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ABSTRACT: Polyion complex (PIC) micelles formed from the
electrostatic interaction between oppositely charged polymers have
been studied for their promising applications in the biomedical
field as drug carriers or vectors for gene delivery. In spite of their
asset of possible high drug loading, their formation process remains
poorly studied. In this work, we investigate the properties of a
series of PICs based on poly(ethylene oxide-b-acrylic acid) (PEO−
PAA)/dendrigraft poly(L-lysine) (DGL3), using PEO−PAA with
different compositions and average molecular weights. For each
PEO−PAA/DGL3 pair, the complexes were characterized as a
function of the ratios between acid and amine moieties combining
different techniques: dynamic light scattering (DLS), flow field-
flow fractionation (FlFFF), small-angle X-ray scattering (SAXS),
and relaxometry. The coupling of batch techniques, i.e., DLS,
SAXS, and relaxometry, together with a soft separation technique
like FlFFF enabled a finer analysis to elucidate subtle details of the
association process and of the polydispersity of the complexes. We
show that the formation of PICs is more complex than previously described. In particular, we demonstrate that PICs with
stoichiometry 1:1 may form at low ratios provided that the acidic block is long enough to neutralize the cationic dendrigraft with
few polymer chains. Moreover, in such conditions, PICs with stoichiometry 1:1 often coexist with free dendritic polymers and
other associated complex species.

■ INTRODUCTION

Polyelectrolytes are widely present and essential molecules in
living systems. As such, their behavior has been studied for
decades.1 The characterization of the association between
different oppositely charged polyelectrolytes has expanded
thanks to the extensive work of Kabanov in the early 1990s
dealing with so-called interpolyelectrolyte complexes.2 Associ-
ation of a cationic polyelectrolyte to a negatively charged one
was shown to lead to soluble complexes only when the ratio
between charged groups was different from 1 and the

polyelectrolyte characterized by the higher degree of polymer-
ization (also called the “host”) was in excess with respect to the
other (also called the “guest”).3 At the equimolar stoichiometry,
macroscopic precipitation always occurred. For the soluble
host−guest IPEC salt addition induced disproportionation; i.e.,
insoluble IPEC with equimolar stoichiometry precipitated, and
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soluble IPEC with a composition different from the parent one,
depleted in the short polyelectrolyte, formed. The discovery
that such a precipitation could be avoided when using block
copolymers instead of homopolymers led Kataoka and co-
workers4−8 to develop the modern version of such assemblies,
namely, polyion complex micelles (PICs) also called block
ionomer complexes (BICs), micellar interpolyelectrolyte
complexes,9 or complex coacervate core micelles.10,11 With
the development of controlled radical polymerization and
polymer engineering, the number of achievable block
copolymers has exploded, leading to a burst of new PICs
assemblies, thanks also to their potential application in
nanomedicine as nanovectors for charged drugs or nanoplexes
in DNA in gene therapy.12−14

PIC assemblies are generally formed using at least one
double hydrophilic block copolymer with a first neutral block
and a second one charged. The other PIC partner consists
either in a homopolyelectrolyte or another double hydrophilic
block copolymer with a charged block opposite in sign. PICs’
assembly is typically monitored with turbidimetry,15 static
(SLS) or dynamic light scattering (DLS),5,11,16 cryo-trans-
mission electron microscopy (cryo-TEM),11 and recently two-
dimensional proton nuclear magnetic resonance nuclear
Overhauser effect spectroscopy.17

Based on the published studies on the PIC physical−
chemical properties, several points of interest for applicative
purposes and for the present study can be highlighted. (i) First,
the formation and the structural properties of PIC assemblies
strongly depend on the balance between the positive and
negative charges and the relative length of each segment of the
copolymers.9 (ii) PICs have been observed to be soluble for any
ratio or only for specific ones, depending on the parameters of
the copolymers.18−21 (iii) A third point is their general
instability in the presence of salt due to the screening of the
electrostatic interactions that drive PICs’ formation.20,22

Disassembly is typically observed through static light scattering
measurements, where the decrease of the scattered light
intensity is associated with a decrease in size of the scattering
objects. This drawback was overcome either by cross-
linking7,16,18,23,24 or through introduction of hydrophobic
moieties that provide further favorable contribution to self-
assembly.25

Although PICs have been widely studied, some open
questions still exist regarding for instance the existence of a
critical aggregation concentration.5,19,20,23,26,27 The mechanism
of association has been rarely addressed, while it is of utmost
importance to exert structural control and to fully exploit the
applicative potential of PICs. For complexes whose formation is
driven by charge compensation, it has been observed that the
structure and composition of the aggregates depend on the
order of addition, i.e., on the instantaneous composition of the
mixture and not on the equilibrium one.28−30 For PICs based
on poly(ethylene glycol-b-α,β-aspartic acid), PEO-P(Asp), and
chicken egg white lysozyme, Kataoka suggested they could
form through two alternative processes: cooperative (closed
association) and noncooperative (open association).5,6 In
excess of lysozyme, the cooperative process led to PICs with
stoichiometry 1:1 of the charged groups even before the
macroscopic charge balance was reached; at the molecular level,
complete complexation of the charged macromolecular chain to
its opposite partner always took place.5 In excess of PEO-
P(Asp), the noncooperative process led to PICs which
decreased in size when the macroscopic stoichiometry 1:1 of

the charged groups was approached; then a partial complex-
ation of the chain with the presence of uncomplexed charged
moieties occurred.6 Formation through a cooperative process
was also claimed by Gohy et al. for poly(2-vinylpyridinium-b-
ethylene oxide) and sodium poly(4-styrenesulfonate), for all
compositions.22 In this example, sodium poly(4-styrenesulfo-
nate) in excess adsorbed on charged balanced micelles.
It is clear that the path followed during formation has a

dramatic impact on the final structure of the assemblies. This
contribution addresses the above-mentioned structural and
mechanistic aspects for a PICs family based on poly(ethylene
oxide-b-acrylic acid), PEO−PAA, and dendrigraft polylysine
(DGL3) through a broad multitechnique approach. Very few
examples exist on PICs formed by branched molecules. They
mostly dealt with the characterization of the complexes at
stoichiometry 1:1,31 their resistance to solution conditions.32,33

Recently, Nguyen et al.34 described the formation of PICs at
pH 7 between insoluble polystyrene-graf t-poly(2-vinylpyri-
dine), G0PS-g-P2VP, and soluble poly(acrylic acid)-b-poly(2-
hydroxyethyl acrylate), PAA-b-PHEA, at different ratios. They
formed the assemblies first at pH 4.7 in order to guarantee the
protonation of a portion of the amine groups of P2VP (pKa =
5); then the solution pH was adjusted to 7. They observed a
better stability of the assemblies for shorter PAA chains in block
copolymers with the same length of the neutral block. The
increase of the neutral block length was necessary in order to
stabilize the assemblies with lower PAA content. Besides, very
recently the possible tuning of the self-assemblies properties
was nicely demonstrated, i.e., their morphology by varying the
number of arms of the star polyelectrolyte35 and their
formation kinetics by using thermoresponsive nonionic block.36

Here we selected a dendrigraft polylysine and varied the
relative length of the anionic block in a poly(ethylene oxide)-b-
poly(acrylic acid) (PEO−PAA) set. In a previous work, we
characterized PICs formed at equal quantities of acid and amine
groups with batch DLS and frit-inlet asymmetric flow field-flow
fractionation (FI-AsFlFFF),37 and we demonstrated the
importance of a multitechnique approach to gain a clear
picture of the structure of the complexes. Batch DLS showed
one single broad size distribution, whereas the fractionation
provided by FI-AsFlFFF before light scattering analysis revealed
the presence of several populations in some of the systems.
This analysis highlighted the importance of using FI-AsFlFFF,
with its soft injection protocol before separation, in order to
properly characterize the self-assemblies. Furthermore, it
provided an estimation of the radius of gyration (Rg) and the
hydrodynamic radius (Rh), and it opened some questions about
the self-assemblies composition and their formation processes.
In the present work, in order to address these questions, we
focus on the effect of PEO−PAA composition. For each PEO−
PAA/DGL3 pair, we varied the ratio between the cationic and
anionic groups to follow the formation of the complexes and
discern the mechanism of adduct formation. This process was
monitored with a variety of techniques, including light
scattering, but also flow field flow fractionation, small-angle
X-ray scattering, and NMR relaxometry.

■ MATERIALS AND METHODS
Chemicals. Poly(ethylene oxide)-b-poly(acrylic acid) (PEO−PAA)

was purchased from Polymer Source Inc. (Dorval Montreál, Canada)
and was characterized by 1H NMR and size exclusion chromatography;
the obtained number-average molecular weights of the polymers are
reported in Table 1. Third-generation dendrigraft polylysine



trifluoroacetate (DGL3) was kindly provided by Colcom (Montpellier,
France). Water was purified through a filter and ion-exchange resin
using a Purite device (resistivity 18.2 MΩ cm).
2.2. Formation of PICs. First, a stock solution of DGL3 (5 mg

mL−1, pH 7) was diluted with the adequate amount of water and then
variable volumes of PEO−PAA (1 mg mL−1) stock solution at pH 7
(adjusted with NaOH) were added. The samples have a final DGL3
concentration of 0.1 wt % and variable PEO−PAA/DGL3 ratios. We
define the molar ratio R as the ratio between the concentration of
PEO−PAA carboxylic groups and DGL3 amine groups ([AA]/
[NH2]). In the case of 1H NMR experiments the polymer stock
solutions and NaOH solution were prepared in D2O.
2.3. Dynamic Light Scattering (DLS). DLS measurements were

carried out at 25 °C on a Malvern (Orsay, France) Zetasizer NanoZS.
Solutions were analyzed in triplicate without being filtered in order to
characterize the plain samples. Data were analyzed with a custom-
made program named STORMS37 using the general-purpose non-
negative least-squares (NNLS) method. This treatment provided
residuals lower than 5 × 10−3. Both intensity- and number-weighted
results are presented here in order to provide a more complete
overview of the assemblies’ populations. The assumptions and
hypotheses leading to number-weighted results are further described
in the Supporting Information (SI.1). The typical accuracy for these
measurements was 10−20% for systems exhibiting a polydispersity
index lower than 0.4. This was determined from repeated experiments
associated with different fit treatments. Zeta-potential measurements
were carried out using the Smoluchowski model.
2.4. Frit-Inlet Asymmetrical Flow Field-Flow Fractionation

(FI-AsFlFFF). A FI-AsFlFFF channel was linked to an Eclipse 3 system
(Wyatt Technology Europe, Dernbach, Germany, Scheme SI 4.1). The
accumulation wall was a 1 kDa cutoff regenerated cellulose
ultrafiltration membrane (ConSenxuS, Ober-Hilbersheim, Germany).
An Agilent 1100 Series isocratic pump (Agilent Technologies,

Waldbronn, Germany) with an in-line vacuum degasser and an
Agilent 1100 Autosampler delivered the carrier flow and handled
sample injection into the frit inlet AsFlFFF channel. A 0.1 mm in-line
filter (VVLP, Millipore, Germany) was installed between the pump
and the FFF channel. An aqueous 0.02% sodium azide solution was
filtered (vacuum filtration system using 0.1 mm Gelman filters) before
use as eluent. The spacer type was 250W or 350W (250 or 350 μm,
respectively). Samples were injected at 0.1 wt % concentration. The
elution program used for injection flow Vi of 0.2 mL min−1 and for
detector flow Vout of 1 mL min−1 for cross-flow Vx was 0.5 mL min−1

for 2 min, 2 mL min−1 for 38 min, decreased to 0.5 mL min−1 in 10
min followed by 0.5 mL min−1 for 40 min. The eluted sample
components were detected with a multiangle light scattering (MALS)
DAWN Heleos II (Wyatt Technology, Santa Barbara, CA) equipped
with QELS (i.e., DLS) at 90° and an OptilabRex Refractometer
(Wyatt Technology, Santa Barbara, CA) detectors. The MALS
detector was normalized with bovine serum albumin (BSA).
Calibration of scattering intensity was performed with HPLC-grade
filtered toluene.

2.5. Small-Angle X-ray Scattering (SAXS). SAXS was performed
at the high brilliance beamline ID02 at the European Synchrotron
Radiation Facility (ESRF) in Grenoble, France. The 2D SAXS patterns
were collected using a Rayonix MX-170HS ccd detector. The
measured SAXS profiles were normalized to an absolute scale using
the standard procedure reported elsewhere.39 A combination of two
sample-to-detector distances (10 and 1 m) was employed, covering a
total q-range from 0.01 to 6 nm−1. q is the scattering wave vector
defined as q = (4π/λ) sin ϑ/2, λ being the wavelength (λ ∼ 1 Å) and ϑ
the scattering angle. The solutions were loaded in a flow through
capillary of 2 mm diameter to ensure an accurate subtraction of the
background (water) and to minimize beam damage of the samples.

2.6. 1H Nuclear Magnetic Relaxation Dispersion (NMRD).
NMRD profiles were acquired at 298 K using a high sensitivity fast
field cycling relaxometer (Stelar, Mede, Italy). The longitudinal
relaxation rates were extracted by single-exponential fitting of
magnetization decay or magnetization buildup curves at 1H Larmor
frequencies ranging from 0.01 to 40 MHz. The errors of the collected
relaxation rates were below 1%. 1H NMRD profiles were collected for
PEO−PAA 5-38 and PEO−PAA 6-3 based PICs. 1H NMRD profiles
for water solutions of DGL3 0.1 wt %, PEO−PAA 5-38 0.04 wt %, and
PEO−PAA 6-3 0.09 wt % were also acquired for reference. These
block copolymer concentrations were the maximum values used in the
PICs solutions (the same as at R = 1).

1H NMR spectra were recorded in D2O on a Bruker Avance 500
MHz. The DGL3 concentration was fixed to 0.1 wt %.

2.7. Cryo-Electron Microscopy (Cryo-EM). 3 μL of sample was
deposited onto glow-discharged lacey carbon grids and placed in the

Table 1. Molar Masses of the Polymers Used As
Characterized by 1H NMR and Size Exclusion
Chromatography

name
Mn PEO or dendrigraft

DGL3 (g mol−1)
DPn
PEO

Mn PAA
(g mol−1)

DPn
PAA

PEO−PAA 6-3 6000 136 3000 41
PEO−PAA 6-6.5 6000 136 6500 90
PEO−PAA 6-12 6000 136 12000 165
PEO−PAA 5-38 5000 114 38000 524
DGL3a 22200

aDPn or number of NH2 groups per DGL3 is 123.

Scheme 1. Chemical Structure (Idealized for DGL) of the Polymers Used in This Work

http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.7b02391/suppl_file/ma7b02391_si_001.pdf
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thermostatic chamber of a Leica EM-GP automatic plunge freezer, set
at 20 °C and 95% humidity. Excess solution was removed by blotting
with Whatman no. 1 filter paper for 1 and 2 s, and the grids were
immediately flash frozen in liquid ethane at −185 °C. The frozen
specimens were placed in a Gatan 626 cryo-holder, and cryo-EM was
carried out on a Jeol 2100 microscope, equipped with a LaB6 cathode
and operating at 200 kV, under low dose conditions. Images were
acquired with SerialEM software, with defocus of 1.5−3 μm, on a
Gatan US4000 CCD camera. This device was placed at the end of a
GIF Quantum energy filter (Gatan, Inc.), operated in zero-energy-loss
mode, with a slit width of 25 eV. Images were recorded at a nominal
magnification of 4000 corresponding to calibrated pixel sizes of 1.71 Å.
Images were analyzed with ImageJ software from which we inferred

the average diameter and corresponding standard deviation (con-
fidence intervals were given as average diameter ± twice standard
deviation).

■ RESULTS

All the PICs presented here are based on poly(ethylene oxide)-
b-poly(acrylic acid) (PEO−PAA)/dendrigraft polylysine
(DGL3) (Scheme 1 and Table 1). Different PEO−PAA
copolymers were selected in order to have a variety of molar
masses and ratios between the two blocks. On the other hand,
only dendrigraft polylysine generation three was used, with a
molar mass of 22 200 g mol−1.
PICs were formed by adding the PEO−PAA stock solution

to the diluted DGL3 solution. All PICs were formed at pH 7
with a ratio R = [AA]/[NH2] between 0.1 and 1. A comment is
noteworthy regarding the chosen range of R used here. The pKa
of DGL3 α- and ε-amine functions can be estimated equal to 7
and 10, respectively,40 ensuring that amine groups are mostly
positively charged at pH 7. One has, however, to keep in mind
that the pKa value of PAA acid functions is highly dependent on
its environment; values between 4.641 and 6.5 are reported in
the literature. In the case of multilayer assemblies the apparent

pKa value of PAA diminished to ca. 4 for only two layers and as
much as 4 pH units for six layers.42 In our case, we can thus
reasonably assume that all the PAA units are in the carboxylate
form, and therefore they would associate to the available DGL3
ammonium units.
In the following, we present the characterization of mixtures

of PEO−PAA and DGL3 varying their ratios. Different
complementary batch techniques (DLS, SAXS, NMRD, 1H
NMR) and a soft chromatographic separation method (FI-
AsFlFFF) are discussed and compared.

Dynamic Light Scattering (DLS). Batch DLS results are
presented in Figure 1. We typically titrated DGL3 with PEO−
PAA varying R from 0 to 1. For all samples, the DLS analysis
was performed only if the scattered light intensity was higher
than 1000 counts per second (background level). Indeed, for
poorly scattering solutions, the DLS curves were not analyzed.
The evolution of the scattered light intensity (Figure 1A,B)

exhibits two distinct types of behavior, either a regular increase
over a large ratio range for PEO−PAA 5-38 or a lag phase
followed by a sudden increase for all the other systems.
For PEO−PAA 5-38, the size of the objects did not

significantly change between ratios 0.2 and 1 (Figure 1C,D),
and polydispersity index slightly decreased (Table 3), while the
scattered intensity regularly increased with R. This behavior can
be associated with an increase of the number density of the
scattering objects, the size of which does not evolve. This trend
has been already observed in the literature5 and is indicative of
the presence in solution of complexes with a well-defined
stoichiometry irrespectively of the R ratio. In this case, we can
assume that objects of a well-defined size and composition are
formed even for low ratios: their concentration, but not their
nature, depends on R. The fact that the polydispersity index
decreases while R increases is probably due to the presence of

Figure 1. Evolution of the scattering properties as a function of R ([AA]/[NH2]) for a solution of DGL3 0.1 wt % titrated with PEO−PAA: (A)
scattered light intensity at 173°; (B) zoom of the low value region of the scattered light intensity highlighted by a rectangle in (A); (C) intensity
weighted hydrodynamic diameter; (D) number weighted hydrodynamic diameter. Lines are guides for the eye.



free DGL3 molecules in solution whose concentration
diminishes.
For PEO−PAA 6-3 and PEO−PAA 6-6.5, the scattered light

intensity increased suddenly at ratios close to 0.7−0.8. At this
same ratio, the correlation function can be analyzed (see Figure
S1.1) to extract hydrodynamic sizes. This behavior could be
indicative of complexes formed only close to R = 1. Further
experimental evidence are required to conclude on the low
mixing ratios.
On the other hand, for PEO−PAA 6-12, the scattered light

intensity presented two linear regions with a boundary close to
0.7−0.8. The hydrodynamic radius could be extracted starting
from R = 0.4; the number weighted size moderately increased
with increasing R, whereas the intensity weighted size was
roughly constant and the polydispersity index slightly
decreased. These results suggest that PICs with well-defined
stoichiometry formed even at low ratios as in the case of PEO−
PAA 5-38.
Zeta Potentials. Zeta potentials (ζ) were also determined

by electrophoretic light scattering (ELS) and are shown in
Figure 2 as a function of the AA/NH2 ratio. ζ is defined as the

potential of the plane where slip between the object and the
bulk solution is assumed to occur.44 It postulates nonporous
objects exhibiting a hard surface and therefore not deformable
upon shear. This is naturally doubtful for PICs. Furthermore,
even the very existence of a slip plane is questioned for soft
objects.44

Going beyond this issue, we consider here the qualitative
trend of ζ as a function of R. ELS implies the detection of light
scattered from the objects. The presence of a scattering
intensity roughly 1 order of magnitude higher than that of the
solvent is a prerequisite for reliable zeta potentials values.
Therefore, we do not report the values for all the low R ratios.
For all samples, a regular decrease of ζ is observed (Figure 2),
leading to values close to zero when approaching R = 1. It
means that for all investigated systems at R = 1 electrostatic
charge is balanced in the nano-objects. For a pure DGL3
solution in the same conditions (0.01 wt % at pH 7) ζ could be
measured equal to 42 mV, and this is in agreement with the
extrapolation at R = 0 of straight lines of Figure 2. On the other
hand, the ζ trend cannot alone discriminate PICs formation
processes. In the case of PEO−PAA 5-38 and PEO−PAA 6-12,
from previously discussed DLS results, we observed that PICs

objects with well-defined stoichiometry formed already below R
= 1. Indeed, for R below 1, ELS measures an average of free
DGL3 molecules and PICs assemblies. For the other systems,
the same trend could also originate from objects possessing a
net positive charge on their surface, which decreases
progressively with increasing the PEO−PAA quantity in an
open association mechanism.

Small-Angle X-ray Scattering. In order to get further
insight into the formation process of the assemblies, we
performed a structural characterization study with SAXS. Figure
3 shows the SAXS profiles of DGL3 0.1 wt % solution in the
presence of the different PEO−PAA block copolymers at
different ratios, and Table 2 reports the fit results.
We first discuss the peculiar case of PE0-PAA 6-3 presented

in Figure 3A.
At low PEO−PAA content, the SAXS curves show a

pronounced interaction peak at low q due to electrostatic
repulsions between the charged molecules of DGL3. Then, the
scattering intensity increases with the PEO−PAA content as
the interactions between the two polymers diminish the
effective DGL3 charge. The evolution of the scattering signal
shows a clear transition between R= 0.5 and 0.8 when larger
structures are present in solution. This is confirmed by the
Guinier analysis of the scattering curves, which allows extracting
the radius of gyration of the scattering objects for the different
ratios (Table 3).
Above R = 0.8, the scattering curves could be described using

a core−shell sphere form factor (eqs 4, 6, and 7 in SI.2), which
includes also a term for the scattering at high q originating from
the chain statistics and the interchain interactions of the
polymer inside the shell. This intracorona contribution is well
reproduced by an Ornstein−Zernike type term45 with an
exponent typical for swollen polymer chains in good solvent.
The scattering length densities (SLD) for lysine, PAA, and PEO
calculated according to their molecular composition are
0.001 09, 0.001 32, and 0.001 04 nm−2, respectively. Assuming
NH3

+:AA− interactions in the core of the assemblies, we can
estimate for the SLD of the core an average starting value of
0.0012 nm−2, which was adjusted in the fitting procedure to
0.001 29 nm −2, in good accordance with theoretical expect-
ations. The resulting value is higher than that of pure lysine
molecules, indicating that the latter is not hydrated and mainly
formed by DGL3 interacting with AA− groups, while the shell is
mostly made by the hydrated PEO chains. The average size for
the micellar core and shell was found equal to 5.3 and 6.6 nm,
respectively (Table 2).
The values of the radius of gyration for R ≤ 0.5 are

comparable with the size of the DGL3 alone. Nevertheless,
their scattering curves change with respect to pure DGL3. In
order to better understand the origin of the scattering signal,
the curves have been modeled with linear combination of the
experimental scattering intensity of noninteracting DGL3 and
PEO−PAA (Figure SI.2.1 in SI.2 in the case of R = 0.5). The
curves could be described neither as the sum of noninteracting
DGL3 and PEO−PAA nor as pure micelles (R = 1) or a
mixture of micelles (R = 1) and DGL3 alone. This suggests that
when PEO−PAA is added in solution, it starts interacting with
DGL3. The observed increase of the low-q intensity can be
explained with the decrease of the net DGL3 charge
(correspondingly less repulsive interactions), the corresponding
increase of the SLD of the core with respect to DGL3 alone
due to NH3

+:AA− electrostatic screening, and the increase of
the total molar mass.

Figure 2. Zeta potentials of PICs self-assemblies. The ratios
correspond to that of acrylic acid units over amine units. (○)
PEO−PAA 5-38, (■) PEO−PAA 6-12, PEO−PAA 6-6.5, (◆) PEO−
PAA 6-3.

http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.7b02391/suppl_file/ma7b02391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.7b02391/suppl_file/ma7b02391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.7b02391/suppl_file/ma7b02391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.7b02391/suppl_file/ma7b02391_si_001.pdf


We can then conclude that in analogy to “monodendrimer”
complexes already observed by Gelissen et al.,46 at low R values,
DGL3: PAA complexes are present in solution; the PEO block
in the shell is highly solvated so only the DGL3 size is clearly
resolved by SAXS.
Micelles with a coacervate core and a PEO shell form only

approaching R = 1. A further experimental proof of the
presence of NH3

+: AA− interactions at ratios lower than 0.8 was
then gained by recording 1H NMR spectra on solutions
containing DGL3 and PEO−PAA 6-3 at different ratios (see
subsequent part).
Let us now consider the other block copolymers, PEO−PAA

6-6.5, PEO−PAA 6-12, and PEO−PAA 5-38, whose scattering
curves are shown in Figures 3B−D. In the case of R = 1 all the
objects formed are spherical. The homogeneous sphere model
is usually employed in the literature,48 and the core
contribution is more often the dominant one due to the shell
solvation. In our case, the core−shell model works well for the
shorter PAA block; for the longer ones the model under-
estimates both the size and the SLD of the core, toward
unphysical values. For this reason, we preferred using a
homogeneous sphere model (eqs 5−7 in SI.2) with a value of

the contrast balanced between the one of the NH3
+: AA−

adducts and PEO. The fit results are reported in Table 2.
For R smaller than 1 (see Figures 3B−D), the scattering

curves present two different features in the q range investigated:
(a) the scattering signal at low q increases with R, (b) at high q
it decreases, and the second shoulder disappears when R = 1.
The analysis of SAXS data proves that the solutions can be
better described as a mixture of micelles with 1:1 stoichiometry
and free DGL3 molecules rather than micelles growing when
the PEO−PAA content increases. This is well illustrated in the
case of PEO−PAA 6-6.5: when using the core−shell model (eq
4 in SI.2) to fit the experimental data at different R values, the
scattering signal in the high-q region cannot be only described
by the fluctuations of the polymeric chains in the corona and in
order to compensate for the high-q scattering signal a too high
and unphysical value for the SLD of the core is demanded. On
the contrary, the scattering curves are well described by a
mixture of charge balanced micelles (stoichiometry 1:1) and
free DGL3 molecules. With increasing the amount of PEO−
PAA, the micelles number density in solution increases (the
scattering intensity increases at low q), and correspondingly the
content of free DGL3 decreases (the scattering intensity
decreases at high q until disappearing at R = 1). We consider
that the concentration of the block copolymer free in solution is
negligible, and the scattering curves are modeled with a linear
combination of the scattering signals from free DGL3 and the
core−shell micelles completely formed at R = 1 (charge
balanced micelles):

α β= + =I q I q I q( ) ( ) ( )RDGL3 1

The best values of parameters α and β are reported in Table
SI.2.2, and the corresponding curves are showed in Figures
3B−D. In all cases the solution is mainly constituted by

Figure 3. Small-angle X-ray scattering as a function of the scattering vector for PEO−PAA/DGL3 solutions. The DGL3 concentration is constant
and equal to 0.1 wt %; PEO−PAA is added at different R = AA/NH2 ratios in the case of (A) PEO−PAA 6-3, (B) PEO−PAA 6-6.5, (C) PEO−PAA
6-12, and (D) PEO−PAA 5-38.

Table 2. Fitting Parameters for the Core−Shell Model
Described in SI.2 (Eqs 4, 6, and 7) in the Case of R = 1a

Rcore (nm) Rshell (nm) Rsphere

PEO−PAA 6-3 5.3 ± 1 6.6
PEO−PAA 6-6.5 7.8 ± 2 9.2
PEO−PAA 6-12 15 ± 5
PEO−PAA 5-38 30 ± 9

aRcore and Rshell are respectively the core radius and the shell radius of
the assemblies. ρcore and ρsh are 0.001 29 nm−2 and 0.001 04 nm−2

respectively for all assemblies.
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noninteracting DGL3 molecules until R = 0.8. This is in
agreement with the sudden increase of the light scattering
intensity signal observed in Figures 1A,B around this value of R
for the three copolymers.
It should be noted that the above-cited model does not

perfectly describe the behavior of the scattering curves in the
low q range for R = 0.2 of PEO−PAA 6-6.5 and the
intermediate q region of PEO-PAA 6-12 and PEO−PAA 5-38.
Additional structural information might contribute to the
overall scattering signal. This will be discussed later in text in
comparison with the results from the other experimental
techniques. In conclusion, structural investigation with SAXS
indicates that for PEO−PAA 5-38, PEO−PAA 6-12 and PEO−
PAA 6-6.5 micelles already form at low R values, but all DGL3
molecules are incorporated in micelles only at 1:1 stoichio-
metric ratio. These results are more in accordance with a close
association type mechanism, but we cannot exclude the
presence of micelles with stoichiometry different from 1:1.

Cryo-EM. Cryo-EM was also employed to characterize some
PICs at R = 1 (Figure 4). However, due to poor contrast, only
PEO−PAA 5-38 and PEO−PAA 6-12 images could be
analyzed. It must be underlined that in cryo-TEM no contrast
agent is used, so the contrast of the objects depends on their
chemical nature and density. PEO−PAA 6-12 based PICs
possessed lower contrast than PEO−PAA 5-38, possibly
because they were more hydrated. The statistical analysis
provides an average diameter of 60 ± 34 and 42 ± 16 nm for
PEO−PAA 5-38 and PEO−PAA 6-12, respectively, consistent
with the SAXS (60 ± 19 and 30 ± 10 nm) and DLS (92 ± 18
and 68 ± 15 nm) analyses.

1H NMR. As discussed in the previous paragraphs, charged
balanced micelles are formed at all mixing ratios in the case of
all used PEO−PAA with the exception of PEO−PAA 6-3.
SAXS experiments suggested that an interaction between the
groups of opposite charge already occurred at low mixing ratios.
1H NMR spectra were then recorded at different mixing ratios.

Table 3. Comparison of PICs Size Obtained from Different Techniques

PEO−
PAA R

Rg
b SAXS
(nm)

Re SAXS
(nm)

Rg (n)
c FFF

(nm)
Rh (n)

c FFF
(nm)

Rg/Rh FFF
(n)

Rh number DLSd

(nm)
Rh Int DLS

d

(nm)
cumulant
PDI

Rg SAXS/Rh
DLS

5-38 0.2 33 43 53 0.16 0.62
0.4 31.5 36 43 0.14 0.73
0.6 31.5 39 48 0.10 0.66
0.8 40 49 0.07
1 34 30.6 26/46a 38/53 0.68/0.87 35 46 0.07 0.7

6-12 0.2 17 n.d n.d n.d
0.4 18.5 31 38 0.55 24 37 0.11 0.5
0.6 18 16 28 0.57 27 33 0.12 0.55
0.8 18.7 17/27a 20/41a 0.85/0.66a 27 33 0.09 0.57
1 19 16.5 25 35 0.71 30 34 0.06 0.56

6-3 0.2 2.4
0.4 3.3
0.5 3.3
0.6 3.3
0.8 10 12.6 12 18 0.67 15 30.5 0.3 0.33
1 9.8 11.9 17 27 0.63 21 28 0.1 0.35

aBimodal. b30% error. cThe error for each sample is provided in Table SI.4.1; in most cases, this was below 15%. dAs discussed in the Materials and
Methods section, the error was estimated in the 10−20% range. eThe radius of the object as obtained from the fitting procedure.

Figure 4. Cryo-EM of PEO−PAA/DGL3 PICs at R = 1: (A) PEO−PAA 5-38; (B) PEO−PAA 6-12.
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Figure 5 presents a zoom of protons K and G of the polylysine
polymer and shows a downfield shift of the signals by increasing
the amount of carboxylic groups. The evolution of the K peak
integral is shown in the inset of Figure 5. The signal integral
decreases slowly until R = 0.6, when a dramatic decrease starts,
which can be attributed to the micelle formation.
Therefore, NMR experiments confirm that PEO−PAA 6-3

interacts with DGL3 already at low ratios, even if micelles are
not formed yet.

1H NMRD. Relaxometry profiles were collected at 298 K for
water solutions of DGL3, and for PEO−PAA 5-38 and PEO−
PAA 6-3 based PICs (Figure 6). The measured 1H relaxation
rates are due to fluctuations in energy of the proton−proton
dipole−dipole interactions and depend on the time constants
of the motions modulating such interactions. Therefore, they
can provide information on the characteristic time constants of
such motions.49−51 The profiles of DGL3 and the two block
copolymers showed a single dispersion at high fields,
corresponding to a correlation time of about 3 ns (Figure
SI.3.1 in SI.3).

When PEO−PAA 6-3 was added with R = 0.2, only a very
small difference could be detected with respect to the NMRD
profile of DGL3 alone; on the other hand, the relaxation rates
increased appreciably at R = 0.5, without any dispersion
appearing below 1 MHz. Only at R = 1, a low field dispersion
(at about 0.1 MHz) appeared, indicating the presence of slow
reorienting aggregates. The NMRD profiles were fitted using eq
1 described in SI.3.52−54 Three correlation times were needed
for the fit of the curve obtained at R = 1, whereas two
correlation times were enough for the fit of the curves at lower
ratio (Table SI.3.1 in SI.3). The fastest correlation time was
fixed to 3 ns, as obtained from the DGL3 profile, and in
agreement with the average value obtained from the best fit τ3
values obtained from all collected profiles (see Table SI.3.1 in
SI.3). The intermediate correlation times ranged from 60 (R =
0.2 and R = 0.5) to 130 ns (R = 1), indicating the presence of
motions slower than 3 ns (observed for DGL3 and for the two
block copolymers), presumably arising for the presence of
NH3

+:AA− interactions. The slowest correlation time at R = 1
was about 1100 ns.

Figure 5. Evolution of 1H NMR spectra of polylysine protons. Spectra are registered in D2O with DGL3 0.1 wt % with different PEO−PAA 6-3
amounts of stock solution at pH 7 (adjusted with NaOH). Insets: scheme of lysine residues interested in the NH3

+: AA− interactions; evolution of K
polylysine protons integral in 1H NMR spectra while increasing R = [AA]/[NH2].

Figure 6. 1H NMRD profiles for PICs solution at different acid/amine ratios: (A) PEO−PAA 6-3:DGL3 at 0.2:1 (+), 0.5:1 (○), and 1:1 (●) ratios;
(B) PEO−PAA 5-38:DGL3 at 0.2:1 (◇) and 1.1 (◆) ratios. In all solutions, the DGL3 concentration was fixed to 0.1 wt %. The lines are the best fit
profiles calculated with the parameters reported in Table S1 3.

http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.7b02391/suppl_file/ma7b02391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.7b02391/suppl_file/ma7b02391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.7b02391/suppl_file/ma7b02391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.7b02391/suppl_file/ma7b02391_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.macromol.7b02391/suppl_file/ma7b02391_si_001.pdf


In PEO−PAA 5-38 based PICs, the low field relaxation rates
appreciably increased even for a small ratio (R = 0.2), and the
presence of a low field dispersion (between 0.01 and 0.1 MHz),
corresponding to a slow correlation time, could be clearly
appreciated. This indicates the presence of slow reorienting
aggregates already at low R values. When R was increased to 1,
the increase in the low field relaxation rates became higher as a
result of the larger contribution from the slow reorienting
aggregates, with an inflection positioned basically at the same
field. This indicated that the size of the formed aggregates did
not increase with increasing R; only their concentration did.
The NMRD profiles were fitted using eq 1 described in SI.3
and three correlation times, after checking that two correlation
times were not sufficient to satisfactorily reproduce the profiles.
Since the obtained best fit values of the correlation times τi (i =
1, 2, 3) were very similar when an unconstrained fit was
performed, τ1 and τ2 were constrained to have the same values
in the fit of the two PEO−PAA 5-38 based PICs profiles. As for
PEO−PAA 6-3 based PICs, τ3 was fixed to 3 ns. The fit was in
good agreement with the experimental data and indicated the
presence of a fast correlation time of about 2200 ns and an
intermediate one of 120 ns for both 0.2 and 1 ratios. The
contributions of these correlation times increased with
increasing R, as a result of the larger fraction of protons in
the aggregates. We can then conclude that the slow reorienting
aggregates characterized by the high correlation times are the
micelles described in the SAXS section. This indicated the
presence of the micelles only at R = 1 in the case of PEO−PAA

6-3, even if the sign of interactions are already present for lower
R values. Instead, in the case of PEO−PAA 5-38 micelles are
present already at R = 0.2, and their concentration increases
with the copolymer content. It should be stressed that the
slowest correlation time obtained for PEO−PAA 5-38 is a
factor 2 smaller than the slowest time obtained for PEO−PAA
6-3. This finding is in line with the smallest hydrodynamic
radius measured for PEO−PAA 6-3.

Field Flow Fractionation. We performed experiments
using field flow fractionation which allows for a separation of
nano-objects according to their size. Figure 7 shows the
fractograms relative to PEO−PAA 6-3 and PEO−PAA 6-12
which represent well the two different behaviors. The
fractograms relative to the other polymers are reported in the
Supporting Information (Figure SI.4.2).
Figures 7A,C show the refractive index signal, which is more

sensitive to species concentration. For both PEO−PAA 6-3 and
PEO−PAA 6-12, a low retention time peak (t = 6.5 min),
corresponding to DGL3 molecules, was present for all ratios,
and it drastically diminished at R = 0.8.
For PEO−PAA 6-3 a peak at retention time around 30 min

appeared at R = 0.8. According to the DLS signal (Figure 7B),
this peak belongs to scattering objects with Rh = 30 nm. They
are the core−shell micelles revealed with SAXS. For PEO−PAA
6-12 a peak at retention time around 25 min appeared at R = 1
in the refractive index signal, and it corresponded to nano-
objects with a 43 nm hydrodynamic radius; they are the
spherical micelles revealed by SAXS (Figure 3). It must be

Figure 7. Characterization of PEO−PAA/DGL3 PICs by FI-AsFlFFF at different ratios. The ratios correspond to that of acrylic acid units over
amine units. (○) ratio 0.2, (□) ratio 0.4, (◇) ratio 0.6, (×) ratio 0.8, (▽) ratio 1.0. (A) PEO−PAA 6-12 RI signal, (B) PEO−PAA 6-12 DLS signal,
(C) PEO−PAA 6-3 RI signal,(D)PEO−PAA 6-3 DLS signal.
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stressed that PEO−PAA 6-12 SAXS data showed the presence
of PICs at 1:1 stoichiometry already at low R values: from 13%
to 55% of the scattering signal at R = 0.2 and R = 0.8,
respectively (Table SI.2.2). From FI-AsFlFFF, it looked like the
complexes were concentrated enough to be detected by the
refractive index signal only at R = 1. On the other hand, a very
small DLS signal appeared already at R = 0.2, and it could be
exploited from R = 0.4. It indicated objects with size increasing
up to ratio 1. In particular, at R = 0.6 the DLS signal was a large
peak corresponding to a mean Rh = 28 nm, and at R = 0.8 two
populations with Rh equal to 22 and 38 nm appeared, while
only the biggest one (Rh = 43 nm) was present at R = 1. The
presence of different populations can account for the difficulties
in describing the intermediate-q SAXS spectra as the sum of
DGL3 molecules and nano-objects with 1:1 stoichiometry
(Figure 3C).

■ DISCUSSION

PICs Size and Structure: Insights from the Different
Experimental Techniques. Table 3 (and Table SI.4.2)
compares the size values obtained from the different
techniques. As for Rh determination, in most cases, a good
agreement between FlFFF and DLS was observed. Regarding
Rg values, those obtained from FlFFF are often higher than
those obtained from SAXS data. The differences are within the
experimental errors and the bigger discrepancies are found in
the case of PEO−PAA 6-3, the smallest polymer, whose size is
at the limit of light scattering resolution. Nevertheless, the
trend of objects’ sizes is the same whichever the technique was;
i.e., the overall micellar size decreases while the size of the PAA,
the core forming block, decreases. Correspondingly, the Rg/Rh
ratio diminishes. Rg/Rh ratios for the PICs of this study fall well
in the quite wide range, from 0.3 to 1.3, reported in the
literature. These values have been attributed to core−shell
morphology and the density of the core whose size is generally
linked to the Rg.

15 Indeed, inhomogeneity in mass density (a
core much denser than the shell, for example) can lead to
differences in Rg/Rh values which are difficult to predict. In our
case, the more important differences changing the PAA size are
found in the Rg values, they diminish more strongly than Rh:
the lower Rg/Rh values in the case of PEO−PAA 6-3 based
PICs indicate a dense core; instead, for PEO−PAA 5-38 based
PICs, the higher Rg/Rh values suggest a more homogeneous
structure. Such a trend is indeed in agreement with the angular
analysis of the scattering intensity: the nature of the self-
assemblies at R = 1 depends on the block copolymer
composition. SAXS data could be modeled with a core−shell
morphology only in the case of the PEO−PAA 6-3 and PEO−
PAA 6-6.5, i.e. copolymers with the smaller PAA block. The
size of the core extracted for PAA 6-3 and PEO−PAA -6.5 (5.3
and 7.8 nm, respectively) allows reasonable assumption that

more than one DGL3 is present in the core and seems dictated
by the number of carboxylic groups on the same polymer chain
which can interact with DGL3 molecules. Nevertheless, the
absolute number of DGL3 is difficult to extract owing to the
expected compaction of the objects core, like in the case of
DNA vectors.
For the two other copolymers, PAA 6-12 and PEO−PAA 5-

38, the number of AA groups in a polymer chain is higher than
the number of amine groups on a DGL3 molecule; then more
than one DGL3 can interact with the same polymer chain. As a
consequence, a higher number of block copolymer is necessary
in order to stabilize the coacervate complex, which leads to the
formation of larger self-assemblies. The complex is probably
more hydrated and less compact than in the case of the smaller
copolymers; then the self-assemblies are better described as a
homogeneous sphere. This is also confirmed by the cryo-EM
images where no density gradient could be detected (Figure 4).

Processes of PICs Formation. Table 4 summarizes the
observations of the different experimental techniques. In the
case of PEO−PAA 6-3 the steep increase of the scattering
intensity and the fast decrease of the 1H NMR peak integrals
above R = 0.7 indicate the threshold for PIC micelles
formation. At this R value, scattering objects with well-defined
size are observed with DLS, the SAXS curve can be analyzed
with a core−shell sphere model, a large time retention peak is
detected with FlFFF, and a third correlation time appears in the
1H NMRD spectrum: the ensemble of the results indicates the
formation of well-defined PICs objects. Below R = 0.8, no well-
defined Rh value can be determined by DLS, and no retention
peak associated with micelle formation could be detected by
FlFFF. Nevertheless, SAXS and NMR give clear experimental
evidence of the association of carboxylate and ammonium
groups even below R = 0.7: Rg increases with R (Table 3), the
K proton integrals diminish, and a second correlation time
appears already at R ≤ 0.5 (Table SI.3.1 in SI.3). The low
retention time observed in the FlFFF fractograms brings the
same conclusion: free DGL3 molecules or DGL3 interacting
with few, highly hydrated PEO−PAA chains (whose charges are
not completely balanced) exist before the appearance of 1:1
stoichiometry complexes at R = 0.8.
The observed self-assembling mechanism is then different

from the closed association one usually observed for
amphiphilic molecules with critical micellar concentration.
Referring to Table 4, for the other block copolymers, SAXS

detects the presence of 1:1 stoichiometry PICs already at R =
0.2, while the size and concentration of the assemblies are high
enough to be detected by DLS at this ratio only in the case of
PEO−PAA 5-38. For this latter block copolymer, also 1H
NMRD detects the presence of species with the same
correlation times as at R = 1. FI-AsFlFFF brings interesting
information (Figure SI.4.2): the peak in the fractogram at R = 1

Table 4. Comparison of the Behavior Observed for All PICs with the Different Methods of Characterization as a Function of R

PEO−
PAA

scattered light
intensity size by DLS FI-AsFlFFF SAXS 1H NMRD 1H NMR

6-3 ↑ for R > 0.7 R > 0.7 PICs detected at R = 0.8 low retention
time peak R < 1

↑ for R > 0.7 evolution of PICs up to
R = 1

abrupt change ∼
R = 0.7

6-6.5 ↑ for R > 0.7 ↑ for R > 0.7 increases above R = 0.8 PICs detected at
R = 0.2

6-12 ↑ for R > 0.6 ∼ constant for
R ≥ 0.4

PICs detected at R = 0.2 low retention
time peak R < 1

PICs detected at
R = 0.2

5-38 linear ∼ constant PICs detected at
R = 0.2

PICs detected at
R = 0.2
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reveals the presence of two populations. SAXS cannot
distinguish between 30% polydisperse spheres with mean Rg
of 30 nm and the two populations evidenced by FI-AsFlFFF
(Rg 26 and 46 nm). These two populations indicate a mixture
of PICs with different AA−:NH3

+ ratios. The presence of
different species may explain the lower agreement of the linear
combination approach in the low-q region for R < 1 in SAXS
spectra (Figure 3D).
In the case of PEO−PAA 6-12, the presence of charge-

balanced PICs could be detected by DLS only from R = 0.4.
This is not surprising since from the linear combination of
SAXS curves it results that their contribution to scattering
signal is still quite low, ca. 16%. As for FI-AsFlFFF, the peak in
the fractogram is quite large at R = 0.6 and reveals the presence
of two populations at R = 0.8. In both cases the linear
combination of the scattering curve of DGL3 and of micelles at
R = 1 does not perfectly describe the data in the intermediate q
range (Figure 3C). This is indeed related to the presence of
more PICs species detected through FI-AsFlFFF analysis of the
solutions. Also in this case from SAXS only, it is difficult to
distinguish between quite polydisperse micelles and two close
populations when even free small species, i.e., DGL3, are
present in solution (Rg = 18.7 nm with about 30%
polydispersity according to SAXS and two populations with
most probable values of Rg of 17 and 27 nm according to FI-
AsFlFFF, as in the case of R = 0.8, Table 3). Therefore, FI-
AsFlFFF helps to distinguish among the two circumstances.
In the case of PEO−PAA 6-6.5 at R = 0.2 big assemblies

clearly exist according to SAXS results, but the linear
combination approach does not fully describe the curve,
which means that other species different from the charge
balanced micelles and DGL3 molecules already form at this
ratio. These species exist at very low concentration and their

presence can be detected by DLS only from R = 0.7 when their
scattering contribution is near 50% (see Table SI.2.1).
Therefore, the complementarity of different techniques

indicates a complex scenario where for all ratios smaller than
1, free DGL3 molecules (or DGL3 interacting with few, highly
hydrated PEO−PAA chains) coexist with 1:1 stoichiometry
micelles and slightly smaller micelles, whose charge is probably
not balanced.
The concepts of open and closed association processes are

somehow misleading and insufficient to describe such complex
scenarios.

■ CONCLUSION

PICs self-assemblies are complex systems, highly responsive to
the external medium conditions like ionic strength and pH,
which are inherent to their electrostatic nature. Nevertheless,
they are quite interesting and versatile systems easily prepared,
directly in water. In this work, we have demonstrated that by
combining several experimental approaches, valuable informa-
tion explaining the formation process and the nature of these
objects may be obtained. Self-assemblies with a homogeneous
structure were formed when the PAA block size exceeded that
of the PEO block, and more than one DGL3 can interact with
one block copolymer chain. Instead, core−shell micelles with a
dense core were formed when the number of AA units in the
block copolymer was lower than or equal to the charged groups
in DGL3. The mechanism of formation seems also to depend
on the length of the PAA chain in the block copolymer.
Two representative cases of processes for the formation of

the PICs (Scheme 2) can be highlighted: For PEO−PAA 6-3,
loose interactions between AA− and NH3

+ moieties exist even
for low R ratios. These interactions are not strong enough to
lead to the formation of nano-objects. Well-defined PICs,

Scheme 2. Proposed Mechanism of PIC Formation in the Extreme Cases of Short or Long PAAa

aIn both cases at R = 1 PIC assemblies characterized by 1:1 stoichiometry are formed. Below R = 1 different species are simultaneously present in
solution; only in the case of long PAA, PIC with 1:1 stoichiometry are already present in solution.
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however, form as soon as a threshold of 0.7 is passed. In the
final PIC, several DGL3 chains are reasonably present in the
core as determined by SAXS. The other case is that of the other
copolymers for which 1:1 stoichiometry objects are formed
even for low R ratios and their concentration increases with
increasing R. These charge-balanced PICs coexist with free
DGL3 molecules and/or nano-objects with different stoichi-
ometry (whose charge is not balanced), the size and the
concentration of which increase with R.
This is reminiscent of “host−guest” soluble IPECs which

form when the host chain is larger and in big excess with
respect to the guest one (the case of PEO−PAA 6-3 at small
R).3 On the contrary, insoluble IPEC forms when the
concentration of the guest chain (the increase of R in the
case of PEO−PAA 6-3) or its size (the case of PEO−PAA 5-38
at small R) is increased. In our case the presence of PEO chains
guarantees colloidal stability so precipitation is avoided in all
cases.
The previously described open or closed processes seem then

inadequate to fully describe the mechanisms of formation in the
case of charge-driven self-assembly, and the processes involved
in traditional inter polyelectrolyte complexes have to be
considered.
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Figure SI.2.1. Small Angle X-ray scattering as a function of the scattering vector for DGL3 0.1%wt, PEO-PAA 6-3 0.09% wt (same 

concentration as in the sample DGL3/PEO-PAA 6-3 at R=AA/NH2 =1), DGL3/PEO-PAA 6-3 solution with R=AA/NH2 =0.5. 

Table SI.2.1. Best values of  and  parameters in order to describe the experimental data with R < 1 as the contribution of micelles (completely 

formed at R=1) and free DGL3 present in the solutions.   

SI.3. 
1
H Nuclear Magnetic Relaxation Dispersion 

Table SI.3.1 Best fit values obtained from the analysis of the 
1
H NMRD profiles reported in Figure 7. 

Figure SI.3.1. 
1
H NMRD profiles for PEO-PAA 6-3 0.09% wt, PEO-PAA 5-38 0.04% wt and DGL3 0.1% wt.  
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SI.0.1 Block-copolymer characterization 

Table SI.0.1 Characterization of commercial PEO-PAA copolymers 

a
 Mn was measured by fixing the PEO block at the value provided by the company, the molecular weight of the PAA block was calculated by 

comparing the integrals between PEO and PAA blocks. 

Announced name from 

supplier 

Announced 

EO weight 

fraction  

Announced 

molecular 

weight  

Measured 

Mw from 

SEC 

Measured 

Mn from 

SEC 

Measured Mn 

from 
1
H NMR 

fPEO exp Polymer name 

PEO-PAA 5-56 0.08 61000 35000 34000 5000-38000 0.12 PEO-PAA 5-38 

PEO-PAA 6-3 0.67 9000 8600 7600 6000-2900 0.67 PEO-PAA 6-3 

PEO-PAA 6-6.5 0.48 12500 19000 14300 6000-6050 0.5 PEO-PAA 6-6.5 

PEO-PAA 6-17.5 0.26 23500 78900 32200 6000-12000 0.33 PEO-PAA 6-12 

        



 

SI.1 DLS characterization 

 

The Malvern DLS data were analyzed by a custom-made program named STORMS in order 

to obtain a more precise characterization of the solutions
1
. This program has been designed 

with Matlab and enables the fitting of DLS correlograms using different sets of parameters, 

corresponding to all hypotheses that have to be made during the treatment. Indeed, going from 

correlograms to size results implies three levels of hypotheses: the first one consisting in the 

transformation of autocorrelation data to diffusion coefficient, the second one extracting the 

size of the scattering object from diffusion coefficient depending on its geometry, and finally 

using a model enabling the transformation of the intensity-relative population to a number-

relative one. The intensity distribution is naturally weighted according to the scattering 

intensity of each particle fraction or family. As such, the intensity distribution can be 

somewhat misleading, since a small amount of aggregation or presence or a larger particle 

species can dominate the distribution. For each step described above, STORMS provides the 

choice of different parameters.  

For the nano-objects presented here, the protocol used a NNLS fitting, assumed a spherical 

shape for all objects, and the chosen scattering model was that corresponding to a full small 

sphere (Rayleigh model) for objects with a radius smaller than 100 nm or a sphere (Mie 

model) for the larger ones. The range of decay rates and the regularization parameter were 

systematically modified to check the consistency of the results. This treatment provided 

residuals lower than 5x10
-3

 for all analyses. 

From intensity distribution to volume or number size distribution. The intensity 

distribution can be converted, using Mie theory, to a number distribution describing the 

relative proportion of multiple components in the sample based on their number rather than 

based on their scattering intensity.  

Given the optical properties of the particle and the scattering angle, Mie theory estimates the 

scattering intensity M(x) as a function of particle diameter x, dispersant and particle optical 

properties. The discreet list of i decay rate associated weighted by i could be transformed 

into a list of radii Ri (assuming spherical particles) through the equation     
  

   

             weighted by the coefficient I/M(Ri). 

Alternatively, conversion can be roughly obtained by assuming that M(x) is proportional to R
6
 

(in the case of small homogeneous spheres) which is only correct for particle below ca 100 



nm of diameter. Note that the Mie theory implies that a particular model has been chosen to 

describe the particles (homogeneous, spheres, hollow spheres, coated spheres…).  

       

When transforming an intensity distribution to a number distribution, different assumptions 

are used: all particles are homogeneous and spherical, the optical properties of the particles 

are known and intensity distribution is correct. Moreover DLS technique itself produces 

distributions with inherent peak broadening, so there will always be some error in the 

representation of the intensity distribution. As such, number distributions derived from these 

intensity distributions emphasizes information obtained from a small fraction of the collected 

data. Therefore they are best used for comparative purposes, or for estimating the relative 

proportions where there are multiple modes, or peaks, and should never be considered as 

absolute. 

 

 
Figure SI.1.1. Typical correlogram functions for PICs at different PEO-PAA carboxylic 

groups and DGL primary amine groups (AA/NH2, indicated as x in the graph). 

PEO-PAA 5-38 / DGL3
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Figure SI.1.2. Evolution of PEO-PAA 6-3 /DGL3 size measured by DLS, as a function of 

PEO-PAA carboxylic groups and DGL primary amine groups (AA/NH2), R. 
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Figure SI.1.3. Evolution of PEO-PAA 5-38 /DGL3 size measured by DLS, as a function of 

PEO-PAA carboxylic groups and DGL primary amine groups (AA/NH2), R. 
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SI.2 SAXS Model. Theoretical Background 

For a suspension of uniform particles, the normalized scattered intensity is given by 

 I(q)= N P(q) S(q)    (1) 

where N is the number density of scattering objects, P(q) is the single particle scattering 

function describing the shape of the particles and S(q) is the structure factor describing the 

inter-particle interactions. For a relatively dilute suspension, S(q) 1 and I(q) is governed by 

the shape of the scattering objects. Polydispersity in real systems require the introduction of a 

finite size distribution of the scattering objects. The resulting I(q) in the non-interacting case 

is then given by: 

                  
 

 
  (2) 

Where the polydispersity can be approximately described by a Schulz size distribution 

function with corresponding f(R): 

      
   

  
 
     

      
    

    

  
    (3) 

with Z =1/(1-p
2
), with p the polydispersity and Rm the mean size.  

For spherical core-shell like objects, the single particle scattering function is expressed in 

terms of the scattering amplitudes of two spheres of radii (Rc) and (Rc +tsh): 

              
  

 
                       

                            
         

 
  (4) 

For spherical homogeneous objects, the single particle scattering function is  

         
  

 
                   

        
  (5) 

F0 (qRi) in equations (4) and (5) indicates the scattering amplitude of a sphere of radii Ri 

         
                       

     
  (6) 

For block copolymer micelles, it is often necessary to consider an extra contribution at high-q 

vectors related to fluctuations originating from chain statistics and the inter-chain interactions 

of PEO chains inside the shell. The intra-corona contribution is well reproduced by the 

Beaucage function or alternatively by Ornstein-Zernike type term: 

P(q)=P0(q)+Io/(1+(q
22

)
d/2

)     (7) 



Where  accounts for the length scale of density fluctuations inside the corona (order of nm) 

and d is related to the fractal dimension of the scattering chains. We fixed d to -1.7 as 

expected for swollen polymer chains in good solvent. is 0.22 nm in all fits. 

Best fits of the form factor P(q) for the measured data were derived using the model of 

spherical core-shell objects and a Ornstein-Zernike term as implemented in the SAXSutilities 

analysis package. 
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Figure SI.2.1. Small Angle X-ray scattering as a function of the scattering vector for DGL3 

0.1%wt, PEO-PAA 6-3 0.09% wt (same concentration as in the sample DGL3/PEO-PAA 6-3 

at R=AA/NH2 =1), DGL3/PEO-PAA 6-3 solution with R=AA/NH2 =0.5. The black curve is 

the linear combination of the experimental data relative to DGL3 plus the scattering 

contribution of PEO-PAA 6-3 at the same concentration as in the sample at R=0.5. 
 

 
 
 
 



Table SI.2.1. Best values of  and  parameters in order to describe the experimental data 

with R < 1 as the contribution of micelles (completely formed at R=1) and free DGL3 present 

in the solutions.  I(q)=*I(q)DGL3+I(q)R=1 

 

PEO-PAA R  

6-6.5 
0.2 0.7 0.06 

0.8 0.42 0.58 

6-12 

0.2 0.87 0.13 

0.4 0.84 0.16 

0.6 0.70 0.30 

0.8 0.45 0.55 

5-38 

0.2 0.85 0.15 

0.4 0.7 0.3 

0.6 0.55 0.45 

 

 

SI.3. 
1
H Nuclear Magnetic Relaxation Dispersion 

 
The field dependence of 

1
H relaxation is described by the expression

1
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where  is 2  times the proton Larmor frequency, b is a constant related to the dipole-dipole 

interaction energy, a is a non-dispersive term accounting for the protons diffusing around the 

complexes, and c, called correlation time, is the characteristic time constant describing the 

stochastic fluctuations of the 
1
H-

1
H dipole-dipole interactions. When internal fast motions are 

present, they may be unable to average completely the dipole-dipole interaction, so that 

multiple motional processes, occurring on different time scales, can contribute to R1. In the 

model-free formalism
2
, the resulting relaxation rates are determined by the weighted sum of 

the contributions corresponding to the different correlation times, according to the following 

equation
3
 

  
i

iii JJcbaR ),2(4),(1       (1) 

where ci represents the molar fraction of protons with correlation time i and J(,i) is the 

Lorentzian spectral density function 
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Table SI.3.1 Best fit values obtained from the analysis of the 
1
H NMRD profiles reported in 

Figure 6. 

 c1 (%) 1 (ns) c2 (%) 2 (ns) 3 (ns) 

DGL3 - - - - 3.00.4 

PEO-PAA 5-38 - - - - 3.00.4 

PEO-PAA 6-3 - - - - 3.00.4 

PEO-PAA 5-38:DGL3 R=0.2 0.040.01 2250140 0.30.1 12020 3.00.4 

PEO-PAA 5-38:DGL3 R=1 0.140.01 2250140 0.90.1 12020 3.00.4 

PEO-PAA 6-3:DGL3 R=0.2 - - 0.70.1 6830 3.00.4 

PEO-PAA 6-3:DGL3 R=0.5 - - 0.90.4 6020 3.00.4 

PEO-PAA 6-3:DGL3 R=1 0.140.04 1150210 0.80.2 13030 3.00.4 
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Figure SI.3.1. 
1
H NMRD profiles for PEO-PAA 6-3 0.09wt%, PEO-PAA 5-38 0.04 wt% and 

DGL3 0.1wt%.  
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SI.4 Field Flow Fractionation 

 

Figure SI.4.1. Experimental set-up for Frit Inlet Asymmetrical FFF    

Field Flow Fractionation for PEO-PAA 5-38 PICs for other ratios than 1 implied specific 

conditions that showed poor reproducibility. These data could not therefore be used in this 

study. 
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Figure SI.4.2. Characterization of  PEO-PAA 5-38 / DGL3 PIC by FI-AsFlFFF at 

stoichiometric ratio 1/1 
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Figure SI.4.3. Characterization of  PEO-PAA 6-6.5 / DGL3 PICs by FI-AsFlFFF (QELS 

signal) at different ratios. The ratios correspond to that of acrylic acid units over amine units. 

o ratio 0.2, x ratio 0.8,  ratio 1.0. PEO-PAA 6-6.5  

 

Table SI4.1. Analysis of FlFFF fractogramms 
a
 numbers in brackets indicate the accuracy of 

determination. 
b
 n number average; w weight average; z stands for z-average 

Polymer Ratio elution time 

(min) 
Rh (nm)a Rg (nm)a Average typeb 

PEO-PAA 5-38 1.0 25/38 38 (2 %) / 53 (2 %) 26 (8 %) / 46 (3 %) (n) 
39 (2%) / 55 (2 %) 28 (7%) / 49 (3%) (w) 
40 (2%) / 58 (2%) 30 (6%) / 53 (4 %) (z) 

PEO-PAA 6-12 0.4 20 38 (20%) 52 (15%) (n) 

32 (14%) 37 (15/%) (w) 

26 (10%) 21 (15%) (z) 

0.6 20 28 (5%) 16 (25%) (n) 

27 (5%) 15 (19%) (w) 

28 (4%) 14 (16%) (z) 

0.8 25 20 (4%) / 41 (4%) 17 (40%)/ 27 (9%) (n) 

21 (3%) / 39 (3%) 17 (35%) / 26 (9%) (w) 

22 (2%) /38 (2%) 18 (30%) /25 (9%) (z) 

1.0 25 35 (2%) 25 (10%) (n) 
39 (2%) 30 (7%) (w) 
43 (2%) 35 (6%) (z) 

PEO-PAA 6-3 0.8 26 18 (8%) 12 (11%) (n) 

18 (6%) 12 (36%) (w) 

19 (6%) 13 (34%) (z) 

1.0 30 27 (4%) 17 (12%) (n) 
28 (4%) 17 (11%) (w) 
30 (4%) 18 (12%) (z) 

 



Table SI.4.2 Comparison of PICs size obtained from different techniques 

PEO-PAA 

Polymer 

Ratio Rg 

SAXS 

(nm) 

Rg (z) 

FFF 

(nm) 

Rh (z) 

FFF 

(nm) 

Rg/Rh (z) Rh 

number 

DLS 

(nm) 

Rh Int 

DLS 

(nm) 

Cumulant 

PDI 

Rg SAXS 

/ Rh DLS 

6-6.5 0.2 9.2    - -   

 0.8 12 39/20* 63/30* 0.62/0.66 20 33 0.22 0.36 

 1.0 13.8 17 26 0.65 21 29 0.13 0.48 

 




