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Robust prediction of dense gas flows under uncertain thermodynamic
models

X. Merle*, P. Cinnella

DynFluid Laboratory, Arts et Métiers ParisTech, 151 boulevard de ’Hépital, Paris, 75013, France

ABSTRACT

A Bayesian approach is developed to quantify uncertainties associated with the thermodynamic models used for the simulation of dense gas flows, i.e. flows of gases
characterized by complex molecules of moderate to high molecular weight, in thermodynamic conditions of the general order of magnitude of the liquid/vapor
critical point. The thermodynamic behaviour of dense gases can be modelled through equations of state with various mathematical structures, all involving a set of
material-dependent coefficients. For several organic fluids of industrial interest abundant and high-quality thermodynamic data required to specify such coefficients
are hardly available, leading to undetermined levels of uncertainty of the equation output. Additionally, the best choice for the kind of equation of state (mathe-
matical form) to be used is not always easy to determine and it is often based on expert opinion. In other terms, equations of state introduce both parametric and
model-form uncertainties, which need to be quantified to make reliable predictions of the flow field. In this paper we propose a statistical inference methodology for
estimating both kinds of uncertainties simultaneously. Our approach consists of a calibration step and a prediction step. The former allows to infer on the parameters
to be input to the equation of state, based on the observation of aerodynamic quantities like pressure measurements at some locations in the dense gas flow. The
subsequent prediction step allows to predict unobserved flow configurations based on the inferred posterior distributions of the coefficients. Model-form uncertainties
are incorporated in the prediction step by using a Bayesian model averaging (BMA) approach. This consists in constructing an average of the predictions of various
competing models weighted by the posterior model probabilities. Bayesian averaging also provides a useful tool for making robust predictions from a set of
alternative calibration scenarios (Bayesian model-scenario averaging or BMSA). The proposed methodology is assessed for a class of dense gas flows, namely

transonic flows around an isolated airfoil, at various free-stream thermodynamic conditions in the dense-gas region.

1. Introduction

Flows of dense gases, i.e. flows of organic fluids of moderate to high
molecular weight working close to saturation conditions, are en-
countered in several engineering problems, one of the most attractive
applications being represented by energy conversion cycles, like heat-
pumps, refrigeration and, most of all, Organic Rankine Cycles [1-5].

Dense gas flow simulations can be extremely sensitive to the model
used to describe the fluid thermodynamic behavior and its closure
coefficients [6], i.e. to the equations of state (EOS). Specifically, EOS
give raise to two kinds of uncertainties: the first one concerns choosing
a suitable mathematical form among the many available (e.g., cubic
EOS [7-9], virial EOS with a more or less large number of expansion
terms [10,11], reference EOS based on power-law expansions of the
Helmoltz free energy [12]); on the other hand, the material-dependent
coefficients associated to the EOS are often imperfectly known, espe-
cially for complex organic fluids for which abundant high quality data
are less readily available than for widely employed light gases like
hydrogen, nitrogen, carbon dioxide, etc [13]. Although parametric
uncertainty may be critical for the accurate prediction of dense gas
flows, in [6] it was shown that for some complex gases the model-form
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uncertainty can be even overwhelming with respect to the former one.

Several studies have addressed the problem of calibrating EOS from
thermodynamic data available for the fluid(s) of interest. This can be
done either in a deterministic way (e.g. [13] and references cited
therein) or stochastically, e.g. by using statistical inference methodol-
ogies [14,15]. In a previous work [16], the present authors used
aerodynamic data instead of thermodynamic ones for calibrating the
material-dependent coefficients of equations of state (EOS) used to
model the thermodynamic behavior of the working fluid. For that
purpose, a Bayesian statistical procedure was used to infer on the
posterior probability distributions of the closure coefficients associated
with three well-known thermodynamic models, given data on the wall
pressure distribution for a dense gas flow past an airfoil. The statistical
model used for the calibration accounted both for uncertainties in the
observed data and in the model form. The latter expresses the fact that,
due to the simplifying assumptions intrinsic to any mathematical model
of a physical system, this can never predict exactly the observed values,
even assuming that the best possible coefficients are available (see [17]
for a thorough discussion on the role of model-form uncertainties). The
model-form uncertainty was represented as a Gaussian random vector
with a given correlation structure, whose coefficients (called the
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hyperparameters) were calibrated alongside the physical model para-
meters.

Accounting for model-form uncertainty in the statistical calibration
is useful to temperate overfitting problems (see [16,18]). Nevertheless,
such problems are not completely avoided and the closure parameter
posterior distributions have limited validity when used to predict flow
configurations far away the one on which they where calibrated. In
other terms, they have no universal validity [17]. Additionally, the
model-form uncertainty term is specific to the kind of data used for the
calibration and cannot be used, e.g., to predict a different quantity of
interest (Qol) for a new flow.

A coherent framework for making predictions in situations where
multiple competing models are available is represented by multi-model
approaches, used in a plethora of applications including oil price pre-
dictions, meteorology, ground-water modeling, aerodynamics, and
aeroelasticity [19-26]. Bayesian model averaging (BMA) [19,27] is
among the most widely used multi-model approaches, where posterior
average predictions are inferred by weighing individual forecasts from
competing models based on their relative skill, with predictions from
better performing models receiving higher weights than those of worse
performing models. BMA avoids having to choose a model over the
others and provides instead a measure of the model-form uncertainty
based on the level of agreement among the competing models con-
sidered in the average. Due to the high computational cost when
combined with complex computer models, BMA has found application
in computational fluid dynamics problems, governed by complex non-
linear equations, only recently. In [28] a BMA approach was used to
investigate model-form uncertainty due to the existence of several
competing closure models for the Reynolds-Averaged Navier-Stokes
(RANS) equations, often used to describe turbulent flows. More speci-
fically, an extended formulation of BMA was adopted (first suggested in
[19], see also [24] for an application to ground-water modeling), which
accounts also for the uncertainty about the validity of the calibrated
model parameters when applied to a new prediction scenario. Such an
extension, termed Bayesian Model-Scenario Averaging (BMSA) in [28],
amounts to considering each realization of a model supplemented by
coefficients adjusted on different calibration scenarios as a component
of the mixture, weighted through a suitable ’scenario’ probability. In
this framework, the posterior predictive distribution of a Qol for a
model applied to a new scenario is the weighted average of the pre-
dictions of a model using different sets of coefficients. An attractive
feature of BMSA is that, if new sets of coefficients become available,
these can easily be added to the BMSA mixture, which is then expanded
to a larger set of scenarios. Differently from BMA, where the model
weights are inferred during the calibration process, in BMSA the sce-
nario weights have to be chosen a priori, according to expert judgement
or Bayesian criteria. Eventually, if data are available for the new sce-
nario, these can be used to infer on the scenario weights. This is how-
ever not the case in general, so that a key point is to find a suitable a
priori criterion for choosing the scenario weights. An empirical cri-
terion, based on the level of agreement among the competing models
calibrated on the same scenario, was proposed in [28] and successfully
applied to the prediction of a variety of turbulent perfect gas flows in
[28,29].

Accounting for calibration scenario uncertainty is an essential fea-
ture for dense gas flows, which are very sensitive to the thermodynamic
operating conditions (see, e.g., [30]). A standard approach to calibrate
a model over data sets coming from different scenarios consists in in-
ferring from all data sets simultaneously. For instance, Cheung et al.
[18]. inferred on the coefficients of a turbulence model using velocity
and skin friction data for flat plate boundary layers subject to three
different external pressure gradients. In such an approach, the resulting
coefficients represent a compromise allowing the model to fit reason-
ably well all of the available data. The calibration procedure can than
be applied to different models, and a final BMA can be used to predict a

new case while accounting for model-form uncertainty. The interest of
such an approach is that it avoids choosing scenario weights. The
drawback is that the likelihood function involved in the inference of
such a large data set is a multivariate random function, with a high-
dimensional correlation matrix that may be hard to build and invert.
Additionally, including new data sets implies restarting the calibration
from scratch. For this reason, in this paper we propose an alternative
approach, termed Bayesian Scenario Averaging (BSA). This can be seen
as a special case of BMSA, where a single model is calibrated against
several competing scenarios and applied to a new one. A suitable a
priori criterion is proposed to weight the scenarios. BSA is assessed
against the standard approach in the case of dense gas flow predictions.

The main goal of the present work is to develop a robust tool for
prediction of dense gas flows with quantified thermodynamic un-
certainties, based on Bayesian inference and model averaging.
Specifically, we first use Bayesian calibration for updating the coeffi-
cients of two different EOS, namely the cubic EOS of Peng-Robinson-
Strjyek-Vera [9] (PRSV) and the 5th-order virial Martin-Hou EOS [10]
(MAH). For that purpose, similarly to [16], we consider pressure data
for dense gas flows past an airfoil [31-33] characterized by different
free-stream thermodynamic conditions. For all the flows, the airfoil
geometry and the free-stream Mach number are the same, while the
free-stream pressure and temperature may vary, leading to a different
thermodynamic behaviour. In this context, we term a scenario a given
choice of the operating thermodynamic conditions. The EOS are cali-
brated versus different scenarios individually or simultaneously. In the
first case (called single-point calibration), posteriors of the coefficients
resulting from different calibrations are propagated through a new
scenario by means of BSA. The advantages of the BSA approach and the
role of the weighting criterion are discussed for two prediction sce-
narios (not used for calibration) for which validation data is available.
Finally, information from different scenarios and models is mixed to-
gether using BMSA, demonstrating the importance of accounting for
both parametric and model-form uncertainty.

The paper is organized as follows: in Section 2 we present the
physical problem, the governing equations and the thermodynamic
models (EOS), and we briefly describe the numerical solver used for the
computations. In Section 3 we describe the data used for the calibra-
tions and the choice of the calibration and prediction scenarios.
Section 4 illustrates the Bayesian calibration methodology and the
BMSA framework for robust prediction. Numerical applications of the
calibration and prediction approach to transonic dense gas flows are
reported in Sections 5 and 6. Finally, Section 7 is devoted to conclusions
and perspectives.

2. Description of the problem

The objective of this study is twofold: (i) first we compare two ca-
libration strategies to take into account data coming from multiple flow
scenarios, (ii) we assess the capability of BMSA to provide robust pre-
dictions of dense gas flows. Such flows are of special interest for energy
conversion machines which involve an expander (often a turbine) and/
or a compressor, characterized by the presence of bladed disks, through
which the dense gas flows. Since blade sections can be roughly seen as
airfoils, hereafter we investigate the feasibility of our calibration
methodology for a simplified configuration, roughly representative of a
blade section, i.e. an isolated airfoil. Such kind of configuration was
used in the past to investigate qualitatively dense gas effects in turbo-
machinery [34,35]. Moreover, for this simplified problem sensitivity
studies of the impact of thermodynamic uncertainties on flow simula-
tion results where carried out in [6].

Precisely, the case selected for this study is the steady transonic flow
of a dense gas over a thin wing section, namely, a NACA0012 airfoil.
The working fluid is a siloxane (silicon oil), known with the commercial
name of D5 (chemical formula ((CH3),SiO)s).



2.1. Governing equations

For simplicity, the flow around the airfoil is assumed to be inviscid,
which represents a good approximation as long as the Qol is re-
presented by the wall pressure distribution and the flow boundary layer
remains attached. This amounts to consider that the flow is governed by
the compressible Euler equations, written hereafter in integral form for
a control volume Q with boundary 0€:

%fwdg+ff-nds=o
Q 90 (€]

In Eq. (1), w is the conservative variable vector, where

w = (p, pv, pE)T

n is the outer normal to 0Q, and f, is the flux density:

S = (ov, oI, pvv, pvH)T

where p is the density, v is the velocity vector, E the specific total en-
ergy, H = E + p/p the specific total enthalpy, p is the pressure and T is
the unit tensor. The preceding equations are completed by a thermal
equation of state:

p=plew), T(w)) )

with T the total pressure, and by a caloric equation of state for the
specific internal energy e, which must satisfy the compatibility relation:

e=e(p(w), T(w>>=eo+j;(f cv,m(T')dT'—j;p[T(j—’;) —p]iﬂ
0 P

3)

In Eq. (3), ¢,, . is the ideal gas specific heat at constant volume,
quantities with a prime superscript are auxiliary integration variables,
and subscript 0 indicates a reference state. The caloric equation of state
is completely determined once a variation law for c,, .. has been spe-
cified.

The problem setup is completed by specifying the free-stream con-
ditions, i.e. flow Mach number and angle of attack and thermodynamic
conditions at the far field. These are treated in the following as de-
terministic and equal to My, = 0.95 and AoA = 0° for all cases. On the
other hand, the free-stream thermodynamic conditions, given in terms
of reduced pressure p, ., = p,,/p. and density p, , = o, /p,, are used to
specify the different flow configurations, i.e. the scenarios.

For dense gases, advanced EOS are needed to account for their
complex thermodynamic behaviour, which may be described by means
of the fundamental derivative of gas dynamics [36]

r.=1+ B(a—a)
a\dp ) (C)]

where p is the fluid density, a the sound speed, and s the entropy. I' can
be interpreted as a measure of the rate of change of the sound speed
with density in isentropic perturbations. If I' < 1, the flow exhibits an
uncommon sound speed variation in isentropic perturbations: a grows
in isentropic expansions and decreases in isentropic compressions, the
opposite of what happens in “common” fluids. For instance, in perfect
gases, I' is equal to (y + 1)/2, where the specific heats ratio y is always
greater than 1 for thermodynamic stability reasons; therefore, I' > 1 as
well. Finally for some heavy polyatomic fluids, referred to as the Be-
the-Zel’dovich-Thompson (BZT) fluids, I' may take negative values in a
small thermodynamic region above the liquid/vapor saturation curve,
leading to non classical behaviors in the transonic and supersonic re-
gime, such as expansion shock waves, mixed shock/fan waves, and
splitting shocks (see, e.g. [35] and references cited therein). The ther-
modynamic region in the vapour phase where I' < 1 is often termed
the dense gas region, while the vapor region where I' < 0 is called the
inversion zone. The presence of regions of low or negative values of the

fundamental derivative within a flow field may change dramatically the
behaviour compared to that of a classical gas. This is why the size and
location of the inversion zone has a deep impact on the resulting flow
field. The inversion zone has been found to be extremely sensitive to the
equation of state in use and the associated input parameters (see e.g.
[61).

In this work, we consider two alternative thermodynamic models
for the thermal equation of state, namely, the Peng-Robinson-Stryjek-
Vera (PRSV) cubic equation of state [9], and the multi-parameter
Martin-Hou (MAH) equation [10], based on a five-term virial expan-
sion. Both models have been often used in the dense gas literature, see
e.g. [6,16].

In addition to the preceding EOS, we also consider for calibration
and validation purposes (as discussed later) a more complex and ac-
curate thermodynamic model, namely, the multiparameter technical
equation of state introduced by Span and Wagner (SW) [12] with
coefficients adjusted to D5 in [37]. This is a complex technical equation
of state, which is considered as the most accurate and complete ther-
modynamic model presently available for this fluid, provided that a
sufficiently large set of high-quality experimental data is available for a
reliable fitting of the model coefficients, i.e. for reproducing experi-
mental data with very high accuracy. One drawback is that this EOS is
much more costly than the preceding ones. In practice, the equation
coefficients are obtained by means of a regression procedure: the ex-
perimental data used for calibration are weighted in such a way that
high-quality data contribute with higher weights. Experimental data
with uncertainties larger than a required threshold are discarded, or,
when no or insufficient data are available for a certain region, they are
weighted according to their level of uncertainty. Note that, due to the
limited and highly uncertain data available for the dense gas of interest,
the SW model is in practice also affected by significant uncertainties, of
the order of about 10%. In the following calibrations, these are treated
as “observational” uncertainties.

The main features of the three models are briefly recalled hereafter.
We refer to [6],[16] for a discussion of their sensitivity to uncertain
thermodynamic input parameters.

2.2. Thermodynamic models

PRSV model

The cubic Peng and Robinson equation of state with modifications
suggested by Stryjek and Vera [9] can be written, in reduced form (i.e.
with thermodynamic quantities normalised with respect to their values
at the liquid/vapour thermodynamic critical point), as:

5/Z, a,(T)

b= T T Vg 2b, — b2 ©)

where the subscript r denotes a reduced quantity, («), = (+)/(+)., the
subscript ¢ denotes critical-point quantities, v the specific volume, and:

a.(T) (0.457235/Z2)a(Ty),
b, = 0.077796/Z, (6)

with Z, = (p,v.)/(RT;) the critical compressibility factor and R the gas
constant. The function a(T;) is an adimensional relationship depending
on the reduced temperature and the substance acentric factor w:

a(h) =1+ m@d - T )
with m as a function of the acentric factor
m = 0.378893 + 1.4897153w — 0.17131848w? + 0.0196554w? (€©)]

The critical compressibility factor is unequivocally determined by im-
posing that p, equals 1 at the critical point, i.e. for v, = 1, T, = 1, which
leads to the solution of a cubic equation for Z. with only one relevant
root (Z, = 0.3112). Thus, the only free parameter left in the thermal
equation is the acentric factor w.

The PRSV equation is supplemented with a model for the ideal gas



contribution to the specific heat at constant volume, represented here
by a power law of the form:

cv,oo(T) = cv,oc(Tc) (%) "

c

9

where the c subscript denotes critical-point values, and the exponent n
and the ideal-gas-limit isocoric specific heat at the critical temperature
¢y, »(T.) are material-dependent constants.

Finally, the non-dimensional PRSV model (5,9) depends on the
uncertain parameters o, n, and ¢, ..(Tc).

MAH model

The comprehensive thermal equation of state of Martin and Hou
[10] reads:

_ T + > f;,,(Tr)
Ze, —b) & v —b) a0

by

with b, = :=£15 6 = 20533 — 31.883Z,, and

fm‘(n) =A.; + BT + Cr,iexp(_kj;)

with k = 5.475. The gas-dependent coefficients A, ;, B, ;, C, ; can be
expressed in terms of the critical temperature and pressure, the critical
compressibility factor, the Boyle temperature (which may be expressed
as a function of the critical temperature) and one point on the vapour
pressure curve. The MAH equation of state is supplemented again by
Eq. (9) to compute the ideal gas contribution to the specific heat at
constant volume. Globally, the MAH thermodynamic model in reduced
form, Egs. (10) and (9), requires the knowledge of six material-de-
pendent parameters, namely, the critical pressure p,, the critical tem-
perature T, the critical compressibility factor Z., the normal boiling
temperature T}, the exponent n and the reduced ideal-gas constant-
volume specific heat at the critical temperature ¢, ..(T.). As a con-
sequence, we choose to neglect them for the following of the study.
Nominal values of the different input parameters corresponding to D5
are given in Table 1.

SW model

The last thermodynamic model considered in this study is a 12-
parameter technical equation of state based on the functional form for
non polar fluids proposed by Span and Wagner ([12]). This is written as
an expression for the reduced Helmholtz free energy @ (i.e. normalised
with RT,), sum of an ideal-gas part, @°, function of the ideal-gas iso-
baric heat capacity c,, .., and by a residual term @" that takes into ac-
count real-gas corrections:

(5, 1) = mor0% + ny 6t + n3brlS + ny 630
+ ns87T0875 4 ngSr2375 exp(—5)
+ ;62020 exp(=0) + ngdr*1% exp(-9)
+ ngdt33 exp(—062) + ny67%° exp(—52)
+ 1y 8%+ exp(—62) + ny, %' exp(—6°) an

where n;, ... , nj are substance-specific coefficients, § = p/p, is the
reduced density and t = T;/T is the inverse of the reduced temperature.
Material-dependent coefficients for D5 have been taken from Ref [37].,
to which we refer for more details. The thermal and caloric EOS are

Table 1
Nominal values of thermodynamic properties
and parameters for D5.

T. (K) 619.15
pe(am) 11.45
Z 0.286
T, (K) 484.1
© 0.6658
¢, ~(T)/R 76

n 0.5208

derived from the following thermodynamic relations:

p el e 4@ "
——=1+96 ;o —==1|—| +
PRT 86 ), RT ot Js ot Js
For the calculation of caloric properties, the SW EOS (Eq. (11)) is
supplemented by the ideal gas contribution to the specific heat at

constant pressure, which is now approximated here as a polynomial
function of the temperature:

cp’wR(Tr) = cv’wR(Tr) +1l=c+ T +cT?+ T3 a2
where the polynomial coefficients ¢; depend again on the substance
under consideration and are given for D5 in [37]. This model is con-
sidered as more accurate than the preceding ones. For this reason, it is
used in the following to generate reference solutions used to calibrate
the simpler PRSV and MAH models.

2.3. Numerical solver

Numerical solutions for the dense gas flow of interest are found by
means of an in-house dense gas flow solver. The governing equations
are discretized using a cell-centered finite volume scheme for structured
multi-block meshes of nominal third-order accuracy, which allows
computing flows governed by an arbitrary equation of state. We refer to
[38] and the references therein for more details about the numerical
solver and its validation.

Due to high computational cost, the dense gas solver is used to
generate an inexpensive surrogate model, i.e. an analytical function
providing an approximation of the code output for a given choice of the
input parameters. The surrogate model used in this work is a determi-
nistic piecewise polynomial interpolation. A more detailed description
of the surrogate model, along with a discussion about the approxima-
tion error can be found in [16].

3. Calibration data
3.1. Pseudo-experiment

Despite many past efforts for carrying out experiments for dense gas
flows [39-41], no detailed experimental characterization of dense gas
flows is available yet. Very recently, preliminary results have been
presented for nozzle flows of the light siloxane MDM [42]. These in-
clude flow visualizations and a single pressure measurement at the
geometrical nozzle throat. Other dense-gas facilities are under devel-
opment, e.g. [43], so that a more complete body of experimental
knowledge will come into availability in the near future. In this work, to
provide a proof of concept of our predictive methodology, we generate
synthetic “experimental” data by running the dense gas solver with the
most complex and accurate thermodynamic model, namely, the SW
model.

This numerical experiments consists of transonic steady flows of
siloxane D5 past an NACA0012 airfoil with M, = 0.95, AoA = 0° and
various choices of the free-stream thermodynamic conditions (corre-
sponding to different scenarios), which are discussed later. Values of
the pressure coefficient:

_ P~ Py
=T
3P Uso 13)

P

(where U.. is the free-stream velocity) are collected at 17 locations
distributed along the airfoil upper wall (simulated pressure taps)
highlighted by red symbols in Fig. 1(a)). A more complete description
of the pseudo-experimental setup can be found in [16]. In Fig. 1(a) we
report also typical isoline of the pressure coefficient around the airfoil,
showing that the flow is characterized by a shock wave on the rear part
of the airfoil for the chosen Mach number, as well as a typical



(a) SW - Pressure coeflicient C,, field.

Fig. 1. Typical reference solution and location of the numerical pressure taps.

distribution of the pressure coefficient along the airfoil (Fig. 1(b)).

The collected synthetic pressure data are perturbed by adding a
Gaussian noise with zero mean and standard deviation equal to 10% of
the nominal value to simulate the effect of experimental errors. This
kind of observational error model is often used in the literature [44].
The 10% value for the standard deviation was chosen based on pre-
liminary investigations of the sensitivity of the Span Wagner thermo-
dynamic model to uncertainties in the caloric quantities [6]).

3.2. Choice of the calibration and prediction scenarios

Pseudo-experimental data are generated for three choices of the
free-stream thermodynamic conditions close to the liquid/vapour sa-
turation curve, where dense gas effects play a crucial role in the flow
physics. Their locations in the Clapeyron p — v diagram are depicted in
Figure 2 and the corresponding values of the reduced thermodynamic
conditions (numbered from 1 to 3) are given in Table 2. Furthermore,
pseudo-experimental data were also generated for two additional op-
erating conditions, not used in the calibration process, corresponding to
conditions 4 and 5 in Table 2 and reported with green symbols in Fig. 2.
Such conditions are referred to as the prediction scenarios, and the
corresponding data are used to validate the predictive model. In this
figure we also report the saturation curve computed according to the
reference SW model as well as the saturation curves predicted by the
PRSV and MAH models with parameters set to their nominal values. In

1.1
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(b) SW - Pressure coefficient C), vs. z.

Table 2

Numerical values: specific volume v, density p end pressure p.
Point V/ve p/pc P/pe
1 1.60 0.625 0.970
2 2.00 0.500 0.950
3 2.10 0.476 0.900
4 1.90 0.526 0.940
5 1.84 0.543 0.933

all cases, the operating conditions are sufficiently far from the satura-
tion curve to avoid the appearance of two-phase flow conditions in the
calculation. We checked that this condition was satisfied also for the
perturbed values of the parameters considered in the calibration and
prediction procedures.

4. Bayesian methodology
4.1. Bayesian calibration

This section describes the statistical procedure used to calibrate the
closure parameters associated to the EOS described in Section 2.

We observe that a QoI y can be computed as an output of the model
M given a set of parameters 6 € R": To that aim, consider first a generic
physical problem of the form:

05 | | | | |

Fig. 2. Representation in the Clapeyron diagram of the
operating points (scenarios for the free-stream ther-
modynamic conditions) used in the pseudo-experi-
4 ments. SW reference ( ), PRSV (— - — -), MAH
(— — —). Red symbols connected by lines: calibra-
tion scenarios; green symbols: prediction scenarios.
i (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version
of this article.)

0.5
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y=M(®) (14)

Note that y may also depend on additional parameters (explanatory
variables) that are considered as known and do not need to be cali-
brated (for instance the free-stream conditions or the airfoil geometry).
Such fixed parameters are not explicitly represented as an argument for
M.

In the Bayesian framework, the unknown parameter vector 6 is
treated as a random vector, characterised by means of its joint prob-
ability density function (pdf), noted as f. Due to the uncertainty on 6, y
is a dependent random vector.

The main goal of Bayesian calibration is to achieve new knowledge
about 0 by constructing an improved representation of its pdf, starting
from some prior knowledge on 6 and some observed data.

For this purpose, assuming that new amount of information is
available and represented by a random vector of observed data
D € O c RY, the Bayes rule simply states that:
f(D=DI6

s ©)

6D=D) = —
I ) f(D=D) (15)

where:

® f(0) is the prior pdf and represents the initial belief about 6;

e f(D = DI6) is the likelihood, and corresponds to the probability to
observe D, a realisation of the random variable D, if 6 is known
exactly;

e f(6ID = D) is the posterior pdf and represents the updated knowl-
edge of 6 given information about D;

e f(D = D) is the evidence, which represents the probability to ob-
serve D for all the values of 0, and acts as a normalisation constant
so that Eq. (15) is shortly written:

f(6ID = D) « f (D = DIO)f (8). (16)

Calibration is based on comparisons between modelled and ob-
served data. Thus, it is necessary to extract from all possible model
outputs quantities corresponding to the observed data. Note that the
calibrated model can subsequently be used to predict other Qol, i.e. the
output vector y includes, but is not necessarily equal to D. In the fol-
lowing of this section we assume for simplicity that y = D. To make this
point appear in the former notation, we rewrite Eq. (16):

f@D=D,y)xf(D=Dly,6)f(©). 7)

even if this notation is redundant.

For our concerns, the uncertain parameter vector 0 is the set of
closure parameters associated to a given EOS, y is a vector of outputs
from the dense gas solver M (in our case, the computed pressures at the
17 locations for which data are available), and D is a random vector of
observed data (i.e. the reference pressure values).

From Eq. (17), it appears that the distribution of the prior and the
likelihood have a strong influence on the posterior and have to be
chosen carefully. A number of priors have been proposed and used in
the literature. Ref. [45] recommends using the improper uniform pdf if
no information is available on the coefficients in advance of observing
the data, and a maximum entropy prior [46] when information con-
cerning their mean, covariance or other generalized moments is avail-
able. In the context of the present paper we only expect the uncertain
parameters to be positive and finite, but we do not have reasons to
enforce any preferential parameter range. This is why we chose for the
priors non-informative uniform distributions:

f(6) ~ U([a, b)) 18)

where the interval [a, b] is taken large enough to ensure a good ex-
ploration of the parameter space, while avoiding to include nonphysical
values. The likelihood function is a statistical model describing the
probability of observing the data for a given choice of the model
parameters. It may include information both about the observational

error on the data and the model error, including the effect of surrogate
modelling if needed. In the following, we use a likelihood function
resulting from a multiplicative/additive error model, similar to that
used in [18] for calibrating the closure coefficients of turbulence model
from measured velocity profiles in a turbulent boundary layer. We refer
to [47], [18] and the references cited therein for more details about
possible choices for the construction of likelihood functions.

In this work, the model includes an additive error modelling ob-
servational noise and a multiplicative term representative of the model
inadequacy. First, the data D at a given location x; along the airfoil wall
are modelled as:

D(x) = D(x) + e 19)

with

e ¢, the experimental noise at location x;;
A
® D(x;), the true (unobserved) pressure coefficient value at x;.

The observational errors, e;, i =1, ...,N (N = 17 being the number
of data) are taken here as independent and normally distributed with
zero mean and a standard deviation equal to 10% of the observed value.
On the other hand, the true process Disin general not exactly captured
by the model (14) — even with the best possible choice of the parameters
6 — because of inadequacies intrinsic to the simplifying assumption used
to mathematically modelling the physical phenomenon under study. In
this work, we assume the true process to be equal to the model output y
(x; 6), multiplied by an error coefficient #;:

D) = ny (i, 6) (20)

which takes into account the discrepancy between the simulation and
the actual system. Note that the use of corrective multiplicative coef-
ficients to account for model predictive deficiencies (safety factors) is
common engineering practice (see, e.g. [48]). The vector of model-in-
adequacy terms 1 = (7);, ...,7y) is assumed to be well represented by a
correlated Gaussian model of the form: n ~ N(1, Ky;) with

_ (i — x)?

— ] 1<i,j<N

(Km)yj = 02 exp[
2D
where x; and x; are two distinct observation abscissas separated by the
length scale a. The coefficients o and a are supplementary parameters
intrinsic to the statistical model (hyperparameters) and are calibrated
along with the parameters of the physical model. Note that o represents
the magnitude of the model inadequacy and thus can be taken as an
indicator of the accuracy of a given model. On the other hand, the
model-inadequacy term is expected to reduce the risk of over-fitting the
model parameters, by introducing additional degrees of freedom (see,
e.g. [17] for a discussion about the importance of model-inadequacy
terms in Bayesian calibration). The correlation kernel (21) is an adap-
tation of the Matérn model suggested by Kennedy and O’Hagan [47]
and it is an expression of the belief that the code has some degree of
smoothness, so that errors at closeby observation points (within a
length a) are correlated.
With the preceding assumptions, the product (1,),)i=1,.., v happens to
follow a normal distribution with mean y and a covariance matrix de-
fined by:

Ky =3y, Km)y, 1=<i,j<N (22)

Finally, because (e;);=1,..,n is also a random vector, the likelihood
can be written under the form:

F(Dly, 6) = exp[—%(D — yIRI(D — y)]

1
JemNIKI

where K = K, + K, with K, a diagonal matrix associated to the ob-
servational error vector.

23)



An interesting point of the Bayesian framework is the possibility to
account for various calibration scenarios in a one shot procedure by
considering a meta vector of data made of several D;. In such a con-
figuration, the covariance matrix Ky must be carefully modified to
consider the correlations, not only between the pressure taps within a
particular scenario, but also between scenarios. In this work, the cov-
ariance matrix accounts for correlations between pressure predictions
for different scenarios. As such, considering J different scenarios, Ky, is
now written

(i — x)? - p)*+ W —w)?
(K :Uzexp[— zazj exp _(Pk )4 = k I ,
. s=(k—-1)N+i
<i,j<
with {I_I’J_Nand t=(l-1N+j

1<k I<J
1<s5,t<JXN (24)

where p and v are the pressure and the specific volume and define a
point of operating conditions in Clapeyron’s diagram; f3 is a new hyper
parameter corresponding to a correlation length in Clapeyron’s dia-
gram. Such a Bayesian inference is now referred as multi-point cali-
bration, in contrast with single-point calibrations where only data from
a single scenario are used.

From a numerical point of view, the inference is done by drawing
samples from the prior pdf and the likelihood. For this purpose, we use a
Markov-Chain Monte-Carlo (MCMC) sampler, based on the Metropolis-
Hastings algorithm, which is well suited to represent non-classical pdfs.
Precisely we use the implementation made available through the widely
used pymc' python library. Details of the Metropolis-Hastings MCMGC
algorithm can be found in the user guide.

Typically, a large number of samples is required to converge the
posterior distributions. The results presented hereafter were obtained
by running samples from 10° to 107 draws, with a thin factor between
10 and 20, and a burn-in of about 50%. To check that the convergence

I J

Var[AlS', 2, M, 8] = Y Y Var[A|S', D, M;, S;1p(M;:|D;, S;)p(S,)

i=1 j=1

I

i=1j=1

J
S I 2 N
+3 > (BIAIS', Dy, M;, S;) - E[A[S', Dj, M, S51)” p(M;i| Dy, S;)p(S;)

4.2. Bayesian model-Scenario averaging (BMSA)

Let us now consider i = 1, ...,I models, modelling the same physical
problem, involved in j =1, ..,J calibration scenarios S = {S, ...,S}
characterised by J vectors of observed data Z = {D;, ...,D;}. For model i
under scenario j, we write the Bayesian rule as:

— D =Djl6;, M=M;, S = S)f (GIM=M;,S=5;
f(6i|M=1Wi,S=Sj,D=Dj)= f( 7] i i ])f(l 1 ])
Jof (D =Djle;, M = M,;, S = S)f (6;IM = M;, S = 5))d6;
_fD=Djl6, M=M;, S = Sf6:IM = M;, S = 5))
fD=DjIM=M,S =S

(26)

where the subscript i of 6 means that the random vector of parameters
depends on the model and M is a discrete random variable defined on a
subset M = {M;, ..,M;} of all possible models. Consider now a Qol A
and a prediction scenario S’ ¢ S. By means of the law of total prob-
abilities [19] we then write:

f@ls’, Z, M, S)=

I 7

> > fQIS,D=D;,M=M,S=S)p(M=MID=D;,S=S)p(S=5)

i=1 j=1 27)
where p represents the probability mass function (pmf) of a discrete
random variable and:

e f(AlS', D=D;, M =M, S = S)) represents the distribution of A ob-
tained by propagating in the code the posterior distribution of 6;
calibrated under model i by using data from scenario j,

e we assume independence between D and S.

As a consequence, the mean and variance of A are:

E[AIS', Dj, M, Sjlp(Mi1D;, Spp(S))

I
E[AIS, Z, M, S] =),
i=1 j=1 28

J

J

within-model,

within-scenario variance

between-models,

within-scenario variance

+ Z (E[A|S', Dj, M, 5] — E[A\S’,Z,M,S})Qp(sj) between-scenarios variance

j=1

is reached, we use the z-score method proposed by Geweke [49]
available in the pymc package. It consists of comparing the mean and
the variance of segments from the beginning and the end of the Markov
chain:

7= E[ebeginning] - E[eend]
\/V3r [ebeginning] + Var (64l (25)

This z-score is theoretically distributed as standard normal variate.
It is thus a statistical tool based on the hypothesis that
E[Opeginning] = E[€enal. The point is that if this z-score falls within 2
standard deviations of zero, we cannot reject this hypothesis with 95%
chance to be right. Along with this Geweke z-score, we also check for
convergence through the evolution of the means, the auto-correlations,
the correlations, the traces and the pdfs.

(29)

where we omitted to mention M, D and S to simplify the notations. In
the preceding equations:

e E[AIS’, Dj, M, Sj] is computed with
I
E[AIS, D, M, S = Y. E[AIS, Dj, M;, S1p(M; 1D}, S))
i=1 (30)

represents the mean of A by taking into account all the possible
models M calibrated on the same scenario S; M,
e p(M;ID;, S;) is the posterior model probability, computed by ap-
plying again Bayes rule
p(DjIM;, S))p(M;1S))
Y1, p(D}IM;, S)p(M,, 5)) &)
where p(M;|S)) is a prior user-defined pmf and p(D;IM;, S)) is the
model evidence:

p(MID;, S) =



http://pymc-devs.github.io/pymc/

p@IM, 5) = [ £ (D}16. M, S)f €M, 5)de 32)

The prior model mass function is chosen equal to:

1
p(M;1S)) = 7 (33)
meaning that all models have the same prior probability before obser-
ving data. Finally we chose the prior scenario mass function as in [28]:

1/€§7
p(S:‘gj):Zji (a)

P
j=11/¢j

g = iy IE[AIS D, M, S| = E[AIS, D, M, Sl (b) 34)
where ¢; in Eq. (34b) is a measure of the dispersion of different model
predictions for scenario S’ using coefficients calibrated under scenario
S;.

A special subclass of BMSA problems arises when there exists only
one model. The BMSA equations are simplified and reduced to

J
E[AIS, Z, 8] = ) E[AIS, Dj, S1p(S)
=1 (35)

Var[AlS', Z, 8] = ¥, Var[AlS', Dj, sj]p(s,)}

within-scenario variance

+ zjzl (E[AIS', D, Sj] — E[AIS, Z, S])Zp(Sj)]

between-scenarios variance
(36)

and such problems will now be referred as Bayesian Scenario Averaging
(BSA). In this case the scenario pmf (34a) cannot be used any more. We
suggest instead the following formulation:

S=S)= l/ejy
p(S = j)—m (a)

§=IEWMD=D,.5S=S]-Dl, + ElcD =D, S=5] (0 (37

where the first term of the right hand side represents the error between
the posterior mean output calibration quantity y and the reference data
D;, and the second term stands for the model inadequacy.

5. Calibration results

In this section we apply the statistical calibration framework de-
scribed in Section 4.1 to infer on the input coefficients of two ther-
modynamic models. As anticipated in Section 3.2, the data used for the
calibration are synthetic pressure measurements at 17 locations along
the airfoil wall. Previous sensitivity analyses [16] show that, for the
PRSV model, the most influential parameters are the acentric factor @
and the specific heat ¢, .., with n having an almost negligible effect. For
MAH, only the critical temperature and pressure T, p. have a sig-
nificant influence on the model variance, while the effect of other
parameters is rather negligible. Also note that the two parameters ex-
hibit significant interactions (i.e. varying them jointly has a strong ef-
fect on the variance) for flow cases with shock waves, due to the strong
nonlinear effects characterizing the shock region. Such interactions
have a strong impact on the calibration results, leading to posterior
correlations of the calibrated parameters. Specifically, in our previous
work [16] a clear posterior correlation between w and c,, .. was ob-
served when calibrating the PRSV EOS. Similarly, a correlation between
T, and p. was observed for MAH. For this reason, in both cases we chose

Table 3
Prior distributions of physical and hyper parameters for the two EOS under
investigation.

PRSV MAH
Tc - U (550, 640)
¢, (T U (30, 400) -
o (0.0, 3.0) (0.0, 3.0)
a U(1073, 10%) U(1075, 10%)
B U (1075, 105) U(1075, 10%)
Table 4

PRSV model: mean E and standard deviation S of the posterior distributions of
the parameters for the various scenarios.

Mean and Std. deviation Scenario j
1 2 3 123

E [cu,colCyY, PRSV] 90.772 135762 135940  91.827
S [evoolCJ, PRSV] 0.247 6.013 4.026 0.555
ElolC}Y, PRSV] 0.734 0.262 0.447 0.379
S[olClY, PRSV] 0.773 0.067 0.114 0.049
ElwlC}d, PRSV] 50053.635 0.033 0.034 0.011
S[alCyd, PRSV] 28912.708 0.016 0.013 0.003
E[BICY, PRSV] - - - 0.123
sipicy, Prsv] - - - 0.028

to fix one of the correlated parameters. The acentric factor @ and the
critical pressure p. are then removed from the uncertain parameter
vector of the PRSV and MAH models, respectively, and kept fixed to
their nominal values. For the remaining uncertain parameters and the
hyperparameters we assumed large non-informative prior distributions,
given in Table 3, which encompass the nominal values. The upper and
lower bounds allow for a wide search of the parameter space, while
avoiding physically inadmissible values (e.g., negative values or values
leading to thermodynamic conditions lying in the two-phase region -
see Section 3.2).

5.1. Results for the PRSV model

The results of the calibrations of the PRSV EOS against different sets
of data are reported in Table 4 in terms of average and standard de-
viation of the posterior distributions obtained for the various scenarios.
The calibration against the three data sets simultaneously (multiple-
point calibration) is referred to as scenario “123” in the following. In all
cases the physical parameter ¢, and the hyperparameter o are well
informed from the data.

Concerning the posterior distributions of the PRSV parameter c,, .,
two tendencies are observed. For calibration scenarios 1 and 123 the
posterior mean of c,, .. is close to 90.0, i.e. about 20% higher than the
nominal value. For scenarios 2 and 3 the mean is close to approximately
136. More generally, calibration scenarios 2 and 3 lead to similar
posteriors for all the parameters and hyper parameters. This is mainly
because the operating points 2 and 3 are closeby in the Clapeyron
diagram and the corresponding pressure data are similar. In all cases,
calibration leads to extremely peaked posteriors for c, .., whose sup-
port is much smaller than the prior distributions. This indicates that the
computed posteriors are independent on the selected prior. The pos-
terior mean of the hyper parameter o is the smallest for scenario 2 (E
[0] = 0.262) and the largest for point 1 (E[o] = 0.734). We recall that,
in our statistical models for the likelihood based on Eq. (23) or Eq. (24)
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Table 5
Calibration results for PRSV - Ly-norm error of the residual error with respect to the reference C, data.
Scenario o — chom i — E[cyIcd, PRSV ¥ — E[CyICY 55, PRSV
I pJ pJ II2 I pJ [ p'~pj> 112 II pJ [ p'“p,123 112
j (Single-point calibration) (Multi-point calibration)
1 1.273 0.130 0.115
2 1.393 1.023 1.032
1.274 1.720
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Fig. 4. Calibration results for PRSV. Posterior predictions for the saturation curve and the transition line (I' = 0) . Panels (a) to (d): nominal saturation curve (
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(b) Scenario 2 - Error bars=E[X] £ 105[X].
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(d) Scenario 123 - Error bars=FE[X] &+ 1005[X].

Point j | E[IZ|C;", PRSV] S[1Z|C,<, PRSV]
1 1.1441072 2.084107%
2 44471072 3.7991073
3 4.46510~2 2.3301073
123 1.2381072 44181074

(f) Area of the inversion zone (IZ).

),

nominal transition line (— — —), mean posterior saturation curve (), mean posterior transition line (*X) and posterior transition line error bars (®). Panel (e):

reference data based on the SW model (——), transition line (— — —), T’ =0.3 (— -

— Jand T'=0.5(----- ). Panel (f): posterior average and standard

deviation of the inversion zone area. For the nominal PRSV model, the area of the inversion zone is equal to 6.429 1074,

o0 is a measure of the ability of a model to capture the data: the more the
model fails to fit the experimental points, the larger is o. In other words,
if the posterior distribution of the code output y exhibits a weak
probability to observe the data, then o increases to compensate for this
discrepancy. In practice, due to model inaccuracy, the statistical model
tends to capture the data by increasing the variability of the posterior
predictive distribution of the Qol. This is done either through a large

posterior variability of the physical parameter (in this case, c,.), or
through the model-inadequacy term. This is clearly illustrated by Fig. 3,
which reports the posterior predictive distributions (p.p.d.) for the
pressure coefficient C,. These are compared to the nominal solution and
to the data used for the calibration. The expectancy of the p.p.d. is
found to be closer to the data for scenario 1 than for scenarios 2 and 3.
However, because of the small standard deviation of ¢, .. and hence of
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Fig. 5. Prediction results for the calibrated PRSV model. Pressure coefficient for operating point 4: reference data Cl'f{ (L)), nominal Cp,
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Py’

C, for this scenario, the reference is assigned a poor chance of occur-
rence and the model-form error term leads to a large variance of the
p.-p.d. In this figure, the error bars associated with the parametric un-
certainties (not reported) are of the order of line thickness, and almost
superposed with the average solution. For all cases, the p.p.d. are in
better agreement with the reference than the deterministic prediction
based on the nominal parameters.

In Table 5 we report the L, norm of residual error with respect to the
data for the p.p.d. of C,. The norm is extended to the 17 chordwise
locations. The table shows that 1) independently on the data used for
the calibration, the average posterior predictions always improve over
the nominal solution; 2) except for the p.p.d. for scenario 1, the mul-
tiple-point calibration provides higher residual errors than the p.p.d.
based on individual calibrations, due to the fact that the multi-point
calibration represents a tradeoff among the observed data for the var-
ious scenarios.

Figure 4 illustrates the impact of the calibrations on the predicted
thermodynamic behaviour. Specifically, the figure shows posterior
predictions for the saturation curve and the transition line in the

Nom. ) and posterior

Clapeyron diagram. Reference data obtained from the SW model are
also reported for reference. It is worth noticing that, according to the
SW the I = 0 curve is located below the saturation curve, D5 being not
a BZT fluid according to this reference model. However, the funda-
mental derivative is rather close to zero for a wide range of conditions
in the saturated vapour region (see Fig. 4(e)). Concerning the calibrated
model, several considerations are in order. First of all, the saturation
curve is not affected by the calibration, since its location depends only
on the thermal equation of state and not on caloric properties like c,_.
Secondly, the average posterior location of the transition line is above
the nominal one in all cases, indicating that the calibrated model pre-
dicts, in average, a wider inversion zone than the baseline. As a con-
sequence, for scenarios 1-3, the fundamental derivative tends to take
throughout the flow lower values with respect to the nominal model.
This leads in turn to a reduction in the maximum Mach number and, as
a consequence, to predictions that match more closely the reference
data than the nominal solution. Lastly, the posterior prediction of the
transition line varies significantly according to the scenario used for the
calibration, as a consequence of the inadequacy of PRSV in reproducing
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Table 6
PRSV - Predictions of the drag coefficient.

Prediction Calibration Reference Nominal Posterior Relative error (%)

scenario k scenario j CZ{ Céj’,‘{””‘ E[Cd|CI,f,[, PRSV] S[CdICI'fIfIPRSVJ Nominal Posterior

4 1 1.2231071 1.4821071 1.414107! 1.07510~* 21.18 15.62

4 2 — — 1260101 17021073 — 3.03

4 3 — — 1.260107! 1.0551073 — 3.03

4 123 — — 1.410101 2268104 — 15.29

5 1 1.079107! 1.369107! 1.265107! 1.617107 26.88 17.24

5 2 — — 10401071 2.3981073 — 3.61

5 3 — — 10391071 14711073 — 3.71

5 123 — — 12581071 3.3931074 — 16.59
Table 7 and 5, respectively. In particular, the shock location is drastically im-

MAH model: mean E and standard deviation S of the posterior distributions of
the parameters for the various scenarios.

Mean and Std. deviation Scenario j
1 2 3 123
ERICY, MAH] 573.898  565.746  572.271 574.720
SITICLY, MAH] 1.604 1.485 0.462 0.689
ElolC, MaAH] 0.474 0.247 0.772 0.837
sloictd, man] 0.104 0.056 0.773 0.131
ElC, MaH] 0.009 0.009 50182526  0.017
§l@ICy], MAH] 0.004 0.005 28864.872  0.004
E[pICY], MAH] - - - 0.038
0.023

ref - - -
sipicy, MAH]

the fluid thermodynamic behavior correctly in the whole flow field.
Interestingly, if the EOS is calibrated directly by using thermodynamic
data (and more specifically pvT data) [50] the inversion zone tends to
disappear (as in the SW model) but predictions of the aerodynamic
quantities based on the updated EOS are found to be less accurate than
the nominal model. Indeed, in this case the fundamental derivative
takes overall higher values throughout the flow, leading to stronger
shocks.

Finally, the ability of the calibrated model to predict unobserved
flows is investigated by propagating the parameters calibrated against
scenarios 1-3 and 123 through scenarios 4 and 5. The results are de-
picted in Figures 5 and 6, along with validation data obtained by run-
ning the reference SW model and the nominal solutions. The Ly-norms
of the errors with respect to the pseudo-experiments are also reported in
panel e of both figures. Predictions are based on the sole propagation of
the posterior parameter distributions through the new scenario, char-
acterized by a small variance. This leads to small uncertainty bounds of
the output Qol, which do not always encompass the validation data.
This makes us argue that the parametric uncertainty alone is not suf-
ficient to capture the “truth”, and that the model-form uncertainty
should also be taken into account. Unfortunately, the model-in-
adequacy term 7 can be hardly extrapolated to a scenario different from
the calibration ones. In almost all cases, the average predictions are
closer to the reference solution than the nominal solution. However, the
improvement is more or less important depending on the calibration
scenario used to train the parameters. As expected from the posteriors
of ¢, .., we observe similar distributions for scenarios 2 and 3 on one
side, and for scenarios 1 and 123 on the other side, for both prediction
points. The predicted mean distributions based on calibrations against
scenarios 2 and 3 show a good adequacy with the reference, with
posterior errors of about 0.370-0.377 and 0.143 compared to the
nominal errors of 1.730 and 1.719 for the nominal solutions at points 4

proved and lies very close to the reference. On the other hand, the
predicted shock locations based on calibration scenarios 1 and 123
remain very close to the nominal solutions. Note that the prediction
scenarios 4 and 5 are rather close to calibration scenarios 2 and 3,
which explains the good performance of the model when calibrated
against these points. Finally, even if the posterior mean distributions of
C, are in closer agreement with the reference than the nominal solution,
the error bars do not allow to capture the reference data all along the
airfoils. This is due to the small posterior variance of ¢, .. and to the
lack of a model-form uncertainty term. In other terms, accounting for
the parametric uncertainty only leads to a severe underestimation of the
solution variance, more notably in the shock region. This point will be
discussed further in the following.

To complete the analysis, we finally consider the p.p.d. for a global
performance parameter which was not directly informed from the data,
i.e. the drag coefficient, given by

Cd = %

Epoo Voo
with D = ¢
rection i. The results are reported in Fig. 7 for predictions at conditions
4 and 5, based on parameter posteriors calibrated on scenarios 1, 2, 3
and 123, respectively. Table 6 provides the means and the standard
deviations for the various p.p.d.s, along with the value predicted by
using the nominal values of the parameters and the pseudo-experi-
mental reference.

Due to the linear relationship between C; and p, the drag coefficient
follows similar trends as the pressure coefficient C,. However, due to
the sensitivity of this integrated parameter to small variations of the
shock location, C4 distributions are more affected by the parametric
uncertainty. For both prediction scenarios, the average C; is to within
3% and 4% of the reference value, in the best cases (prediction based on
scenarios 2 and 3), which represents a considerable improvement over
the nominal model results, characterized by relative errors of 21.18%
and 26.88%, respectively. The prediction error increases to about 15%
when using posteriors calibrated from scenarios 1 and 123. Despite the
improvements observed for the prediction of mean values, it appears
that the reference values are in general not captured by the posterior
distributions of C, for any choice of the calibration scenario. In the best
cases, the reference value of Cjy is close to the tail of the posterior dis-
tribution.

irfol pn-idS the pressure force component in the flow di-

5.2. Results for the MAH model

In this section we discuss the calibration results for the MAH model.
The posterior means and standard deviations of the stochastic
parameters/hyperparameters T,, 0, @ and f3 are given in Table 7 for the
various calibration scenarios (single- and multi-point). Posterior dis-
tributions of the critical temperature T, are found to be rather similar
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for all calibration scenarios. Indeed, the posterior means range from
565.746 up to 574.720. This are about 8% lower than the nominal
value of 619.15. The posterior standard deviations are very small (less
than approximately 0.3%) for all cases, showing that this parameter is
very well informed from the data, but also that the calibration is very
sensitive to the calibration scenario, since the different posteriors do no
overlap. Concerning the hyperparameters, the posterior mean of o
ranges from 0.247 (for scenario 2) up to 0.837 (for scenario 123). These
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rather high values indicate that the model-form error plays a crucial
role for capturing the data, thus compensating the small posterior
variance of the physical parameter T,.

The posterior distributions of the pressure coefficient for the cali-
bration scenarios, reported in Fig. 8, show a good agreement with the
data. For scenarios 1 and 2, the data are located to within one experi-
mental standard deviation from the mean posterior prediction, included
in the shock region. For point 3, the shock location is predicted less



Table 8

Calibration results for the MAH model - L,-norm error of the pressure coefficient with respect to reference C, data.

Scenario J IG5 = GpF™ IG5 — EICpICy], MAH] > IC] = EIGpICy T MAH] I
(Single data calibration) (Multiple data calibration)

1 2.255 0.429 0.316

2 1.808 0.115 0.637

3 2.289 1.761 1.785

accurately and some points belong to weak probability regions of the
posterior. Nevertheless, the mean posterior distribution represents a
clear improvement with respect to the nominal solution. This is better
seen by inspection of the L, norms of the residual error with respect to
the data, given in Table 8. For all calibration scenarios and prediction
points the error is reduced by approximately 20% (in the worst case) to
approximately 90% (in the better case). Similarly to the PRSV model,
the multiple data approach yields results close to the single data cali-
brations, with posterior values of T, close to those found for scenario 1.
This seems to indicate that data from scenario 1 tend to dominate the
calibration.

Posterior distributions of the fluid properties in the Clapeyron dia-
gram are reported in Figures 9(a) to 9(d), along with the reference
solution (Figure 9(e)). For the saturation curve, only the mean of the
posterior distribution is reported, since the results are practically in-
sensitive to T. For the transition line, the variability is also very small
and the error bars are drawn by applying a large multiplicative coef-
ficient to the standard deviation. Contrary to the PRSV case, calibration
of the MAH model leads to a significant shrinking of the I' = 0 curve
with respect to the baseline. As a results, the posterior average area of
the inversion zone is equal to zero for all calibration scenarios
(Table 9(f)). Indeed, the nominal MAH model predicts a shock much
weaker than the pseudo-experiment, and located upstream of the re-
ference, i.e. an opposite situation with respect to the PRSV case. The
calibration acts in the sense of increasing the shock strength by moving
the thermodynamic parameter toward a range of values that lead to a
smaller (or null) inversion zone and to overall higher values of T
throughout the flow.

The posterior predictions of the C, are reported in Figures 10 and 11
for scenarios 4 and 5, respectively.

Due to the low sensitivity of the posterior distributions of T to the
calibration scenario, for both prediction scenarios similar posterior
predictive distributions of the pressure coefficient are obtained for any
choice of parameter distributions. The shock location is not perfectly
captured but is significantly improved with respect to the baseline
model. As already observed for the PRSV case, assimilating data from
several scenarios at once does not really improve predictive accuracy
over single-point calibrations. We also observe that the calibrated MAH
model leads to less accurate predictions of the new scenarios 4 and 5
than PRSV, showing once more the low robustness to parametric un-
certainties of this more complex model.

Finally, posterior distributions of the drag coefficient, reported in
Fig. 12 and Table 9, exhibit a similar behaviour to the PRSV case. Ca-
libration leads to a very significant improvement of C4 predictions over
the baseline model for both prediction scenarios, although the reference
value is not captured by the posterior distributions (or is captured with
very low probability), the best results being obtained when using pos-
teriors calibrated on scenario 2.

6. Bayesian mixture model results

The results of Section 5 show that calibrating the parameters of
thermodynamic models on one or more scenarios does not lead to ro-
bust predictions of new cases, even when these are not very far apart
from the calibration scenarios. Not only the average prediction is not in
close agreement with the available validation data but, more

importantly, the predictive variance is strongly underestimated, since
the sensitivity of a given model to calibration scenarios is not accounted
for. Furthermore, the standard calibration approach does not provide
any estimate of model-form errors for the predictive setting.

To overcome these drawbacks, in this section we carry our predic-
tions of the unseen scenarios 4 and 5 by using Bayesian mixture models.
As a first step, we incorporate into the models information coming from
different calibration scenarios by averaging predictions based on dif-
ferent calibration data. This corresponds to the mixture model that we
called BSA. The results are compared to those of the model calibrated
simultaneously on scenarios 123. Afterwards, we average predictions of
the PRSV and MAH models trained on various scenarios via the BMSA
approach, and we assess the capability of the mixture model to capture
validation data.

6.1. Accounting for scenario uncertainty: BSA results

The BSA mixture approach is first applied to the PRSV EOS. The
posterior distributions obtained for calibration scenarios 1, 2 and 3 are
propagated through a new scenario, and the posterior predictive dis-
tributions are averaged by using the a priori scenario p.m.f. (34a). A
preliminary sensitivity study was carried out to investigate the influ-
ence of the exponent p. We recall that using p = 0 corresponds to as-
signing the same probability to all calibration scenarios, whereas high
values of p tend to assign a higher probability to the scenario for which
the chosen error measure is the lowest. The results (not reported for
brevity) show that the predictions tend to become independent of p for
p 2 5. For such high values, the p.m.f. assigns a probability very close to
one (90% or more) to the scenario with the lowest error measure for
each case, so that the BSA prediction becomes equivalent to a single-
point standard prediction. This is due to the fact that the error measure
is based on the model performance for the calibration scenario, data for
the prediction one being not available. Additionally, the predictive
variance reduces to the one of single-point predictions, i.e. does no
longer account for scenario uncertainty. Using low values of p (com-
prised between 0 and 2 according to the case) leads to more accurate
predictions of the expected solution, while providing a more con-
servative estimate for scenario uncertainty. In the following we restrict
our analyses to the case p = 1. The resulting prior scenario probabilities
are reported in Table 10.

PRSV-based BSA predictions of the wall pressure coefficient for
scenarios 4 and 5 are reported in Figure 13, along with the reference
data C;f'{zks} and the nominal PRSV solution Cp;%, . Predictions based on
the multi-point calibration (scenario 123) are also reported for com-
parison. For both predictions, the average BSA solutions are close to the
reference data, except in the vicinity of the shock. BSA not only out-
performs the baseline model, but is also significantly more accurate
than the multi-point model calibrated on the same datasets. Ad-
ditionally, BSA now provides a sufficiently conservative estimate of the
posterior predictive variance, which encompasses the pseudo-experi-
mental data.

Results based on the MAH model are reported in Fig. 14. For this
model all results are in less good agreement with the reference than for
PRSV. In the shock region, the predicted solution error bars ( = 1
standard deviation) do not encompass the reference data. Nevertheless,
BSA provides once again more accurate results and a more realistic
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Fig. 9. Calibration results for MAH. Posterior predictions for the saturation curve and the transition line (I' = 0). Panels (a) to (d): nominal saturation curve (
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(f) Area of the inversion zone (IZ).

),

nominal transition line (— — —), mean posterior saturation curve (+), mean posterior transition line (*) and posterior transition line error bars (®). Panel (e):

reference data based on the SW model (——), transition line (— — —), =0.3 (— -

inversion zone is equal to 1.3911072.

estimate of the predictive uncertainty than the standard calibration
approach, as seen by inspection of the prediction errors (Table 11). This
is also reflected by the predicted drag coefficient, reported in Table 15
for both PRSV and MAH models. The expected value of C; according to
the BSA model is much closer to the reference, both with respect to the
nominal model and the multi-point calibration. Specifically, the BSA
prediction is to within approximately one standard deviation from the

— Jand T =05 (---- ). For the nominal MAH model, the area of the

reference value, whereas with the standard approach the reference was
not captured by the posterior predictive distribution.

6.2. Accounting for model-form uncertainty: BMSA results

The BSA approach allows to incorporate information about the
sensitivity of model predictions to the calibration scenarios. The
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preceding results show the interest of mixing several scenarios to im-
prove estimates of the posterior prediction of a given Qol, both in terms
of expectancy and standard deviation. It was also seen that different
models (PRSV and MAH) may lead to non overlapping posterior pre-
dictions. It is then necessary to incorporate in the prediction the notion
of model-form uncertainty. This is done by considering the full BMSA
formulation presented in Section 4.2. The latter is applied to predict
scenarios 4 and 5 by mixing forecasts based on both PRSV and MAH
models and the various calibration scenarios available. For the full
BMSA formulation it is also possible to use the more general measure of
the predictive error based on model agreement.

Table 13provides the posterior probabilities of the two models for
each single-point calibration scenario, as well as the scenario prob-
abilities. The Table also reports the posterior model probability for the
multi-point case. In this case, only a single scenario is considered,
which is assigned a probability equal to one, and BMSA reduces to
BMA. Interestingly, while in the BMSA approach both model contribute
to the posterior prediction, although the MAH model is found to pro-
vide a nonzero contribution only for scenario 2, only the PRSV model is

) and posterior

picked by BMA applied to the multi-point calibrated models. Wall
distributions of C, are reported in Fig. 15 for BMSA based on single-
point scenarios and BMA based on the multi-point calibration. Using
multiple scenarios and models not only provides a much more accurate
prediction of the Qol, but also of the posterior variance, which is found
to encompass the data for all cases. We observe that, contrary to the
predictions based on the Gaussian model-inadequacy term (Figs.3 and
8), the predictive variance is now of the same order of the pseudo-
experimental one in smooth flow regions and becomes larger in the
shock region, where the predictions are very sensitive to the thermo-
dynamic model and choice of coefficient. On the contrary, the BMA/
multi-point prediction underestimates both the parametric and the
model-form uncertainty, leading to very inaccurate mean predictions in
the shock region, as well as to a dramatic under-prediction of the
posterior variance. The overall prediction errors for the two approaches
and the two prediction scenarios are reported in Table 14.

The accurate prediction of the C, distribution along the wall and of
the associated uncertainties enables a more reliable estimate of the drag
coefficient (see Table 15). Indeed, BMSA predictions of C; are much
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Table 9

MAH - Predictions of the drag coefficient.

Prediction Calibration Reference Nominal Posterior Relative error (%)
scenario k scenario j Cﬂ Cé\,l;?m' E[CdIC",f}[, PRSV] s[c d‘cﬂ IPRSV] Nominal Posterior
4 1 1.223107! 5.8171072 1.002107! 2.3681073 52.44 18.07
4 2 — — 1126107 2.5411073 — 7.93
4 3 — — 10251071 67671074 — 16.19
4 123 — — 9.8921072 10271073 — 19.12
5 1 1.079107! 2.5931072 7.0691072 3.0521073 75.97 34.49
5 2 — — 86791072 34921073 — 19.56
5 3 - — 7.3591072 8.60810~* — 31.80
5 123 — — 6.908 1072 12851073 — 35.98
Table 10 point prediction is far apart from the reference, but it is also char-
BSA - Scenario probabilities for the PRSV and MAH model (p = 1). acterized by an unrealistically small posterior variance, i.e. the model
PRSV MAH assigns a very high probability to the wrong result.
p(S1) 0.460 0.260
p(S2) 0.309 0.648 7. Conclusion
p(Ss) 0.231 0.093

closer to the reference for both prediction scenarios. Additionally, the
reference is to within approximately one standard deviation from the
BMSA average prediction. On the contrary, not only the BMA/multi-

A robust Bayesian prediction methodology for flows of dense gases
subject to thermodynamic uncertainties has been described and as-
sessed. As a first step, Bayesian inference was used to calibrate the input
parameters of two popular equations of state (EOS), namely, the cubic
Peng-Robinson-Stryjeck-Vera and the virial Martin-Hou equation of
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P
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(4,5}

(—) and posterior E[C,IM = MAH] (for (a) and (c)) or

parametric uncertainty y (E [CP\C;{B, M=MAH] + S [CpICf{B, M = MAH]) (.
Table 11
Ly-norm of the prediction error (p = 1). Nominal=||C;f{4Y5} - [‘,\"fj‘"é}nz, Multi-

), between-scenarios ( ), total (— — —); for (b) and (d):

Table 13
BMSA - Posterior model probabilities and prior scenario probabilities.

Scenario j (S p(PRSV|S)) Pp(MAH|S)

Scenario 4 Scenario 5

1 0.291 0.266 1.000 0.000

2 0.382 0.385 0.809 0.191

3 0.327 0.349 1.000 0.000

123 1.000 1.000 1.000 0.000

point=||C¥, o — E[G,1Cy{5] [l and BSA=(|C}Y, 5 — E[CpIM] |-
Scenario PRSV MAH
Jj Nominal ~ Multi-point ~ BSA Nominal =~ Multi-point ~ BSA
4 1.730 1.044 0.583 2.449 1.342 1.181
5 1.719 1.697 0.787 2.649 1.905 1.704
Table 12
BSA - posterior drag coefficient for p = 1.
Scenario Reference Posterior PRSV Posterior MAH
j i E[C4|PRSV] ~ S[C4|PRSV]  E[C4|MAH]  S[C4MAH]
A
4 12231071 1.3311071 77741073 1.084107! 61471073
5 10791071 1.143107! 1.0781072 81391072 80381073

state. The inference was carried out by performing inverse propagation
of a set of observed aerodynamic data (wall-pressure measurements) for
transonic dense gas flows past an airfoil through a dense gas solver
supplemented with one or the other EOS. Different data sets, corre-
sponding to various calibration scenarios where used to calibrate the
coefficients, allowing to investigate the sensitivity of the posterior

parameter distributions to the observed data. Specifically, different
scenarios were generated by changing the free-stream thermodynamic
conditions of the incoming flow. The coefficients were calibrated both
considering the calibration scenarios one by one or all of them si-
multaneously (single-point or multi-point calibrations). The latter ap-
proach was supposed to lead to more robust predictions, since the ca-
libration is the result of a compromise on fitting the data available for
different scenarios. Stochastic observational-error and model-in-
adequacy terms were introduced to construct the likelihood function. In
all cases, the physical model parameters and the hyperparameters as-
sociated to the stochastic models were well informed by the data. The
posterior parameter distributions were found to be rather sensitive to
the calibration scenario, showing the lack of universality of the esti-
mated parameters, which lose their physical meaning and become just
tuning parameters, which are likely to incur overfitting problems. The
parameter sensitivity to the calibration scenario is a result of model-
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Fig. 15. BMSA predictions of the pressure coefficient compared to the results of BMA combined with multi-point calibration. Reference C"f{é‘ys, (D), BMSA/BMA

posterior E[C,](—@=). Error bars: within-model within-scenario (

(— — —). For BMA the between-scenario variance is identically zero.
Table 14
Ly-norm of the posterior prediction error: ||C;f{4' 53 — E[Gpl > for BMA combined
with multi-point calibration and BMSA.

Scenario BMA + multi-point BMSA

j calibration

4 1.044 0.382

5 1.697 0.497
Table 15

BMSA predictions of the drag coefficient compared to the results of BMA
combined with multi-point calibration.

Scenario  Reference  Posterior (BMSA) Posterior (BMA + multi-point)
j C;ejf E[C4] S[C4l E[C4) S[Cal

4 12231071 12731071 07721072 1410107} 22681074

5 1079107 10591071  1.0691072 1.258107! 3393107

form inadequacy. Despite calibration, these was found to be so large
that neither model was able to fit the data perfectly well. However, in
most cases these were captured by the tail of the model-inadequacy
distribution. Then, the various posterior distributions were used to
predict unobserved flow scenarios and quantities of interest (Qol) dif-
ferent from the ones used for calibration. Since the model-inadequacy

), between-models within-scenario (

P

), between-scenarios (for (a) and (c) only) ( ), total

term cannot be transposed to different flows or Qol, the predictions
were carried out by just propagating the parameter posteriors through
the dense-gas solver. The results were compared to the available vali-
dation data and to deterministic predictions based on the nominal
parameter values. Although the predictions of the calibrated models are
significantly more accurate than the baseline, they did not fully agree
with the reference data. Additionally, the predictive posterior variance
was found to be too small to encompass the data. Multi-point calibra-
tion did not really improve the predictions over single-point ones.

To better account for scenario uncertainty while improving the ro-
bustness of the predictions, several Bayesian mixture models were
considered. When a single candidate model is available, a Bayesian
Scenario Averaging (BSA) is carried out, i.e. a mixture of the predictions
based posteriors calibrated on different scenarios, applied to a new
case. Since the prediction scenario is independent on those used for
calibration, the weights are prior scenario probabilities. These are
constructed by assigning higher weights to scenarios for which the
calibration fits well the observed data. Mixing scenarios provides a
much more accurate prediction of the new case, both in terms of pos-
terior expectancy and standard deviation. Specifically, BSA provides a
much more realistic estimate of the posterior variance due to model
sensitivity to the calibration scenario than just propagating a posterior
distribution of the parameters inferred from all the scenarios at once.
However, BSA based on different models still lead to non-overlapping
predictions for the new cases, meaning that the prediction is still sen-
sitive to the chosen model structure. A more general prediction model is
then constructed by averaging not only on the scenarios but also on the



competing models (Bayesian Model-Scenario Averaging, BMSA). In this
case the models are weighted by their posterior probabilities (resulting
from inference on a given scenario) while the scenarios are assigned a
prior probability mass function based on the level of agreement of the
models for the new case, rather than model fitness for the calibration
case as in BSA. Although one of the competing models (namely, Martin-
Hou) is always assigned low probability compared to the other one, still
its contribution to the mixture allows not only to improve the average
posterior prediction, but also provides a more accurate estimate of the
variance. Comparisons with the results provided by the Bayesian model
averaging (BMA) of the two EOS with coefficients calibrated on several
scenarios simultaneously clearly show the importance of scenario
averaging for achieving a correct prediction of the variance. Indeed,
scenario uncertainty is much more significant than model-form un-
certainty in the present application, due to the dominant role taken
over by one model over the other. In conclusion, BMSA appear to be an
effective tool for the prediction of dense gas flows with quantified
thermodynamic uncertainty.
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