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The price of connectedness in graph partitioning problems

Nicolas Martin1, Paolo Frasca1, Takayuki Ishizaki2, Jun-Ichi Imura2, Carlos Canudas-de-Wit3

Abstract— In this work, we present some results coming
from the comparison of two classes of problems of optimal
graph partitioning. In the first class of problem, called further
constrained problem, ones impose the nodes belonging to a same
cluster to be connected. In the second class of problem, no
constraint of connectedness is imposed. Obviously, the optimal
solution of an unconstrained problem is always better than
or equal to the solution of the corresponding constrained
problem. It is thus interesting to estimate how much the
connectedness constraint degrades the optimal solution of the
partitioning problem. This degradation is what we call here the
price of connectedness. Motivated by a numerical example, we
propose to estimate the price of connectedness by comparing
the cardinalities of the feasible sets in the unconstrained and
constrained optimisation problems. We present then a tight
upper-bound on the ratio of these two cardinalities for a
directed Erdős-Rényi graph. On our way to set this result we
also derive an upper-bound on the probability that an Erdős-
Rényi graph is connected and the exact probability that an
Erdős-Rényi graph contains isolated nodes.

I. INTRODUCTION

Network partitioning aims to obtain a reduced network
abstracting a large-scale network by merging group of nodes
into super-nodes. The objective of network partition methods
is to cut the complexity of the original network while
preserving some properties. Most problems of partition can
be written as optimisation problems where one seek the best
partition under some constraints. In this article we consider
this kind of optimal graph partition problems. Following the
application, the complexity considered and the properties
to preserve may vary and a large number of works have
treated this topic. For example, [1] aims to preserve stability
and synchronisation of the system, [2], [3] preserves the
network structure, [4] preserves the flow network property
and the eigenvector centrality and [5] provides a reduced
system with a dynamical behaviour close to the initial system
while preserving several properties for control purpose. This
last work will be presented in this article as a motivating
example. In the general case, nodes in a same cluster of
the partition may be not connected. However, for some
applications it is necessary that the nodes belonging to a

This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement N694209) www.scale-freeback.eu
The collaboration leading to this work has been possible thanks to the
Summer Program of the Japan Society for Promotion of Science.

1 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, GIPSA-Lab, 38000
Grenoble, France {nicolas.martin;paolo.frasca}@gipsa-lab.fr
2 Department of Systems and Control Engineering, Graduate School of
Engineering, Tokyo Institute of Technology; 2-12-1, Meguro, Tokyo, Japan.
{ishizaki, imura}@sc.e.titech.ac.jp
3 CNRS, GIPSA-lab carlos.canudas-de-wit@gipsa-lab.fr

same cluster are connected together. A partition respecting
this last property is referred as a connected partition. This
constraint may be necessary, for example, when one consid-
ers real network systems having a geographical nature such
as traffic road network or power grid [4]. Moreover in some
problems the connectedness constraint may or may not be
imposed. In these cases it is useful to estimate the price of
connectedness. As we consider directed graph, connected-
ness may have different definitions. We will consider here
weak connectedness: a directed graph is said to be weakly
connected if the underlying undirected graph (obtained by
replacing directed edges by simple edges) is connected.
The weak connectedness constraint is enough to ensures the
preservation of the geographical nature of the graph.
When the connectedness constraint is considered, it is clear
that the optimal solution is always worse or equal to the
optimal solution without the connectedness constraint. In
this article we investigate how much the connectedness
constraint degrades the solution. The difference between
the two optimal solutions is what we call the price of
connectedness, denoted by ∆. The approach proposed here
allows to tackle the problem at a high level without looking
at the particular partitioning problem. We propose to estimate
the price of connectedness with the ratio of the cardinalities
of the two research sets: the set of partitions and the set
of connected partitions. This ratio is called ratio of con-
nectedness and is denoted by ρ . To motivate this approach
we will present some simulations on a partition problem
from the literature: the cluster model reduction [6]. We focus
then on the estimation of the ratio of connectedness ρ . This
ratio can also be viewed as the probability that a random
partition is a connected partition. We consider in this article
random directed graph obtained via the directed Erdős-Rényi
model detailed later and unless otherwise mentioned, in the
following, a graph stands for a directed graph. We show then
that ρ in an Erdős-Rényi graph is directly linked with the
probability ρ̄ that an Erdős-Rényi graph is connected. The
value of this latter probability has been investigated by a
broad literature providing asymptotic estimations. See [7] for
a discussion on these results. These asymptotic estimations
are valid for very large graphs. We propose here an upper
bound on ρ̄ valid for graphs of any size. From this result
we derive an upper bound on the ratio of connectedness ρ .
Note that the upper-bound is established for a given size of
the clusters. Exactly, this means that for a given directed
Erdős-Rényi graph with parameters (n, p) and a vector M
where mi is the number of nodes in the cluster i (such
that ∑i mi = n), we present an upper-bound on ρ(n, p,M).
The main contributions of this paper are: i) Emphasis the



relation between the ratio of connectedness ρ and the price
of connectedness ∆ via a numerical example; ii) The link
between ρ in an Erdős-Rényi graph and the probability ρ̄

that an Erdős-Rényi graph is connected; and finally iii) the
derivation of a tight upper-bound on ρ̄ leading to a tight
upper-bound on ρ , both for Erdős-Rényi graphs. The paper
is composed as follows: in the second section an example
illustrates the price of connectedness in a concrete problem
and the approach that we propose, in the third section,
numerical simulations are presented to illustrate the link
between ρ and ∆, the fourth section contains the main results,
namely the computations leading to the upper-bound on ρ ,
in a last section we present some conclusions.

II. MOTIVATING EXAMPLE : CLUSTERED MODEL
REDUCTION

In this section we will present an example of partitioning
problem from the literature. Within this example we will em-
phasise the price of connectedness which is the gap between
the optimal solutions of the constrained and unconstrained
problems.

A. The clustered model reduction problem

Consider the following discrete-time linear system:

Σ : x(t +1) = Ax(t)+Bu(t) (1)

where x(t)∈Rn is the state of the system. Given n̂ the desired
size of the reduced system. We define the reduced system as
follows:

Σ̂P :
{

ξ (t +1) = PAPT ξ (t)+PBu(t)
x̂(t) = PT ξ (t) (2)

where P ∈ Rn̂×n is the reduction matrix. The problem is to
find the matrix P making the dynamic of Σ̂P the closest to
the dynamic of Σ. More precisely, we want to minimise ‖g−
ĝ‖H2 , where g is the transfer function from control u to state
x and ĝ is the transfer function from control u to state x̂. A
continuous-time version of the problem is presented in [8]
and different extensions are presented, for example, in [5],
[6] and [9]. The unconstrained problem can be written as
follows:

min
P∈Rn̂×n

‖g− ĝP‖H2 , (3)

where ĝP is the transfer function obtained with P in Σ̂.
To formulate the constrained problem associated to (3) we
introduce I(P) the partition associated to the reduction matrix
P. We have I(P) := {I1, I2, . . . , In̂} where Il is a cluster of the
partition defined as:

Il := { j ∈ {1, . . . ,n},Pl, j 6= 0} (4)

As an example, let P be the following partition matrix:

P =

 ? ? 0 ? 0 0
0 0 ? 0 0 0
0 0 0 0 ? ?

 (5)

where ? represents any non-zero real number, then I(P) =
{{1,2,4},{3},{5,6}}.

1

2 34

5 6

(a) With this graph the par-
tition is connected: I(P) ∈
Ic(G).

1

2 34

5 6

(b) With this graph the parti-
tion is not connected: I(P) /∈
Ic(G)

Fig. 1: Connected and disconnected partitions. Here we
consider the partition defined in eq. 5 applied to two different
graphs.

Definition 1: A partition I of a graph G is a connected
partition if and only if every subgraph G|Il induced by a
cluster Il is weakly connected. Ic(G) represents the set of
connected partitions of a graph G.
See Fig. 1 for an example. The constrained problem can be
written as follows:

min
P∈Rn̂×n

I(P)∈Ic(G)

‖g− ĝP‖H2 (6)

In [6] the authors propose an algorithm to solve prob-
lem (3). In appendix A, we present this algorithm and the
adaptation of it allowing to solve the constrained problem (6).
In the next section, we present some simulations to illustrate
the price of connectedness.

B. The price of connectedness
a) Simulations: The Erdős-Rényi model [10] allows to

generate random directed graphs as follows: we consider n
vertices and each of the n2 potential edges (self-loop are
allowed) exists with a probability p. Here, we consider a col-
lection of 500 Erdős-Rényi graphs with p= 0.2 and n= 100,
and we solve the partition problem without connectedness
constraint (3) and with connectedness constraint (6) for each
graph. We denote by εu the mean error in the unconstrained
problem and by εc the mean error in the constrained problem.
Figure 2 shows the value of εu and εc in function of the
reduction factor n−n̂

n .
The relative difference between the two errors represented

by an arrow in Fig. 2 is the price of connectedness. We
denote it by ∆ and we define it as:

∆ :=
εc− εu

εu
(7)

b) A counting based estimation: Beyond this example,
the loss due to the connectedness constraint always exists
in any partitioning problem and it is useful to quantify its
value. We propose here to tackle this question at a high level:
without looking at the particular problem in question we
propose to estimate the price of connectedness for any couple
of problems which can be formulated as an optimisation
problem, which is any couple of problems

min
I∈I(G0)

f (G0, I) and min
I∈Ic(G0)

f (G0, I) (8)



Fig. 2: Estimation error in the unconstrained problem and
in the constrained problem. The difference between the two
results is the price of connectedness.

which are respectively the Unconstrained Problem and the
Constrained Problem. The approach presented here consists
in comparing the cardinalities of I and Ic which are respec-
tively the set of partition and the set of connected partition
of G0.
More precisely, given a network G having n nodes, and a
vector M (verifying ∑mi = n) we want to estimate the ratio
of connectedness of defined as follows:

ρ(G,M) :=
|Ic(G,M)|
|I(G,M)|

(9)

where I(G,M) and Ic(G,M) are respectively the set of
partitions and connected partitions of G verifying |Il | = ml
(cluster l contains ml nodes).
Note that in the equation (9), I(G,M) does not depend on G
as the connections between nodes do not matter∗.

Before going deeper into the estimation of ρ , we will
present in the next section some evidences on the link
between the ratio of connectedness ρ and the price of
connectedness ∆.

III. RELATION BETWEEN ρ AND ∆ IN THE CLUSTERED
MODEL REDUCTION

A way to emphasise and make more precise the relation
between ρ and ∆ is to observe simulations on the clustered
model reduction presented in the previous section. Precisely,
we want to observe how the price of connectedness ∆ evolves
when the simulations are done with graphs having a different
ratio of connectedness ρ . For this purpose we consider
100 Erdős-Rényi graphs with n = 100 vertices and an edge
probability p varying between 0 and 1†. Figure 3 shows the
relation between the ρ and ∆.

By inspection it seems that, in this case, ∆ could be
approximately related to ρ via the following equation:

∆(ρ) =−γ log(ρ) (10)

∗Its cardinality can be computed as in [11]. However we will not use this
result since we will derive an upper-bound of ρ and not its exact value.
†It is clear that the ratio of connectedness ρ grows with p: increasing p

gives a graph with more edges and so the number of connected partitions
is higher. At the limit, if p = 1 (complete graph) then ρ = 1 and if p = 0
(null graph) then ρ = 0.

Fig. 3: Relation between the price of connectedness and
the ratio of connectedness. Each point correspond to an
Erdős-Rényi graph with n = 100 and p ∈ [0;1]. The ratio
of connectedness, ρ(G,M) is estimated by counting the
number of connected partition over the 500 random partition
generated (with an arbitrary M = [5,5, . . . ,5]). Its price of
connectedness ∆(G) is computed using (7) and Appendix A.
In dotted blue the fitting function in Eq.(10).

with γ ≈ 0.17. Moreover, this function verifies ∆(ρ) −→
ρ→0

∞

and ∆(1) = 0 which is what we expect from the relation
between ∆ and ρ‡.
While the relation (10) is intrinsically linked to the particular
couple of problems (3)-(6), it is clear that ∆ and ρ are always
related. This relation is intuitive when formulated as follows:
the smaller the research set of the constrained problem, the
larger the gap between the solutions of the constrained and
unconstrained problems.

Motivated by this example, we propose, in the next section,
a tight upper-bound on ρ in a (n, p)-Erdős-Rényi graph for
a given cluster size vector M.

IV. VALUE OF ρ IN AN (n, p)-ERDŐS-RÉNYI GRAPH

We try here to estimate the ratio of connectedness in a
directed (n, p)-Erdős-Rényi graph for a given cluster size
vector M.

A. Factorisation formula

Noticing that drawing randomly a cluster of size m in a
(n, p) Erdős-Rényi-graph is equivalent to generate a (m, p)
Erdős-Rényi-graph, we have:

ρ(n, p,M) =
n̂

∏
i=1

ρ̄(mi, p) (11)

where ρ̄(mi, p) is the probability that a (m, p) Erdős-Rényi-
graph is connected. We focus now on ρ̄(m, p) the proba-
bility of connectedness of a (m, p)-Erdős-Rényi graph. This
question has been investigated in several works. Already the
seminal paper of Erdős and Rényi [10] described a phase

‡When ρ goes to 0 the number of connected partitions goes to 0 and the
optimal solution of the constrained problem worsens which is ∆→ ∞. On
the other hand, when ρ = 1, every partition is a connected partition (the
graph is complete) and the solutions of the constrained and unconstrained
problems are the same which is ∆ = 0.



transition behaviour for the value of this probability in the
case of undirected graph. Several works [12], [13] investigate
the phase transition behaviour in Erdős-Rényi directed graph.
However only results for strong connectedness are provided
while we look here for weak connectedness. In particular, if
we denote by Gn,p a random (n, p)-Erdős-Rényi graph and
S the set of strongly connected network it is shown that:{

P(Gn,p ∈S ) −→
n→∞

1 if p > lnn
n

P(Gn,p ∈S ) −→
n→∞

0 if p < lnn
n

(12)

From our knowledge there is not such a result for weak
connectedness. However, it is clear that if such a threshold
exists it should be smaller or equal to lnn

n (because weak con-
nectedness is a milder property than strong connectedness)
and we presume that it is equal. Phase transitions results are
valid for large-scale graphs. However in the case of graph
partitioning the size of the clusters are relatively small (i.e.
mi in Eq. (11) is small) and so these results can not be
used. In the next section we propose an upper-bound on the
probability of weak connectedness in directed Erdős-Rényi
graph that can be used for any graphs.

B. Upper-bound on ρ̄

To estimate the probability ρ̄(m, p), we propose to con-
sider an upper-bounding probability ρ̄0(m, p) which is the
probability that in a (m, p)-Erdős-Rényi graph there is no
isolated node (node with degree 0). As the set of connected
graphs is included in the set of graphs without isolated
nodes, we have naturally ρ̄0(m, p) > ρ̄(m, p). As for the
question of connectedness some works have emphasised a
phase transition behaviour for the probability of presence of
isolated nodes [14], [15]. However these results are only for
undirected graphs and are valid for large-scale graphs. The
following proposition gives an exact expression for ρ̄0:

Proposition 1: Let ρ̄0(m, p) be the probability that a di-
rected (m, p)-Erdős-Rényi graph has no isolated nodes. We
have

ρ̄0(m, p) = 1−
m2−2

∑
k=0

θ(m,k)pk(1− p)m2−k (13)

where θ(m,k) is the number of directed graphs with m nodes
and k edges and with (at least) one isolated node.

Proof: Let us denote Γm the set of graph with m nodes
having isolated nodes and Γ̄m its complementary. Let Gm,p
be a random Erdős-Rényi graph

ρ̄0(m, p) = P(Gm,p ∈ Γ̄m) (14)
= 1−P(Gm,p ∈ Γm) (15)

Now if we denote Γk
m the set of graphs of size m with isolated

nodes and k edges we have:

ρ̄0(m, p) = 1−
m2

∑
k=1

P(Gm,p ∈ Γ
k
m) (16)

Every graph in Γk
m has the same probability to appear which

is the probability that a (m, p)-Erdős-Rényi graph has k
edges. Hence we have P(Gm,p ∈ Γk

m) = |Γk
m|pk(1− p)m2−k.

Let us denote θ(m,k) := |Γk
m|. Noting that θ(m,m2) =

θ(m,m2−1) = 0 leads to the result.
Moreover, the following theorem provides a value of θ .

Theorem 1: Let θ(m,k) be the number of graphs with m
nodes, k edges and (at least) one isolated node. We have

θ(m,k)=


(

m2

k

)
if k<

m
2

bm−
√

kc

∑
s=1

(
m
s

)[(
(m−s)2

k

)
−θ(m−s,k)

]
if k≥ m

2
(17)

Proof: When k the number of edges of a graph is strictly
smaller than m

2 it is impossible that the k edges cover the
m nodes. Thus, any graph with m nodes and k < m

2 edges
contains (at least) one isolated node. The number of such
graph is equal to the number of way to arrange k edges
among the m2 possible edges. This number is equal to

(m2

k

)
.

Let’s denote θs(n,k) the number of graphs with n nodes, k
edges and s isolated nodes. We have:

θ(m,k) =
m

∑
s=1

θs(m,k) (18)

Let us remark that s > m−
√

k =⇒ θs(m,k) = 0 because it
is not possible to have k edges in less than

√
k nodes. Hence

we can rewrite the previous equation as:

θ(m,k) =
bm−
√

kc

∑
s=1

θs(m,k) (19)

Moreover θs can be rewritten as follows:

θs(m,k) =
(

m
s

)
σ(m− s,k), (20)

where σ(m− s,k) is the number of graphs with m− s nodes,
k edges and no isolated node. This value is multiplied by the
number of ways to choose the s isolated nodes within the m
nodes, which is

(m
s

)
. We have then:

θ(m,k) =
bm−
√

kc

∑
s=1

(
m
s

)
σ(m− s,k) (21)

Finally, σ the number of graphs without isolated nodes is
equal to the total number of graphs minus the number of
graphs with at least one isolated node, and so: σ(m− s,k) =((m−s)2

k

)
−θ(m− s,k). Leading to the result.

Note that Eq.(17) can be viewed as a non-homogeneous
linear differential equation with variable coefficients. This
type of equations can be written in a closed form [16].
The same reasoning can be used to solve the problem for a
directed graph without self-loops or for an undirected graph
with or without self-loops. In these cases the m2−2 in the
limit of the sum in Eq. (13) should be replaced respectively
with m(m−1)−2, m(m+1)/2−1 and m(m−1)/2−1 and(m2

k

)
the total number of graph with m nodes and k edges

should be replaced respectively with
(m(m−1)

k

)
n
(m(m+1)/2

k

)
and

(m(m−1)/2
k

)
.



Considering that there are relatively few graphs which
are not connected while having no isolated nodes, the two
probabilities ρ̄(m, p) and ρ̄0(m, p) appears to be really close.
It seems even that the two probabilities tend towards each
other for large m. This leads to the following conjecture.

Conjecture 1: Let ρ̄(m, p) be the probability that a ran-
dom (m, p)-Erdős-Rényi graph is connected and ρ̄0(m, p) be
the probability that a random (m, p)-Erdős-Rényi graph has
no isolated nodes, then:

lim
m→∞

ρ̄(m, p)
ρ̄0(m, p)

= 1 (22)

This result would straightforwardly lead to this second
result:

lim
n→∞

ρ(n, p,M)

ρ0(n, p,M)
= 1 (23)

where ρ0(n, p,M) = ∏
n̂
i=1 ρ̄0(mi, p) is then the upper-bound

on ρ(n, p,M).

C. Simulations

To illustrate the result of Theorem 1 we compare an
experimental value of ρ̄(m, p) and the theoretical value of
ρ̄0(m, p) given in Eq. (13). To find the experimental value
we generate 1000 (m, p)-Erdős-Rényi graphs for each value
of of m = {6,8,10,12} and p = {0,0.02,0.04, . . . ,1}. An
approximation of ρ̄(m, p) consists in counting the proportion
of the 1000 graphs that are connected. The results are
presented in Fig. 4. We notice that i) the inequation ρ̄0 ≥ ρ̄

is well verified and ii) the upper-bound ρ̄0 is really close to
ρ̄ and the difference seems to vanish when m grows. Let us
note that the formula given in Theorem 1 does not allow to
compute θ(m,k) for large value of m. Indeed the recursive
call to the function θ is computationally heavy and the value
of the binomial coefficient grows quickly.

To illustrate the result of Proposition 1 and showing that
the passage to the partitioning problem works well, we
present a second simulation. To compute the experimental
value of ρ(n, p,M), as before, we generate 1000 Erdős-Rényi
with n = 100 nodes for each value of p varying between 0
and 1. For each graph we generate a random partition with
the cluster sizes m1 = m2 = . . .= m20 = 5. An approximation
of ρ consists in counting the proportion of the 1000 graphs
whose partition is connected. The results are presented in
Fig. 5.

V. CONCLUSION

When looking at graph partitioning problems, it is clear
that imposing a connectedness constraint deteriorates the
quality of the solution. We presented here an approach
based on probability and counting allowing to estimate the
price of connectedness which is the degradation due to the
connectedness constraint. This is an high-level approach in
the sense that it does not focus on the particular problem,
only on the cardinalities of the partition sets in the constraint
and unconstrained cases. The drawback of this high-level
approach is that, the results are not precise when considering
particular problem. Then an extension of this work would
be to investigate to what extent, the ratio of connectedness

(i.e. the relative size of the research set in the constrained
problem) influences the price of connectedness. In other
words, the study of the function ∆(ρ) which depends on
the particular problem considered. Another extension of this
work would be the simplification of the recursive formula
given in Theorem 1 allowing to make it computable for large-
scale graphs.
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APPENDIX

A. Algorithms

We describe here the algorithm proposed in [6] to solve
the problem (3) and how we have adapted it to solve the
constrained problem (6). The solutions brought by these
algorithms are not the optimal solution of the minimisation
problem but a good approximation of it.
The algorithm is an iterative greedy algorithm which means
that at each step the best pair of nodes is chosen and merged.
As at each step only two nodes are merged, the number
of nodes in the graph is reduced by one, and then the



Fig. 4: Comparison between the experimental value of ρ̄(m, p) (the probability that a given (m, p)-Erdős-Rényi graph is
connected) and the theoretical value of the upper-bound ρ̄0(m, p) (the probability that a given (m, p)-Erdős-Rényi graph has
no isolated node) for p ∈ 0 : 0.02 : 1 and for different values of m. The phase transition behaviour detailed in Eq. (12) is
represented in dotted black: when m grows ρ̄(m, p) gets closer to the transition.

Fig. 5: Comparison between the experimental value of
ρ(100, p,{5, . . . ,5}), and the theoretical value of the upper-
bound ρ0(100, p,{5, . . . ,5}) for p ∈ 0 : 0.005 : 1.

same procedure is applied (n− n̂) times where n is the
size of the initial graph and n̂ is the desired size of the
final graph. Both algorithms are described in 1 as there
is only a small modification. In the algorithm solving the
unconstrained problem the part such that A(i, j) 6= 0 at line
4 is removed. Indeed in the unconstrained problem we apply
the same algorithm expect that two nodes can be merged
without being connected (which is the removed condition).

Other computations are done after this step but there are
identical for the two problems. For our concern we are only
interested in this part of the reduction method.

Algorithm 1 Cluster Model Reduction

Input: Initial system Σ : x(k + 1) = Ax(k) + Bu(k) repre-
sented by the graph G(A) (where A is adjacency matrix
of G) and a desired final size m

Output: Final partition I
1: Initialise the partition as I ← {I1, . . . , IN} =
{{1}, . . . ,{N}}

2: Solve the Lyapunov equation AΦAT −Φ+BBT = 0
3: for k = 1 : (n−m) do
4: for all pair i > j such that A(i, j) 6= 0 do
5: Assign the reducibility value to the pair (Ii, I j) as:

δIi,I j = Tr(ΦIl∪I j)−
1ΦIl∪I j 1

n
6: end for
7: Merge the clusters minimising the reducibility value,

which is if (Ii0 , I j0) := argmin δ (Ii, I j) then Ii0← Ii0 ∪
I j0 and I← I\I j0

8: end for


