we calibrated using data from both in- and outside the recirculation bubble, the
posterior distributions are very similar for all x/h. This is a desirable result, since we do not
want the most-likely value of the aαc to change from one station to the next. Figure 19 shows
that regarding 〈u1u2〉, the baseline state is favored by the data since the joint posteriors are
located at the top-right corner of the stochastic domain, see also Table 1. This is an indication
that the use of a simple eddy-viscosity model is a reasonable choice for this particular flow,
and that similar results might be obtained by only calibrating the closure coefficients of the

a b

Fig. 16 Two distinctly different recirculation bubbles



Flow Turbulence Combust

Fig. 17 The trajectories for zero a2c (left) and almost zero a2c (right), along the wall-normal direction at
x/h = 4. In both cases a1c = 0.3

SST model. However, other flow scenarios can lead to different parameter estimates, see for
instance the results of Section 6.1.3.

In Fig. 20, we computed the forward problem for a number of QoI, using the posterior
distribution of x = 4 as input. As anticipated, since z consisted of 〈u1u2〉 data, the posterior
prediction of 〈u1u2〉 is in good agreement with the data. The streamwise velocity 〈U1〉 /Uref

and the skin friction coefficient cf := τw/(ρU2
ref /2) also display distributions which cap-

ture the validation data of [38] reasonably well. Note that the posterior mean for these three

a b

c d

Fig. 18 Data-free intervals for several QoI, computed at x/h = 4



Fig. 19 The marginal and joint
posterior distributions for the
backward-facing step at various
x/h stations, obtained by
calibrating (13) on the
experimental 〈u1u2〉 profiles
from [38]
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Fig. 20 Posterior results for several QoI, computed at x/h = 4

QoIs is skewed toward the data. However, discrepancies between the validation data and the
posterior distribution of 〈U2〉 /Uref can be observed, which comes as no surprise in light of
the interval results of Section 6.2.3.

Since we take care to include the baseline state within our prior, a better baseline model
would be able to capture the data with less bias. Thus there can be an influence of the chosen
baseline model, especially if the baseline state is preferred by the data. Given that the SST
model is not perfect, other uncertainty measures might help to envelop the data better. We
reiterate that we considered perturbations in the eigenvalues of bij only. A more general UQ
framework will also perturb the orientation of the Reynolds stress tensor. A study which
introduced uniform perturbations in the eigenvectors can be found in [40, 41]. Introducing
non-uniformity through transport equations is the subject of future work.

7 Conclusion

We introduced two model transport equations for the coefficients of the barycentric map,
for the purpose of epistemic model-form uncertainty quantification of Boussinesq type
eddy-viscosity closures. The model effectively adds a tensorial discrepancy function to the
Boussinesq hypothesis, based on perturbations made in the eigenvalues of the anisotropy
tensor. The discrepancy tensor is assumed to be transported in a similar fashion as other tur-
bulent transport equations such as k and ω, yielding spatially varying perturbations. Through



the inclusion of so-called lag terms, these eigenvalue perturbations are made with respect
to a baseline eddy-viscosity model. Depending on the local flow physics, our model allows
for the baseline state to be recovered.

The global behavior of the perturbation model is determined by two lag coefficients.
These control the amount of perturbation from the baseline state, as well as the direction of
perturbation in the barycentric map. This results in a low-dimensional inference problem,
which is amenable to physical reasoning. This low-dimensional structure also provides us
with two distinct UQ strategies, i.e. data-free and data-driven prediction. In the former we
employ bounds on the eigenvalue perturbations to compute cheap intervals on the quantity
of interest. In the data-driven approach, we use Bayesian inference to infer the posterior
distribution of the two lag coefficients from any available data. Although more expensive,
again due to the low dimensional nature of the UQ problem we can easily construct accurate
surrogate models which can replace of the full RANS code in the likelihood function. With
this in place, informed distributions of the lag coefficients are readily available.
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