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Quantum state discrimination and enhancement by noise

François

 

Chapeau-Blondeau

Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), Université d’Angers, 62 avenue Notre Dame du Lac, 49000 Angers, France

Discrimination between two quantum states is addressed as a quantum detection process where a
measurement with two outcomes is performed and a conclusive binary decision results about the
state. The performance is assessed by the overall probability of decision error. Based on the theory of
quantum detection, the optimal measurement and its performance are exhibited in general conditions.
An application is realized on the qubit, for which generic models of quantum noise can be investigated
for their impact on state discrimination from a noisy qubit. The quantum noise acts through random
application of Pauli operators on the qubit prior to its measurement. For discrimination from a noisy
qubit, various situations are exhibited where reinforcement of the action of the quantum noise can
be associated with enhanced performance. Such implications of the quantum noise are analyzed and
interpreted in relation to stochastic resonance and enhancement by noise in information processing.

1. Introduction

Quantum states naturally arise when one wants to process, 
store or retrieve information at the level of quantum objects, such 
as individual photons, electrons, ions or atoms. Information pro-
cessing with such quantum systems is a field of recent develop-
ment, and is currently the subject of intense research, with rich 
potentialities [1,2]. The statistical theory of information after Shan-
non has been applied to quantum systems to explore some of 
their capabilities for information processing and communication 
[3,4,1,2].

Another direction of recent interest at the interface between 
physics and information processing is the field of stochastic res-
onance or effects of enhancement by noise. In its early forms, 
stochastic resonance represents an enhancement of the response 
of a dynamical system occurring at an intermediate level of noise 
[5–7]. Stochastic resonance has progressively been shown feasible 
in a large variety of forms, in many systems and processes, with 
various measures of performance receiving enhancement by noise 
[6,7], and new extensions are regularly reported [8–10]. As a re-
sult, in an extended sense we adopt here, stochastic resonance can 
be understood as a situation where enhancement of the perfor-
mance in some definite task can be gained from the action of 
noise. For information processing, stochastic resonance as an en-
hancement by noise has been reported in different specific tasks, 
such as signal transmission [11–13], detection [14–19], estima-

tion [20,21], sensor arrays [22–25], or in relation to the statisti-
cal theory of information [26–30], although mostly in a classical 
context. By contrast, stochastic resonance in a quantum context 
has been addressed by relatively much fewer studies. Early stud-
ies on quantum stochastic resonance have considered dynamics 
in a double-well potential of a time-dependent position operator 
driven by a periodic forcing and coupled to a heat bath [31–34]. 
More recently, stochastic resonance has been considered in rela-
tion to binary information transmission over noisy quantum chan-
nels [35–39]. The analyses of [35–39] exhibit some possibilities of 
stochastic resonance or enhancement by noise in qubit commu-
nication over quantum channels assessed by mutual information, 
fidelity or transmission rate.

In the present study we will consider an even more basic and 
fundamental informational operation on quantum systems. We will 
analyze a discrimination process between two alternative quan-
tum states, which can also be referred to as a quantum detection 
process [40–48]. In such a binary discrimination or detection pro-
cess, a quantum system can be in one of two possible states; 
and from a measurement with two outcomes, a binary decision is 
taken about which quantum state the system is in [40,41,49]. Con-
cerning quantum state discrimination in general, another distinct 
problem consists in unambiguous state discrimination [50–52,48]. 
Unambiguous state discrimination admits measurements that are 
not conclusive about which state the system is in. By contrast, the 
type of quantum state discrimination we investigate here, requires 
a decision about which state the system is in, each time a mea-
surement is performed. In this way, quantum state detection here 
will designate a conclusive discrimination between two alternative E-mail address: chapeau@univ-angers.fr.
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quantum states. Imposing a conclusive discrimination exposes to 
detection errors, and the overall probability of detection error is 
taken as the performance to be optimized. Based on the theory 
of quantum detection [40,41], the optimal measurement and its 
performance are exhibited in general conditions. An application is 
realized to optimal state discrimination on a qubit. The qubit is 
a fundamental quantum system of reference with important sig-
nificance for quantum information. The case of the qubit, which 
can be worked out in detail, will allow us to test generic mod-
els of quantum noise which can affect the discrimination and its 
performance. The quantum noise is modeled as a noise channel 
acting on the qubit prior to measurement. Quantum state discrimi-
nation in this way is performed from a noisy qubit. The probability 
of error of the optimal detector operating on the noisy qubit will 
be analyzed in relation to stochastic resonance and enhancement 
by noise in information processing. Stochastic resonance is under-
stood here in the broad sense of a noise-enhanced performance, 
much as for instance in [35–37,39] for the quantum context. Yet 
the present study here represents the first exploration of its kind 
of stochastic resonance or favorable noise effects in quantum state 
detection. Quantum state detection as understood here with no in-
conclusive measurement, matches the problem of signal detection 
in the sense of classical (non-quantum) statistical information pro-
cessing [15,16,49]. Stochastic resonance or enhancement by noise 
has been shown feasible in classical detection problems [14–19]; 
and it is investigated here for the first time for quantum detection.

2. Optimal discrimination between two quantum states

As a standard detection situation [41,49], we assume that a 
quantum system, with complex Hilbert space HN of dimension N , 
can be in one of two possible quantum states. These two quan-
tum states can be pure states or mixed states, and are generally 
represented by the two (Hermitian positive unit-trace) density op-
erators ρ0 and ρ1 . The system can be in state ρ0 or ρ1 respectively 
with known prior probabilities P0 or P1 = 1 − P0 , as a result 
of its preparation. The detection problem is to determine, from 
a single non-repeated measurement, whether the quantum sys-
tem is in state ρ0 or ρ1 [41]. A generalized measurement [1] is 
performed on the system by means of a positive operator-valued 
measure (POVM) with two elements {M0, M1}. Each of the two 
POVM elements Mk , for k = 0, 1, is a positive Hermitian operator 
satisfying 0 ≤ Mk ≤ 1, and together summing to the identity oper-
ator 1 = M0 +M1 . When the measurement outcome corresponding 
to Mk is obtained, then it is decided that the quantum system is 
in state ρk , for k = 0, 1. The POVM contains exactly two elements 
because the detection problem imposes that each time a measure-
ment is performed, a conclusive decision has to be obtained on 
whether the quantum system is in state ρ0 or ρ1 . By contrast, 
unambiguous state discrimination as evoked in the Introduction, 
would generally include a third POVM element corresponding to 
the situation where no conclusive decision is returned on the state 
of the quantum system. Imposing a conclusive measurement usu-
ally exposes to detection errors. Except in the special case where 
the supports of ρ0 and ρ1 span orthogonal subspaces, the two 
quantum states in general cannot be perfectly distinguished, and 
any conclusive measurement for detection has to cope with some 
level of error. A relevant task is then to devise optimal strategies 
to minimize such errors.

The optimal detection strategies under various criteria are char-
acterized in [40,41,43,44]. In this section, we exploit and adapt the 
results of [40,41] for detection under minimum probability of de-
tection error. Several aspects of such quantum detection have been 
developed in different directions, for instance in [42,45,47,44,53,
46,54]. Here, we consider minimum probability-of-error detection 
in relation to stochastic resonance and enhancement by quantum 

noise, which is an original perspective. To obtain the overall prob-
ability of detection error, we have the conditional probability of 
each detection decision which is given by the operator trace [1]

Pr{Mk|ρ j} = tr(ρ jMk), j = 0,1, k = 0,1. (1)

The overall probability of detection error Per = Pr{M1|ρ0}P0 +
Pr{M0|ρ1}P1 then results as

Per = tr(ρ0M1)P0 + tr(ρ1M0)P1 (2)

= tr
[

ρ0M1P0 + ρ1(1 −M1)P1

]

(3)

= P1 − tr
[

(P1ρ1 − P0ρ0)M1

]

(4)

since M0 = 1 − M1 and the ρ j ’s are with unit trace. From Eq. (4), 
the probability of detection error can also be expressed as

Per = P1 − tr(TM1), (5)

with the test operator

T = P1ρ1 − P0ρ0, (6)

which is Hermitian but not generally a density operator since T is 
not positive in general.

We then seek the optimal POVM {M0 = 1 − M1, M1} that mini-
mizes the probability of detection error Per from Eq. (5). This is 
achieved by finding the POVM element M1 that maximizes the 
term tr(TM1) in the right-hand side of Eq. (5). To characterize this 
optimal POVM element, the spectral decomposition of the test op-
erator T is introduced as

T =
N

∑

n=1

λn|λn〉〈λn|, (7)

with the eigenvectors {|λn〉} of the Hermitian operator T forming 
an orthonormal basis. One then gets

tr(TM1) =
N

∑

n=1

λn tr
(

|λn〉〈λn|M1

)

=
N

∑

n=1

λn〈λn|M1|λn〉. (8)

Each scalar 〈λn|M1|λn〉 in Eq. (8) is a real confined between 0
and 1, since M1 is a positive operator verifying 0 ≤ M1 ≤ 1. For 
each n, the maximum value of 1 is reached by 〈λn|M1|λn〉 when 
M1 is the projector |λn〉〈λn| on the eigensubspace spanned by |λn〉. 
The POVM element M1 maximizing the sum in the right-hand 
side of Eq. (8) is thus realized by summing the rank-one projec-
tors |λn〉〈λn| for all the eigenvectors |λn〉 associated with a positive 
eigenvalue λn , i.e.

M
opt
1 =

∑

λn>0

|λn〉〈λn|, (9)

achieving for tr(TM1) in Eq. (8) the maximum 
∑

λn>0 λn . The opti-

mal POVM element Mopt
1 defined by Eq. (9) is thus the projector on

the subspace spanned by the eigenvectors |λn〉 associated with all 
the positive eigenvalues λn of the test operator T. The complemen-
tary element Mopt

0 = 1 − M
opt
1 is the projector on the orthogonal

subspace.
The optimal POVM defined by Eq. (9) achieves in Eq. (5) the 

minimal probability of error

Pmin
er = P1 −

∑

λn>0

λn, (10)

which subtracts from the prior P1 all the positive eigenvalues 
of the test operator T. Since the eigenvalues λn sum to tr(T) =
P1 − P0 , one has equivalently Pmin

er = P0 +∑

λn<0 λn summing over 
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the negative eigenvalues of T, or by combining with Eq. (10), since 
P0 + P1 = 1, [53]

Pmin
er = 1

2

(

1−
N

∑

n=1

|λn|
)

= 1

2

[

1− tr
(

|T|
)]

. (11)

By introducing the trace distance of two operators [1,2]

D(ρ0,ρ1) = 1

2
tr

(

|ρ0 − ρ1|
)

, (12)

Eq. (11) is also

Pmin
er = 1

2
− D(P0ρ0, P1ρ1). (13)

This shows that the performance Pmin
er of the optimal detector 

is not solely controlled by a distance measure between the two 
density operators ρ0 , ρ1 , like the trace distance D(ρ0, ρ1), but it 
also depends on the prior probabilities (P0, P1), altogether through 
the trace distance D(P0ρ0, P1ρ1). In a similar way, the perfor-
mance Pmin

er is not completely determined by the orthogonality or 
nonorthogonality of the two states ρ0 and ρ1 , as assessed for in-
stance by the inner product tr(ρ†

0ρ1) [1], nor is it determined by a 
measure of the states’ purity like tr(ρ2

k
) [1].

From a practical standpoint, one can consider a large num-
ber of successive independent experiments, where in each exper-
iment the quantum system is prepared either in state ρ0 or ρ1

with probabilities P0 or P1 . In each experiment, from a single 
non-repeated measurement on the quantum system, a conclusive 
binary decision has to be returned on whether the preparation de-
termined ρ0 or ρ1 . Then, the optimal measurement strategy mini-
mizing Per as established in this section, guarantees the minimum 
number of errors over a large number of successive independent 
experiments; any other measurement strategy will lead to a higher 
number of errors.

We will now apply the general characterization of this section
to the optimal discrimination of two quantum states of a qubit, 
where in particular the optimal performance Pmin

er of Eq. (11) can 
be explicitly worked out as a function of the properties of the 
qubit.

3. Optimal discrimination on a qubit

The quantum system is a qubit for which the two possible
states in H2 are represented in the general Bloch sphere repre-
sentation [1] as

ρ j =
1

2
(1 +�r j �σ ), j = 0,1, (14)

with the two real 3-dimensional Bloch vectors �r j of Euclidean 
norm ‖�r j‖ ≤ 1, and �σ a vector assembling the three 2 × 2 (Her-
mitian unitary) Pauli matrices [σx, σy, σz] = �σ . The qubit states 
ρ j of Eq. (14) have eigenvalues (1 ± ‖�r j‖)/2 and determinant 
det(ρ j) = (1 − ‖�r j‖2)/4.

For the detection process operating on the qubit, the test oper-
ator T of Eq. (6) follows as

T = 1

2

[

(P1 − P0)1 + (P1�r1 − P0�r0)�σ
]

. (15)

The two eigenvalues of T then come out as

λ± = 1

2

(

P1 − P0 ± ‖P1�r1 − P0�r0‖
)

. (16)

To monitor the sign of the eigenvalues of T, we have their product

λ+λ− = det(T) = 1

4

[

(P1 − P0)
2 − ‖P1�r1 − P0�r0‖2

]

. (17)

It then follows that for the optimal detection operating on the 
qubit, there are two regimes of operation conditioning the mini-
mal probability of detection error Pmin

er of Eqs. (10)–(11).
The first regime is when det(T) < 0, i.e. when (P1 − P0)

2 <

‖P1�r1 − P0�r0‖2 , there is then only one positive eigenvalue λ+ =
(P1 − P0 + ‖P1�r1 − P0�r0‖)/2 (the other λ− is negative), and in 
Eq. (10) Pmin

er = P1 − λ+ follows as

Pmin
er = 1

2

(

1− ‖P1�r1 − P0�r0‖
)

, when det(T) < 0. (18)

In this regime, in particular Pmin
er of Eq. (18) verifies Pmin

er <

min(P0, P1).
The second regime is when det(T) ≥ 0, i.e. when (P1 − P0)

2 ≥
‖P1�r1 − P0�r0‖2 , then the two eigenvalues have the same sign. 
Moreover, when P1 − P0 ≥ 0 the two eigenvalues in Eq. (16) are 
≥ 0 and sum to λ− +λ+ = tr(T) = P1 − P0 , which yields in Eq. (10)
the probability of detection error Pmin

er = P0 = min(P0, P1). On the 
contrary, when P1 − P0 ≤ 0 the two eigenvalues in Eq. (16) are 
≤ 0 and the probability of detection error in Eq. (10) reduces to 
Pmin
er = P1 = min(P0, P1). We thus have uniformly, in the regime 

when det(T) ≥ 0, the minimal probability of detection error

Pmin
er = min(P0, P1), when det(T) ≥ 0. (19)

This is the regime where the two quantum states ρ0 and ρ1 are 
sufficiently close to each other, in such a way that the measure-
ment does not help in distinguishing them [55]. The optimal de-
tector cannot do better than Pmin

er = min(P0, P1) which is a proba-
bility of error that can be achieved by a prior uninformed strategy 
that uses no measurement but always decides for the state with 
maximum prior probability.

4. Quantum noise channel

We now consider the possibility of some noise affecting the
quantum states before measurement, and we want to study the 
impact of such noise on the performance in discriminating the two 
quantum states. The action of the quantum noise on the qubit will 
be modeled by means of a quantum channel, which is a standard 
approach for quantum noise [1,2]. We will especially test generic 
models of quantum noise which can affect the qubit, represented 
by various models of quantum channel. Our study will encom-
pass the cases of the bit-flip and of the depolarizing channels. In 
addition, we will generally consider a quantum channel realized 
as a convex combination of a bit-flip channel and a depolarizing 
channel. This produces a valid generic Pauli channel, allowing us 
to represent a broader class of noise processes on the qubit, in a 
tunable way, as also done in [39]. The combination can be tuned 
to represent the bit-flip or the depolarizing channels, and also a 
whole range of feasible Pauli channels in-between.

The action of the bit-flip channel [1,2] leaves the qubit state ρ
unchanged with probability 1 − p while it applies the Pauli oper-
ator σx flipping the quantum state with probability p. This can be 
represented by the quantum operation

N1(ρ) = (1− p)ρ + pσxρσ
†
x . (20)

The action of the depolarizing channel [1,2] leaves the qubit 
state ρ unchanged with probability 1 − p while it randomly applies 
any one of the three Pauli operators with probability p/3. This can 
be represented by the quantum operation

N2(ρ) = (1− p)ρ + p

3

(

σxρσ
†
x + σyρσ

†
y + σzρσ

†
z

)

. (21)

Both the bit-flip channel and the depolarizing channel stand 
as common representations of a noise process possibly affecting 
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a qubit as a result of its interaction with an uncontrolled envi-
ronment. For more flexibility in the noise scenarios, we consider 
the possibility of a tunable convex combination of these two basic 
channels, realizing the quantum operation N (ρ) = (1 − q)N1(ρ) +
qN2(ρ), with the mixing parameter q ∈ [0, 1]. This corresponds for 
the noise process to the quantum operation

N (ρ) = (1− p)ρ + p

(

1− 2

3
q

)

σxρσ
†
x

+ 1

3
pq

(

σyρσ
†
y + σzρσ

†
z

)

. (22)

At q = 0 one recovers the bit-flip channel, while at q = 1 one re-
covers the depolarizing channel. For q between 0 and 1, one has 
access to valid generic Pauli channels describing the effect of some 
external quantum noise. This same possibility of a tunable convex 
combination of two quantum noise channels is also used in [39], 
with the same motivation of examining a whole class of quantum 
channels by varying the parameter q. The parameterization by q of 
the quantum noise channel in Eq. (22) also includes the possibility 
of confrontation with [37,36] where the bit-flip and depolarizing 
channels are addressed separately. In Eq. (22), for all q, the limit 
p → 0 is equivalent to vanishing action of the noise channel with 
a state ρ which is unaffected.

For an input qubit state ρ characterized by a Bloch vector 
�r = [rx, ry, rz]⊤ in the Bloch representation similar to Eq. (14), the 
action of the noise channel in Eq. (22) produces an output state 
N (ρ) characterized by a Bloch vector

�r′ = [αxrx,αyry,αzrz]⊤ (23)

with the scalar coefficients

αx = 1− 4

3
pq, (24)

αy = αz = 1− 2p + 2

3
pq. (25)

The transformed Bloch vectors resulting from Eqs. (23)–(25) can 
then be used in Eqs. (17)–(19) for the two qubit states, in order 
to assess the impact of the quantum noise on the performance 
in their discrimination. An interest of the approach is to explic-
itly materialize a model for the noise acting on the qubit prior to 
the detection process. The noisy qubit, after alteration by the noise 
channel, has its state still represented by a density operator follow-
ing from Eq. (22). For this reason, the optimal detection operating 
on the noisy qubit is equally characterized by the analysis of Sec-
tion 3. However, with the noise channel model, we have a handle 
to examine the effect of noise on the performance in state discrim-
ination from a noisy qubit. This point of view is not common to the 
previous approaches on quantum state detection or discrimination, 
which usually do not explicitly incorporate a model of noise in the 
process. The approach here will allow us an analysis of the impact 
of noise, especially in relation to stochastic resonance and possibil-
ities of enhancement by noise. In the analysis, the amount of noise 
will be assessed by the probability p or action of the noise chan-
nel, and upon reinforcing the action of the noise channel through 
an increase in p, we will examine the evolution of the performance 
in the detection process.

5. Channel action on two qubit states

A conceivable mode of action of the noise can be described 
through a common communication protocol which follows. The 
qubit is prepared in an initial state which is either ρ0 or ρ1 , and 
is sent over a noisy communication channel governed by Eq. (22). 
Then at the channel output, the transformed noisy qubit with state 
either N (ρ0) or N (ρ1), is measured in order to decide whether 

ρ0 or ρ1 was emitted as input. The optimal detection operates ac-
cording to the analysis of Section 3 applied to the two qubit states 
N (ρ0) or N (ρ1). The two possible output Bloch vectors resulting 
from Eqs. (23)–(25) for N (ρ0) or N (ρ1) are used in Eqs. (17)–(19)
to obtain the performance Pmin

er of the optimal detection realized 
from the channel output.

The impact of the action of the noise channel, as the channel 
probability p is increased, is studied on the probability of detection 
error Pmin

er resulting from Eqs. (18)–(19). Various configurations are 
accessible according to the initial states ρ0 and ρ1 , their prior 
probabilities P0 and P1 , and the channel parameter q. For illus-
tration, in relation to stochastic resonance and favorable noise ef-
fects, Fig. 1 presents the performance Pmin

er of the optimal detector 
for discrimination between the two initial pure states ρ0 = |0〉〈0|
and ρ1 = |1〉〈1|. A notable feature in Fig. 1 is the possibility of 
a nonmonotonic action of the noise channel probability p on the 
performance Pmin

er . At p = 0 in Fig. 1, there is no action of the 
noise channel, and the detection is perfect, with a probability of er-
ror Pmin

er = 0, for two orthogonal initial states ρ0 and ρ1 . When p
starts to increase above zero, the noise channel comes into action, 
and this leads in Fig. 1 to an increasing probability of detection 
error Pmin

er . At p > 0, the action of the noise channel is to trans-
form the two initial pure states ρ0 = |0〉〈0| and ρ1 = |1〉〈1|, via 
Eq. (22), into two mixed states N (ρ0) or N (ρ1) which are less dis-
tinguishable, therefore entailing an increased Pmin

er . In this regime, 
Pmin
er is governed by Eq. (18), and Pmin

er degrades (increases) as the 
noise channel probability p grows. At some p sufficiently high in 
Fig. 1, the two mixed states N (ρ0) and N (ρ1) become so mixed 
that on average the measurement has no possibility of distinguish-
ing them. The performance of the optimal detector saturates at 
Pmin
er = min(P0, P1), which is the performance of the prior unin-

formed strategy that makes no use of measurement, as governed 
by Eq. (19). However, further increase in the channel probability 
p in Fig. 1, leads to a possibility of enhancement of the detection 
performance by reducing the probability of error Pmin

er . This possi-
bility of reducing Pmin

er is accessible for all channel configurations 
with 0 ≤ q < 1. Yet the reduction in Pmin

er gets more limited as q
increases, as visible in Fig. 1. At q = 0 for the bit-flip channel, the 
possibility of reducing Pmin

er at large p > 1/2 can be understood, 
since flipping the two qubit states with sufficient certainty pre-
serves some capacity of distinguishing between them from their 
flipped versions. But interestingly, the possibility of reducing Pmin

er

also exists for more harmful noise channels that are not bit-flip 
channels. This is true for all values of q < 1 in Fig. 1, especially for 
q > 1/2 when the noise channel approaches a depolarizing chan-
nel. Only at q = 1 for the pure depolarizing channel, does the 
possibility of reducing Pmin

er by increasing p disappear, for what 
represents the “worst-case scenario” as far as quantum noise is 
concerned [2].

Other configurations exist where the performance Pmin
er un-

dergoes a nonmonotonic evolution, with a possibility of en-
hancement, as the probability p of action of the noise chan-
nel increases. Fig. 2 shows such a situation, for discrimina-
tion between an initial pure state ρ0 and an initial mixed 
state ρ1 . The state ρ0 is defined by the Bloch vector �r0 =
[R0 sin(θ0) cos(ϕ0), R0 sin(θ0) sin(ϕ0), R0 cos(θ0)]⊤ with the radius 
R0 = 1 for a pure state, and similarly for ρ1 with the radius 
0 ≤ R1 < 1 for a mixed state. Fig. 2 also illustrates the impact 
of varying the prior probabilities (P0, P1), which preserves the 
possibility of nonmonotonic evolution of the performance Pmin

er . 
Further, the analysis of Section 3 applied with the noise channel 
of Eq. (22) shows that nonmonotonic evolutions of Pmin

er with p
are equally feasible when the detection process operates from two 
initial mixed states ρ0 , ρ1 .

As we mentioned earlier, two quantum states ρ0 and ρ1 can 
be perfectly distinguished with no error (Pmin

er = 0) only when 
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Fig. 1. For discrimination between the two initial pure states ρ0 = |0〉〈0| and ρ1 =
|1〉〈1| with prior probability P1 = 1/3, both altered by the noise channel of Eq. (22). 
The solid lines are the minimal probability of error Pmin

er achieved by the optimal 
detector, as a function of the noise channel probability p in abscissa, for five dif-

ferent values of the channel parameter q = 0, 0.25, 0.5, 0.75 and 1 with increasing
thickness of the solid lines. The dashed horizontal line is min(P0, P1) = P1 = 1/3

the probability or error of the prior uninformed detection strategy.

Fig. 2. For discrimination between the initial pure state ρ0 characterized by the
Bloch vector �r0 = (R0 = 1, θ0 = 0.22π , ϕ0 = 0) in spherical coordinates, and the ini-
tial mixed state ρ1 with Bloch vector �r1 = (R1 = 0.3, θ1 = 0, ϕ1 = 0), both altered 
by the noise channel of Eq. (22) with parameter q = 0.2. The solid lines are the
minimal probability of error Pmin

er achieved by the optimal detector, as a function 
of the noise channel probability p in abscissa, for four different values of the prior

probability P1 = 0.3, 0.4, 0.5 and 0.6.

they are orthogonal, or equivalently when their inner product 
tr(ρ

†
0ρ1) = 0. For two qubit states in H2 , the inner product is 

tr(ρ
†
0ρ1) = (1 + �r0�r1)/2 and orthogonality can occur only when 

�r0 = −�r1 while ‖�r0‖ = ‖�r1‖ = 1, i.e. for two pure states opposite 
on the Bloch sphere. This is the case for the two initial pure states 
ρ0 = |0〉〈0| and ρ1 = |1〉〈1| in Fig. 1, which can be distinguished 
with no error at Pmin

er = 0, yet only when no noise channel is act-
ing (i.e. at p = 0 in Fig. 1). At p > 0 the noise channel affects the 
two qubit states ρ0 and ρ1 which cease to be orthogonal; and 
nonorthogonality generally leads to a nonzero probability of de-
tection error Pmin

er > 0 in Fig. 1. However, a measure of nonorthog-
onality of the two qubit states ρ0 and ρ1 , as provided by their 
inner product tr(ρ†

0ρ1), is in general not sufficient to determine 
the behavior of the probability of error Pmin

er in the detection in 
the presence of noise. This is illustrated in Fig. 3 which consid-
ers three distinct nonorthogonal initial configurations of the two 
qubit states ρ0 and ρ1 , yet sharing all three the same inner prod-
uct tr(ρ†

0ρ1) = 1/4. The nonmonotonic evolution of the probability 
of error Pmin

er is preserved in Fig. 3 as the probability p of action 
of the noise channel increases. Nevertheless, the three initial con-
figurations with same inner product evolve differently in their re-
sponse to the noise as assessed by Pmin

er . This was anticipated from 
the expression of Eq. (13), showing that not only the (nonorthogo-
nal) configurations of ρ0 and ρ1 , but also their prior probabilities 

Fig. 3. For discrimination from three pairs of initial nonorthogonal qubit states ρ0

and ρ1 sharing the same inner product tr(ρ†
0ρ1) = 1/4, the minimal probability 

of error Pmin
er achieved by the optimal detector as a function of the noise channel 

probability p in abscissa, with prior probability P1 = 0.6 and channel parameter 
q = 0.2. In all three pairs ρ0 = |0〉〈0| with Bloch vector �r0 = (R0 = 1, θ0 = 0, ϕ0 = 0)

in spherical coordinates, while ρ1 has Bloch vector �r1 with spherical coordinates:
(a) (R1 = 1, θ1 = 2π/3, ϕ1 = 0), (b) (R1 = 1/

√
2, θ1 = 3π/4, ϕ1 = 0), (c) (R1 =

1/2, θ1 = π , ϕ1 = 0).

P0 and P1 , have a separate impact on Pmin
er . Yet, the interesting 

property of a nonmonotonic evolution of Pmin
er as p increases is 

preserved as a common feature in Fig. 3.
A trace-preserving quantum operation as in Eq. (22) is contrac-

tive for the trace distance of Eq. (12) between two density oper-
ators [1], yielding D(N (ρ0), N (ρ1)) ≤ D(ρ0, ρ1). This holds also 
for the weighted operators P0ρ0 and P1ρ1 occurring in Eq. (13)
[2], yielding D(N (P0ρ0), N (P1ρ1)) = D(P0N (ρ0), P1N (ρ1)) ≤
D(P0ρ0, P1ρ1). The trace distance between the two weighted den-
sity operators therefore cannot increase by the action of the noise 
channel of Eq. (22). As a consequence, the probability of error Pmin

er

of Eq. (13) cannot decrease by the action of the noise channel of 
Eq. (22). This means that the performance Pmin

er after the action 
of the noise channel of Eq. (22) cannot be better than the perfor-
mance Pmin

er before the action of the channel. In other words, the 
optimal discrimination from the initial states ρ0 and ρ1 is never 
surpassed in performance by the optimal discrimination from the 
noisy output states N (ρ0) and N (ρ1) after action of the noise 
channel. This can be verified in Figs. 1–3 where the probability 
of error Pmin

er at p = 0 for optimal discrimination from the initial 
states, is never above Pmin

er at any p > 0 when the noise channel 
is acting to alter the two states. In this respect, if the initial qubit 
used for signaling is directly accessible to measurement, then there 
is no benefit in purposefully applying a noise channel like Eq. (22)
with nonzero p before measuring the qubit for detection.

However, for different levels of p > 0 characterizing the action 
of the noise channel, larger values of p can lead to better detec-
tion performance Pmin

er as revealed in Figs. 1–2. In this respect, 
if the initial qubit used for signaling is not directly accessible to 
measurement, but is necessarily measured after the action of a 
noise channel, then it may be beneficial to reinforce the action 
of the noise channel through purposeful increase of its probabil-
ity of action p. This may lead, as visible in Figs. 1–3, to a better 
performance Pmin

er in the detection process. In brief, if no quantum 
noise channel preexists, then there is no benefit for the detection 
in adding some; however, if some quantum noise channel preex-
ists, then it is sometimes beneficial to reinforce its action on the 
qubit.

6. Channel action on one qubit state

As another conceivable mode of action of the noise, we con-
sider the following protocol where the action of a noise channel 
similar to Eq. (22) can be deliberately implemented by the sender 
as part of her/his preparation of the signaling states ρ0 or ρ1 , 
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prior to a noise-free communication of the qubit to the receiver. 
In this protocol, the noise channel is seen as a device accessible 
to the sender for her/his preparation of the signaling states ρ0

or ρ1 of the qubit. After the preparation by the sender is com-
plete, the qubit is communicated to the receiver with no further 
transformation. The receiver then measures the qubit to return a 
binary decision. With this protocol, we want to study the possibil-
ity of some beneficial scenario when using a noise channel similar 
to Eq. (22) as an auxiliary device accessible to the sender for the 
preparation of the qubit in one or the other signaling states. This 
is another configuration to investigate the action of the quantum 
noise, and which complements the more common situation of Sec-
tion 5 where the noise channel acts equally on the two states ρ0

and ρ1 .
The sender can thus choose to transform one or the other of 

the signaling states ρ0 or ρ1 by means of a noise channel simi-
lar to Eq. (22). If the two states are transformed by the same noise 
channel, we are back to the situation addressed in Section 5. We 
will therefore consider the possibility of transforming only one of 
the two signaling states, prior to (perfect) communication to the 
receiver for detection. The Bloch vector of the unaffected state, 
and that of the transformed state resulting from Eqs. (23)–(25), 
are used in Eqs. (17)–(19) to obtain the performance Pmin

er in the 
optimal detection.

With this approach, Fig. 4 addresses the discrimination be-
tween the pure state ρ0 = |0〉〈0| and an initial mixed state ρ1 . 
In Fig. 4, the noise channel used in the preparation procedure to 
further transform the initial state ρ1 is the depolarizing channel 
of Eq. (21). The depolarizing noise channel N2(·) of Eq. (21) is 
equivalent to Eq. (22) at q = 1 and represents in some sense the 
“worst-case” noise condition as reflected in Fig. 1. The state ρ0

remains unchanged, while the initial state ρ1 is progressively af-
fected by the depolarizing noise channel of Eq. (21) prior to detec-
tion. An interesting behavior in Fig. 4 is the possibility of reducing 
the probability of detection error Pmin

er by means of an increase 
in the probability p of action of the depolarizing noise channel 
of Eq. (21). In Fig. 4, at small p, the performance in detection 
is poor, with a probability of error Pmin

er of the optimal detector 
which can do no better than min(P0, P1) which is the probability 
or error of the prior uninformed detection strategy using no mea-
surement. This can be explained by a pure state ρ0 and a mixed 
state ρ1 which are initially very close. As a result, the optimal de-
tector operates in the regime of Eq. (19) where the measurement 
is of no use to enhance the performance above that of the prior 
uninformed strategy. Then, the increase of the probability p of the 
depolarizing channel results in a transformed state N2(ρ1) which 
becomes more distinguishable from the other state ρ0 . The noise 
channel acts to separate the two states and improves their discrim-
ination. As ρ1 is progressively depolarized by increasing p in Fig. 4, 
the probability of detection error Pmin

er diminishes. This is shown 
in Fig. 4 for three configurations of the initial mixed state ρ1 , 
illustrating the same effect of enhanced performance upon depo-
larization of ρ1 by the noise channel.

A favorable action of the noise channel can also be registered 
when the quantum system is initially, at p = 0, in a regime of use-
ful measurement as in Eq. (18). Examples are shown in Fig. 5, for 
discrimination between the pure state ρ0 = |0〉〈0|, and a mixed 
state ρ1 in different initial configurations which is progressively 
affected by the depolarizing noise channel N2(·) of Eq. (21). With 
no depolarizing noise, i.e. at p = 0 in Fig. 5, the probability of er-
ror Pmin

er of the optimal detector starts at a value strictly below 
min(P0, P1) the probability or error of the prior uninformed de-
tection strategy. Then, as the depolarizing noise increases with p
rising above zero, the probability of error Pmin

er can regularly de-
crease as in Fig. 5(a), or it can start to temporarily increase as in 
Fig. 5(b)–(c). For sufficiently large p, the probability of error Pmin

er

Fig. 4. For discrimination between the pure state ρ0 = |0〉〈0| and the mixed state ρ1

with prior probability P1 = 0.64. The dashed horizontal line is min(P0, P1) = P0 =
0.36 the probability of error of the prior uninformed detection strategy. The three
solid lines are the minimal probability of error Pmin

er achieved by the optimal de-
tector, as a function of the noise channel probability p. The mixed state ρ1 defined

by the Bloch vector �r1 is progressively affected by the depolarizing noise channel
of Eq. (21) equivalent to Eq. (22) at q = 1. Three initial configurations at p = 0 are

tested for �r1 with spherical coordinates (R1, θ1, ϕ1 = 0): (a) (R1 = 0.3, θ1 = 0.25π), 
(b) (R1 = 0.4, θ1 = 0.2π), (c) (R1 = 0.6, θ1 = 0.1π).

Fig. 5. Same as Fig. 4, with for �r1 the three initial configurations, at p = 0: 
(a) (R1 = 0.3, θ1 = 0.3π ), (b) (R1 = 0.4, θ1 = 0.35π ), (c) (R1 = 0.4, θ1 = 0.4π ).

decreases as p grows further, for the three configurations in Fig. 5, 
manifesting enhanced performance in detection by the action of 
the noise channel.

It can also be noted in both Fig. 4 and Fig. 5, that a nonzero 
depolarizing probability p can enhance the detection performance 
strictly above its level at p = 0 with no noise channel. Moreover, 
Pmin
er can achieve its overall best (smallest) value when the prob-

ability of action of the depolarizing noise channel of Eq. (21) is at 
its maximum p = 1. As we argued at the end of Section 5, this out-
come is not feasible when the two states are affected by the noise 
channel: the best performance is always with no noise channel. By 
contrast, when only one state is affected by the noise channel, the 
best performance can occur through effective action of the noise 
channel, which contributes to increase the distinguishability of the 
two states and reduces the probability of error Pmin

er in their dis-
crimination.

As a third example with the protocol of this section where the 
noise channel acts only on the state ρ1 as part of the preparation 
by the sender, we consider discrimination with a state ρ0 which is 
the maximally mixed qubit state ρ0 = 1/2. For discrimination be-
tween an initially pure state ρ1 and ρ0 = 1/2, Fig. 6 shows the 
probability of error Pmin

er , as a function of the noise channel prob-
ability p, with various types of the noise channel at different q in 
Eq. (22). Nonmonotonic evolutions are observed for Pmin

er in Fig. 6, 
at all values of q fixing the type of the noise channel, with a range 
where an increase of the probability p of action of the noise chan-
nel reduces the probability of error Pmin

er . Similar nonmonotonic 
evolutions of the performance Pmin

er for all q are preserved for dis-
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Fig. 6. For discrimination between the maximally mixed qubit state ρ0 = 1/2 and 
the initial pure state ρ1 with Bloch vector �r1 = (R1 = 1, θ1 = 0.1π , ϕ1 = 0) and 
prior probability P1 = 1/2, the minimal probability of error Pmin

er achieved by the 
optimal detector, as a function of the noise channel probability p, for different val-

ues of the channel parameter q from q = 0 to q = 1 by step 0.1. The ticker blue line
is at q = 0.4. The noise channel of Eq. (22) only affects the state ρ1 , while the state 
ρ0 = 1/2 is unaffected since and stands as a fixed point of the noise channel for 
any p and q. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

crimination from a mixed state ρ1 , and at other values of the prior 
probability P1 = 1/2.

A notable feature with the signaling state ρ0 = 1/2 in Fig. 6 is 
that this state remains invariant by the transformation of Eq. (22), 
i.e. N (1/2) = 1/2 for any p and q. This is easily verified from 
Eq. (23) since the state ρ0 = 1/2 has the invariant Bloch vector 
�r0 = �0. Therefore, any noise channel according to Eq. (22) has no 
effect on the signaling state ρ0 = 1/2. In this case, the protocol of 
this Section 6 where the noise channel acts only on the state ρ1 , 
is equivalent to the more common protocol of Section 5 where 
the noise channel acts equally on the two states ρ1 and ρ0 = 1/2. 
Therefore, the nonmonotonic evolutions of the performance Pmin

er

with the noise channel probability p in Fig. 6, characterize the dis-
crimination between states ρ1 and ρ0 = 1/2 after action of the 
noise channel, equally in the protocols of Section 5 and Section 6. 
As a consequence, the argument at the end of Section 5 applies to 
the nonmonotonic evolutions of Pmin

er in Fig. 6 for discrimination 
with ρ0 = 1/2: the performance at p > 0 (although nonmono-
tonic) can never surpass the performance at p = 0, as verified in 
Fig. 6. For discrimination from ρ0 = 1/2, reinforcing the noise by 
increasing p can be beneficial when some quantum noise preex-
ists, within the protocol of Section 5.

7. Discussion

In this report we have studied a quantum detection process
as a conclusive discrimination between two alternative quantum 
states, in relation to stochastic resonance and effects of enhance-
ment by noise in information processing. The optimal quantum 
detector minimizing the probability of detection error is exhibited 
in general conditions. An application is made to discrimination on 
the qubit, which is a fundamental reference system of quantum in-
formation theory. The case of the qubit, which can be worked out 
in detail, allowed us to test generic models of quantum noise, ma-
terialized by a noise channel randomly applying Pauli operators 
on the qubit prior to detection. In this way, the detection pro-
cess was performed on a noisy qubit, and we specifically analyzed 
the impact of the noise on the detection performance. This specific 
perspective, to explicitly introduce a model for quantum noise and 
to focus on its impact in detection, is not common to the previ-
ous literature on quantum state detection or discrimination. This 
led us to identify situations which can be interpreted as possibili-
ties of stochastic resonance or enhancement by noise in quantum 
state discrimination. This was manifested by conditions where an 

increase in the probability p of action of the noise channel to af-
fect the qubit could be associated with a reduced probability of 
detection error. Such a beneficial outcome can be obtained for two 
modes of action of the quantum noise, that we successively con-
sidered in Sections 5 and 6.

The noise channel can act on the two qubit states, as in Sec-
tion 5. This represents the case of a qubit which is transmitted 
from the sender, through the noisy quantum channel, to the re-
ceiver performing the detection. In this mode, an increase in the 
probability p of action of the noise channel, can lead to enhanced 
detection for all the noise channels tested (0 ≤ q < 1), except for 
the pure depolarizing channel (q = 1) which represents the worse 
noise condition. In this mode of action of the quantum noise, it is 
nevertheless always preferable for detection to measure the qubit 
at zero noise (p = 0), if this is feasible; but if some inevitable 
nonzero noise preexists (p > 0), deliberately increasing to larger 
p can sometimes be profitable to detection.

Alternatively, the noise channel can act on only one of the two 
quantum states, as in Section 6. This represents a case where the 
sender, while preparing the qubit, has a separate control on the 
two signaling states. In the preparation, the sender can choose 
to modify the qubit only when it is in one of the two signaling 
states. To modify the qubit, the sender deliberately applies the 
noise channel. After this preparation by the sender, the qubit is 
directly communicated with no further transformation to the re-
ceiver for detection. In this mode, an increase in the probability p
of action of the noise channel, can lead to enhancement in detec-
tion for all the noise channels, especially the depolarizing channel. 
And configurations with nonzero noise (p > 0) can be more effi-
cient for detection than the absence of quantum noise (p = 0).

These two modes of action of the quantum noise that we have 
examined can naturally be combined, with two successive noise 
channels, one at the qubit preparation and one at the qubit trans-
mission. Detection after the resulting process is still governed by 
the analysis of Section 3, and comparable effects of enhanced per-
formance can be expected to persist.

A common explanation for the favorable action of the noise 
channel on the detection, can be derived from the performance 
Pmin
er under its form of Eq. (13). Our analysis can be viewed 

as revealing the impact of the probability p of action of the 
noise channel, on the trace distance D(P0ρ0, P1ρ1) between 
the two weighted states P0ρ0 , P1ρ1 occurring in Eq. (13). This 
trace distance D(P0ρ0, P1ρ1) does not share all the properties 
of a trace distance between two density operators, because the 
weighted states P0ρ0 , P1ρ1 , strictly, are not density operators; and 
D(P0ρ0, P1ρ1) also conveys the importance of the priors P0 , P1 in 
the detection performance. An important observation here is that 
the action of p on D(P0ρ0, P1ρ1) is nonmonotonic. An increase 
in the probability p can sometimes, in conditions determined by 
the analysis of Section 3, increase the distance D(P0ρ0, P1ρ1), in-
ducing in this way an enhancement of the detection performance 
Pmin
er .
Discrimination of quantum states is a fundamental operation 

for information processing. This operation is studied here for the 
first time in relation to stochastic resonance and possibilities of 
enhancement by noise in a quantum context. There can be several 
meaningful ways of quantifying the amount of quantum noise. In 
the quantum context considered here, the noise essentially mod-
els the interaction of the qubit with an uncontrolled environment 
[1,2]. The probability p as defined in the noise channel models 
of Section 4, provides a parameter which directly quantifies the 
amount of action of the noise channel on the qubit. At p → 0, the 
action of the noise channel vanishes; as p rises above zero, there is 
more and more probability that the noise channel act to alter the 
qubit, or equivalently the qubit is more and more exposed to al-
teration by the environment. This assigns a direct interpretation to 
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the noise channel parameter p, as quantifying the probability of al-
teration of the qubit by the environment. Our analysis shows that 
there is no monotonic detrimental action of the environment for 
discrimination issues, and larger coupling to the environment can 
sometimes be found beneficial for discrimination. For instance, in 
some situations, a very noisy quantum state resulting from strong 
decoherence produced by the environment, and corresponding to 
large values of p, can lead to higher efficacy in distinguishing from 
another given quantum state.

The quantum systems and noise models considered in this 
study represent basic elements from quantum information process-
ing and quantum information theory, as reviewed for instance in 
[1,2]. They allowed us here to show some possibilities of stochastic 
resonance or noise-enhanced performance in a quantum detection 
task operating at the level of these basic elements. These are the 
same basic elements of quantum information that are also used 
in many other studies for instance on quantum state discrimina-
tion, detection, or noise in communication with quantum channels, 
as referred to in this report. Also quantum measurement here has 
the special form of a process of decision between two alternative 
density operators. At another level concerning quantum noise and 
quantum measurement, another line of study starts from macro-
scopic or mesoscopic systems, like electrical circuits or resonant 
cavities, and describes how the quantum-limited regime can be 
reached and handled, as for instance addressed in [56–59]. This 
complementary level of approach, in connection with the present 
results, could be useful to identify the conditions under which 
the standard noise channel models of [1,2] used here arise, or to 
describe the implementation with physical devices of the binary 
measurement defined by the optimal detector of Section 2. This 
represents an important step to connect quantum effects identi-
fied at the elementary levels of the basic operators of quantum 
information [1,2], to actual physical implementation systems exist-
ing at the macroscopic level [56–59]. Mastering such connection 
is a very vast program, which is currently under active develop-
ment, and is clearly beyond the scope of the present study. In this 
context of quantum information [1,2] it is often the case that for 
the informational task at hand, the post-measurement state is not 
relevant, and only the result of a single non-repeated measure-
ment matters. This is the case here for the detection task, where 
a binary quantum measurement is used to decide between two 
alternative density operators; once a decision is obtained, the post-
measurement state and the fate of the quantum system are not 
relevant. For this reason, the effect of measurement back-action, as 
for instance considered in [58], is not included in the analysis of 
the quantum detection task.

8. Conclusion

Based on the theory of quantum detection, we have described
a setting for quantum state discrimination through a conclusive 
binary measurement operating on a noisy qubit. The noise is re-
alized by a quantum noise channel of various types acting on the 
qubit prior to its measurement. The amount of noise is quanti-
fied by the probability p of action of the noise channel on the 
qubit, and we focused on the impact of noise on the discrimination 
performance assessed by the probability of error of the optimal de-
tector. We have shown the possibility of various situations where 
reinforcement of the action of the noise through an increase of 
the probability p can be associated with enhanced performance 
in discrimination. Such outcome is interpreted as a novel instance 
of stochastic resonance or enhancement by noise in information 
processing, established here for quantum state discrimination with 
quantum noise. This constitutes a new step in the explorations of 
stochastic resonance and favorable noise effects, and their various 
forms and conditions.

This first study on quantum detection and stochastic resonance 
can be extended in several directions. Beyond the case of the qubit, 
and based on the general theory of Section 2, quantum systems of 
larger dimension can be considered, with their appropriate gen-
eralization of the Pauli noise channels [2]. Discrimination from 
such noisy quantum states can then be investigated for the impact 
of noise, and for possibilities of enhancement by quantum noise. 
Other quantum information processes and channels have been re-
cently investigated for extension of stochastic resonance [60–63]. 
The present results contribute in the same endeavor of exploring 
possible benefits from noise in relation to quantum information 
processing.
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