
HAL Id: hal-02170946
https://hal.science/hal-02170946

Submitted on 2 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Programming Languages For Hard Real-Time
Embedded Systems

J. Forget, F. Boniol, D Lesens, C Pagetti, M. Pouzet

To cite this version:
J. Forget, F. Boniol, D Lesens, C Pagetti, M. Pouzet. Programming Languages For Hard Real-
Time Embedded Systems. 4th International Congress ERTS 2008, Jan 2008, Toulouse, France. �hal-
02170946�

https://hal.science/hal-02170946
https://hal.archives-ouvertes.fr

Programming Languages For Hard Real-Time Embedded Systems
J. Forget1, F. Boniol2, D. Lesens3, C. Pagetti1, M. Pouzet4

1: ONERA/CERT, 2, avenue Edouard Belin, BP 74025 - 31055 Toulouse cedex 4 - France
2: ENSEEIHT, 2, rue Charles Camichel, BP 7122 - 31071 Toulouse Cedex 7 - France

3: EADS Astrium Space Transportation, Route de Verneuil - BP 3002 - F-78133 Les Mureaux Cedex - France
4: LRI, Université Paris-Sud 11, Bat. 490, 91405 Orsay Cedex - France

Abstract: Hard real-time embedded systems have
traditionally been implemented using low level
programming languages (such as ADA or C) at a
level very close to the underlying operating system.
However, for several years now the industry has
started using higher level modelling languages, at
least for early simulation and verification steps. The
objective of this paper is to study existing formal
languages including high level real-time primitives.
Our review is built on the case study of an
aerospace automated transfer vehicle, the
particularity of which is to be composed of several
multi-periodic communicating processes. In this
paper, we emphasize the strengths and weaknesses
of existing programming approaches when
implementing this kind of system. As a result, the
choice of the base rate of the program appears to
have a major influence, not only on the difficulty to
program the system correctly but also on the
execution platform required to execute the program
(operating system, scheduler, ...).

Keywords: Embedded, Real-Time, Programming
Language

1. Introduction

An embedded system is a computer system
embedded in a complete system including hardware
and mechanical parts. Its purpose is to handle the
physical system in its environment. Such systems
are dedicated to some specialized functionalities on
the contrary to general purpose computers like
personal computers. Nowadays, embedded systems
range from heavy industries like aeronautics,
aerospace or railways, to lighter industries like home
appliances or cell phones.
In the following, we are mainly interested in reactive
systems. A reactive system interacts with its
environment by repeating indefinitely the same
sequence: acquiring data on sensors, processing
data, producing data to control actuators. Such
systems must respect hard real-time constraints,
meaning that failing to respect these constraints can
lead to catastrophic situations. These systems are
required to be functionally deterministic, meaning
that they always produce the same output sequence
with respect to the same input sequence. They must
be temporally deterministic as well, always having

the same predictable temporal behaviour. While
respecting these strong constraints, the system still
needs to be optimized, in terms of latency, hardware
cost, power consumption or weight for instance.
Currently, such systems are mainly prototyped with
high-level approaches (Matlab/Simulink [17] or the
Synchronous approach [1]) and then programmed
separately with low level languages, like C or Ada, at
a level very close to the underlying Operating
System. However, the complexity of the
development process, due to the constraints
mentioned above, calls for higher-level, formal
programming languages, which cover the complete
process from design to implementation.
We review such formal languages by studying the
programming of an automated aerospace transport
vehicle. The distinctive feature of this case study is
its multi-rate aspect. Programming a reactive system
using high level languages consists in describing the
computations performed during a basic iteration,
which is repeated indefinitely. When dealing with
multi-rate systems, the choice of the rate of this
basic iteration (chosen among the different rates of
the system) leads to very different styles of
programming, regarding real-time constraints but
also communications between processes of different
rates.
Synchronous languages are based on a paradigm
well adapted for programming critical reactive
systems but do not provide natively primitives for
expressing hard real-time constraints. In practice,
the multi-rate aspects have to be “manually”
handled. The usual solution is to program using the
fastest rate of the system as the basic iteration rate.
However, this requires manual scheduling and
splitting of slow processes into several fast sub-
processes (“manual preemption”), which is tedious
and error-prone. On the opposite, we cannot
program the system correctly choosing the slowest
rate as the basic iteration, due to the lack of
primitives to control the scheduling of fast operations
that have to be repeated periodically inside the basic
iteration.
Real-time extensions to the synchronous approach
have recently been introduced following two
directions. First, real-time aspects can be introduced
in the language and handled by the compiler as
such, by specifying processes execution times [10],

 Page 1/10

latency constraints and periodicity constraints [8],
 [11]. These extensions clearly fit our case study
better, though they still need some improvements, in
particular concerning multi-rate communications.
Second, the synchronous approach usually does not
rely on underlying Operating Systems much (the
synchronisations and scheduling are directly
handled by the synchronous compiler). However
refining the synchronous execution model, by
allowing preemption for instance [16], enables the
use of existing scheduling tools, which facilitates the
compilation of synchronous multi-rate systems.
The Time-Triggered Approach [9] can also be used
to specify our case study, as proposed in Giotto
 [13]. Interestingly, Giotto favours programming using
the slowest rate as the base rate, on the opposite to
the synchronous approach. However, using this
approach at such a high design level does not seem
to be appropriate. It mainly lacks control on the
execution order of operations and on communication
processes. TTA seems to fit better at lower level, for
instance as an execution model for the synchronous
approach.
Our paper is structured as follows. We first present
our case study, an automated transfer vehicle in
section 2. We then study its programming using
available languages. We pay special attention to
synchronous languages in section 3 and study their
recent real-time extensions in section 4. We present
the time-triggered approach in section 5 and
conclude in section 6.

2. Case Study : an Automated Transfer Vehicle

Our case study is an Automated Transfer Vehicle
(ATV) designed by EADS Astrium Space
Transportation for resupplying the international
space station. We present an adapted version of the
safety unit of the vehicle (not the real version). Its
purpose is to supervise the main computing unit of
the vehicle in order to detect possible failures. If a
failure occurs, the safety unit stops the current
operation and moves the vehicle to a safe orbit,
waiting for further instructions coming from ground
control. The safety unit is represented in Figure 1.

Figure 1: The case study

The safety unit is made up of two tasks, a fast task
(Basic Task) executed with a rate of 10Hz, and a
slow task (Control Task) executed with a rate of
2Hz. Each task is made up of two operations. The
fast task acquires acceleration measures from
sensors through the basic_op operation and sends
them to the slow task. The upstream operation
integrates successive acceleration values and
computes the new required acceleration values,
which are in turn sent back to the fast task. The
operation apply_cmd computes new acceleration
orders and sends them to the thrusters. The
downstream operation adjusts acceleration values
as the frame of reference (the vehicle) is moving and
gives its feed back to basic_op. This whole process
is repeated indefinitely.
The edges between operations model data
dependencies. A data dependency implies a
precedence relation between the communicating
operations. The small “z” boxes represent delay
communications. A delay communication means that
the data produced during one iteration of the system
is only consumed at the next iteration.
Communications from the slow task to the fast task
are performed using a delay to avoid the fast task to
be delayed until the slow task is complete.
The programming of the processes performed inside
the four operations of the safety unit is not the
concern of this paper, we are mainly interested in
dealing with the real-time and communication
aspects of the system.

3. The Synchronous Approach

In the synchronous model, time is modelled as
logical time separated into instants. The duration of
an instant, as well as its start date, are not
considered and remain abstract. Synchronous
languages describe computations made during each
instant (which are repeated indefinitely). The
synchronous hypothesis states that computations
made during one instant must end before the

 Page 2/10

beginning of the next instant. Among synchronous
languages we can cite Esterel [2], Lustre/Scade [7],
Signal [4], Lucid Synchrone [5] and Synchronous
Data Flow [6]. In this paper, we focus on equational
synchronous languages (Lustre/Scade, Signal, Lucid
Synchrone).

3.1 Presentation
In equational synchronous languages, variables and
expressions are flows. A flow is defined by its
sequence of values, potentially infinite, and by its
clock. The clock of a flow defines the instants when
the flow is present (defined). Each time the flow is
present, it takes the next value in its sequence of
values. Flows are defined by equations and
equations are structured into nodes, among which
one is the main node (the entry point of the
program). Nodes are organized hierarchically, they
can be used in expressions to define flows.
Classic arithmetical and logical operators are
extended point wise over flows. For instance, adding
two flows produces a flow the value of which is the
sum of the two flows at each instant. In the same
way, if-then-else is the point wise conditional
operator. The pre operator is an instant delay
operator, it stands for the previous value of a flow. It
is often used along with the -> initialisation
operator, as the first value of pre x is undefined.
The when operator undersamples a flow using a
Boolean condition. The flow x when c is present
and takes the value of x only when c is true.
Conversely, current replaces the absent values
created by when by the last present value of the flow.
This operator has been replaced by merge in Lucid
Synchrone, which combines flows of complementary
clocks. For instance, merge c (x when c) (y when
not c) produces a flow the clock of which is the
clock of c, and which takes the value of x when c is
true and the value of y when c is false. The
behaviour of these operators is illustrated Figure 2.
Usually, lower level processes of the program are
defined using imported nodes. Signatures of these
nodes (input and outputs) are declared in the Lustre
program, but the nodes are implemented outside, for
instance using C code. Lustre only requires these
nodes to have no hidden side-effect on the program:
each imported node can only modify the values of
the Lustre variables that are declared as its outputs
(it can of course also modify internal variables not
declared in the Lustre program).

x x1 x2 x3 x4 …
y y1 y2 y3 y4 …
x+y x1+y1 x2+y2 x3+y3 x4+y4 …
x->pre y x1 y1 y2 y3 …
h True False False True …
x when h x1 x4 …
y when not h y2 y3 …

current x x1 x1 x1 x4 ...
merge h x y x1 y2 y3 x4 …

Figure 2: Operators on flows. We give the value of
each flow at each instant.

3.2 Application to the case study
In this section we program our case study using
Lustre. We chose Lustre as it is the fundamental
basis of Scade, often used for programming
aeronautic and aerospace systems. The program
(and encountered problems) would be fairly similar
with other equational synchronous languages.
The main characteristic of our case study is that
processes are performed at different rates.
Consequently, we first have to choose the rate at
which the basic iterations of the synchronous
program will be performed: either the fast rate
(10Hz) or the slow rate (2Hz). We use some auxiliary
nodes, whose code is given Figure 3. Node countN
is a counter modulo n. everyN(n) is true once each
n activation. never(c) remains false as long as c
has never been true, it remains true afterwards.
Node i_current is an initialised delay:
i_current(c, init, f when c) has value init as
long as clock c has never been active; then it has
the current value of f when c is active and the last
active value of f otherwise.

node countN(n: int) returns(o: int)
let
 o=(0->(pre(o)+1)) mod n;
tel

node everyN(n: int) returns (reached: bool)
let
 reached=(countN(n)=n-1);
tel

node never(c: bool) returns (not_ever: bool)
let
 not_ever=(not c)-> (not c and pre(not_ever))
tel

node i_current(c: bool; init: int; x: int when
c) returns (o: int)
let
 o = if never(c) then init
 else current(x);
tel

Figure 3: Auxilliary Lustre nodes used to program
the case study.

Programming with a fast base rate: We start with a
version on the fast rate, the corresponding program
is given Figure 4. This program assumes that the
main node msu_fast is activated with a frequency of
10Hz (see section 3.3 for details). The nodes
basicOp and applyCmd corresponding to the
operations of the fast task are performed at each
instant, thus at 10Hz. The nodes upStream and
downStream corresponding to the operations of the
slow task are performed once every five instants,
thus at 2Hz, as they are activated only when the

 Page 3/10

clock clock5 is true. Data communications from the
fast task to the slow task cannot be consumed
immediately at the instants when the slow task is not
active; data produced is consequently memorised
until the next activation of the slow task (flows
bop02, bop12, bop22, bop32). Data communications
from the slow task to the fast task (flows ds and us1)
are delayed using the pre operator. The
corresponding flows are set on the fast clock using
the current operator.

node msu_fast(fromEnv, fromOtherMSU: int)
 returns (toEnv, toOtherMSU: int)
var clock5: bool;
 bop1, bop02, bop12, bop22, bop32, bop42,
cur_ds, cur_us1: int;
 ds, us1, us2: int when clock5;
let
 bop32=0->pre(bop42);
 bop22=0->pre(bop32);
 bop12=0->pre(bop22);
 bop02=0->pre(bop12);
 bop1, bop42, toOtherMSU=basicOp(fromEnv,
fromOtherMSU, cur_ds);
 toEnv=applyCmd(cur_us1, bop1);
 clock5=everyN(5);
 us1, us2=upStream(bop02 when clock5,
 bop12 when clock5,
 bop22 when clock5,
 bop32 when clock5,
 bop42 when clock5);
 ds=downStream(us2);
 cur_ds=i_current(clock5, 0, pre(ds));
 cur_us1=i_current(clock5, 0, pre(us1));
tel

Figure 4: Programming the case study in Lustre, with
a fast base rate (10Hz)

The main default of this version is that it assumes
that it is possible to execute the four operations in
less than the duration of an instant (100ms). Indeed,
at cycles when both the slow and fast operations are
activated, they must all finish before the beginning of
the next instant.
This assumption is far too restrictive and leads us to
a new version given Figure 5. This time we split the
processes performed by the slow operations into
several nodes (upStream split into upStream0,
upStream1, upStream2, and downStream split into
downStream0, downStream1) and distribute these
nodes between five successive instants, which
correspond to one slow cycle. Each of these nodes
is activated only once every five instants, with an
offset of one instant between the different nodes.
Consequently, the complete slow task is indeed
executed with a frequency of 2Hz.

node msu_fast2(fromEnv: int; fromOtherMSU: int)
 returns (toEnv, toOtherMSU: int;)
var clock0, clock1, clock2, clock3, clock4:
bool;
 count: int;
 bop1, bop02, bop12, bop22, bop32, bop42:
int;
 us_0: int when clock0;
 us_1: int when clock1;
 us1, us2: int when clock2;
 ds_0: int when clock3;
 ds: int when clock4;
let
 count=countN(5);

 clock0=(count=0);
 clock1=(count=1);
 clock2=(count=2);
 clock3=(count=3);
 clock4=(count=4);
 bop32=0->pre(bop42);
 bop22=0->pre(bop32);
 bop12=0->pre(bop22);
 bop02=0->pre(bop12);
 us_0=upStream0(bop02 when clock0,
 bop12 when clock0,
 bop22 when clock0,
 bop32 when clock0,
 bop42 when clock0);
 us_1=upStream1(current(us_0) when clock1);
 us1, us2=upStream2(current(us_1) when clock2);
 ds_0=downStream0(current(us2) when clock3);
 ds=downStream1(current(ds_0) when clock4);
 bop1, bop42,toOtherMSU=basicOp(fromEnv,
fromOtherMSU, i_current(clock4, 0, pre(ds)));
 toEnv=applyCmd(i_current(clock2, 0, pre(us1)),
bop1);
tel

Figure 5: Programming the case study in Lustre, with
a fast base rate, spliting operations of the slow task

Our case study is a simplified system, however for a
complete system, manually distributing processes of
the slow task between five (fast) instants can be
tedious and error-prone. This indeed requires the
programmer to determine a fair distribution between
instants in terms of execution times, which can be a
difficult scheduling problem. This also assumes that
the software architecture of the processes enable
such a distribution. For instance, if a slow operation
is split into two sub-nodes, as Lustre forbids side
effects data produced by the first sub-node at the
end of the first instant explicitly needs to be passed
on to the next sub-node of the operation at the next
instant (flow us_0 between upStream0 and
upStream1). Such data communications can be
numerous if the processes of one operation are very
interdependent and this leads to high memory
consumption.

Programming with a slow base rate: We will now
consider a third version using the slow rate as the
base rate of the program. The corresponding code is
given Figure 6. This program assumes that the main
node msu_slow is activated with a frequency of 2Hz.
The nodes of the slow task (upStream and
downStream) are executed at each instant. The
nodes of the fast task are repeated five times for
each instant in order to be executed with a
frequency of 10Hz. The inputs and outputs of the
program are respectively consumed and produced
by the fast task, thus they are also duplicated five
times. Data communications from the slow task to
the fast task (ds and us1) are performed with a pre
(delay).

node msu_slow(fromEnv0, fromEnv1, fromEnv2,
fromEnv3, fromEnv4: int;
 fromOtherMSU0, fromOtherMSU1,
fromOtherMSU2,
 fromOtherMSU3, fromOtherMSU4: int)
 returns (toEnv0, toEnv1, toEnv2, toEnv3,
toEnv4: int;

 Page 4/10

 toOtherMSU0, toOtherMSU1,
toOtherMSU2, toOtherMSU3,
 toOtherMSU4: int)
var us1, us2, ds: int;
 bop01, bop02, bop11, bop12, bop21, bop22,
bop31, bop32,
 bop41, bop42: int;
let
 us1, us2=upStream(bop02, bop12, bop32, bop42);
 ds=downStream(us2);

 bop01, bop02, toOtherMSU0=basicOp(fromEnv0,
fromOtherMSU0, 0->pre(ds));
 bop11, bop12, toOtherMSU1=basicOp(fromEnv1,
fromOtherMSU1, 0->pre(ds));
 bop21, bop22, toOtherMSU2=basicOp(fromEnv2,
fromOtherMSU2, 0->pre(ds));
 bop31, bop32, toOtherMSU3=basicOp(fromEnv3,
fromOtherMSU3, 0->pre(ds));
 bop41, bop42, toOtherMSU4=basicOp(fromEnv4,
fromOtherMSU4, 0->pre(ds));

 toEnv0=applyCmd(0->pre(us1), bop01);
 toEnv1=applyCmd(0->pre(us1), bop11);
 toEnv2=applyCmd(0->pre(us1), bop21);
 toEnv3=applyCmd(0->pre(us1), bop31);
 toEnv4=applyCmd(0->pre(us1), bop41);
tel

Figure 6: Programming the case study in Lustre, with
a slow base rate

This version is not correct because even if the fast
operations are performed five times each slow cycle,
nothing forces the different repetitions to execute at
the right time during one instant. Le t0 be the start
date of the instant. The duration of the instant is
500ms (2Hz). We expect the fast nodes applyCmd
and basicOp to execute once during each of the five
time invervals [t0, t0+100ms[, ..., [t0+400,t0+500ms[.
This behavior is in no way specified in the program
described above. Similarly, the inputs of the system
will all be consumed simultaneously at the beginning
of the instant and the outputs of the system will all
be produced simultaneously at the end of the instant
(thus with a rate of 2Hz), which is not the expected
behavior. To program this aspect correctly, primitives
constraining the start and end dates of a node and
the availability date of a flow are required. Finally,
instantiating a node five times can be different from
repeating it five times, if the node contains memories
(pre). Five instances of the same node have five
different memories, while five repetitions of the same
node use the same memories. For instance,
repeating a counter node five times obviously does
not produce the same result as instantiating five
different counters.

3.3 Synchronous languages in the development
process
The different synchronous languages share the
same execution model, however they do not all fit
the same way in the development process.
Synchronous languages can fall into two categories:
opened synchronous systems or closed
synchronous systems. In an opened synchronous
system (all the equational synchronous languages),
acquiring input on sensors and producing output on

actuators is performed outside the synchronous
program. The compiler generates code that needs to
be completed by integration code. The integration
code handles “communications” with the physical
environment of the system (sensors and actuators)
and activates the synchronous program. The
activation rate of the program is determined by this
integration code. We should point out that in these
synchronous systems, the activation rate does not
have to be periodic, even if it is the most natural
assumption. Indeed the synchronous hypothesis
simply holds as long as an instant does not start
before the processes performed during the former
instant have completed their execution, but the
activation intervals can vary as long as this
hypothesis is respected.
In a closed synchronous system (AAA methodology
presented section 4.3 or SDF), acquiring inputs and
producing outputs is performed by the synchronous
program itself. The compiler generates a stand-
alone executive, which does not require integration
code. Consequently, the rate of the system is
determined by the synchronous program itself. The
next iteration starts as soon as the former iteration
completes.

4. Real-Time Extensions to Synchronous
Languages

We have seen that synchronous languages are well
adapted for programming reactive systems but do
not directly handle real-time constraints. These
constraints must be taken into account manually by
the programmer. Therefore, recent work aims at
introducing real-time extensions in the synchronous
model. The synchronous hypothesis is often
qualified as the “zero execution time” hypothesis,
because execution times are ignored. This does
however not imply that time cannot be taken into
account by the synchronous model. From a
theoretical point of view, the duration of an instant is
abstract. In practice, this duration is of course not
null, and the synchronous hypothesis holds only if all
the processes executing during one instant finish
before the beginning of the next instant. The
synchronous hypothesis does not prevent from
considering the duration of an instant.

4.1 Implementing Lustre programs under real-time
constraints
Recent work [8], proposed to introduce real-time
aspects in Lustre through the use of assumptions
made about the program environment and
requirements about the program itself. Assumptions
specify the base rate of the program
(basic_period=5) as well as nodes execution times
(exec_time N in [3,4]). Requirements constrain
the availability date of a flow (date(x)<5) or the
latency between two flows (date(x)-date(y)>4).

 Page 5/10

The compiler ensures, using static scheduling
techniques, that if the assumptions hold, the
requirements are satisfied. An additional primitive,
periodic_clock(k,p)defines a clock of period k
and of phase p. This clock is false during the p-1 first
instants and then true once every k instants. Such
clocks are computable statically, which enables
better scheduling analysis when opposed to
classical Boolean clocks computed dynamically.
These programs are compiled as a set of
communicating tasks for a Time Triggered
Architecture (TTA) [12].
Using these extensions, we first give in Figure 7 a
corrected version of our case study programmed on
a slow base rate. The assumptions specify the base
rate of the program (500ms) and the durations of
each node. The requirements constrain the
availability of the inputs and outputs of the program.

node msu_slow(fromEnv0, fromEnv1, fromEnv2,
fromEnv3, fromEnv4: int;
 fromOtherMSU0, fromOtherMSU1,
fromOtherMSU2,
 fromOtherMSU3, fromOtherMSU4: int)
 returns (toEnv0, toEnv1, toEnv2, toEnv3,
toEnv4: int;
 toOtherMSU0, toOtherMSU1,
toOtherMSU2, toOtherMSU3,
 toOtherMSU4: int)
(hyp)
 basic_period=500;
 exec_time basic_op in [18, 20];
 exec_time applyCmd in [27, 30];
 exec_time downStream0 in [28, 30];
 exec_time downStream1 in [37, 40];
 exec_time upStream0 in [28, 30];
 exec_time upStream1 in [28, 30];
 exec_time upStream2 in [28, 30];
(req)
 date(fromEnv0)=0; date(fromOtherMSU0)=0;
 date(fromEnv1)=100; date(fromOtherMSU1)=100;
 date(fromEnv2)=200; date(fromOtherMSU2)=200;
 date(fromEnv3)=300; date(fromOtherMSU3)=300;
 date(fromEnv4)=400; date(fromOtherMSU4)=400;
 date(toEnv0)<=100; date(toOtherMSU0)<=100;
 date(toEnv1)<=200; date(toOtherMSU1)<=200;
 date(toEnv2)<=300; date(toOtherMSU2)<=300;
 date(toEnv3)<=400; date(toOtherMSU3)<=400;
 date(toEnv4)<=500; date(toOtherMSU4)<=500;
var us1, us2, ds: int;
 bop01, bop02, bop11, bop12, bop21, bop22,
 bop31, bop32, bop41, bop42: int;
let
 ...
tel

Figure 7: Programming the case study in Lustre, with
a slow base rate, using real-time extensions.
Equations are the same as in Figure 6.

Compared to the previous Lustre program, this
version constrains correctly the activation dates of
the fast operations. However, the possible problems
when instantiating a fast node with five different
instances instead of repeating the same node five
times remains. Furthermore, the handling of multi-
rate aspects through the use of the date
requirement is still quite heavy.
Consequently, we prefer a new version,
programmed on the fast rate, given Figure 8. The
base rate (100ms) is specified in the assumptions.

The nodes of the fast task are executed once every
five instants, using a periodic clock
(periodic_clock(5,5)). The rest of the program
remains the same as in Figure 4.

node msu_fast(fromEnv: int; fromOtherMSU: int)
 returns (toEnv, toOtherMSU: int)
(hyp)
 basic_period=100;
var bop1, bop02, bop12, bop22, bop32, bop42,
cur_ds, cur_us1: int;
 ds, us1, us2: int when periodic_clock(5, 5);
let
 clock5=periodic_clock(5, 5);
 bop32=0->pre(bop42);
 bop22=0->pre(bop32);
 bop12=0->pre(bop22);
 bop02=0->pre(bop12);
 bop1, bop42, toOtherMSU=basicOp(fromEnv,
fromOtherMSU, cur_ds);
 toEnv=applyCmd(cur_us1, bop1);
 us1, us2=upStream(bop02 when clock5,
 bop12 when clock5,
 bop22 when clock5,
 bop32 when clock5,
 bop42 when clock5);
 ds=downStream(us2);
 cur_ds=i_current(clock5, 0, pre(ds));
 cur_us1=i_current(clock5, 0, pre(us1));
tel

Figure 8: Programming our case study in Lustre, with
a fast base rate, using real-time extensions.

According to the classical synchronous hypothesis,
the slow nodes (downStream and upStream) must
finish before the end of the (short) instant so we
would encounter the same problems as mentioned
previously. Therefore, this hypothesis is relaxed and
processes must instead finish before the end of their
period, which can be longer than one instant. This is
possible because the program is compiled for a TTA
platform. The Lustre code only initiates the
executions of the tasks during the instant and the
actual execution is handled by TTA tools (containing
a preemptive scheduler). In this way, the
computations performed by the Lustre program still
end before the end of the instant, even if the
computations performed by TTA tools do not. This
new version seems to be quite adapted to our case
study. However, some elements probably do not
appear at the right place in the language. For
instance, the node durations are specified inside the
node where they are instantiated while it seems they
would fit better at the top level of the program as
these durations do not change for different
instantiations. Communications between processes
of different rates are also a little heavy to handle and
could be more automated.

4.2 Preserving synchronous semantics under
preemptive scheduling
The work presented in [16] does not extend
synchronous languages directly but instead shows
how the synchronous approach can be implemented
on a multitask monoprocessor architecture, using
preemption. This leverages the problem

 Page 6/10

Figure 9: Programming our case study in SynDEx, with a fast base rate

encountered when programming with a fast base
rate, namely the need for manually splitting slow
operations so that they can be spread over several
fast instants. Instead of splitting operations
manually, this work allows preemption during nodes
execution, while keeping the synchronous
semantics. To this end, a specific communication
protocol allowing communicating tasks to be
preempted is defined (called Dynamic Buffering
Protocol). This way, classical static scheduling
algorithms like rate-monotonic can be used. The
global compilation process consists in separating the
synchronous program into several tasks with their
associated priorities and release dates and then in
scheduling these tasks using classical static
algorithms and DBP for communications.
This solution is an interesting way to program our
system using a fast base rate. However, the
language itself remains unchanged. Consequently,
the real-time aspects of the system do not appear
clearly as such in the program, which can be not
completely satisfying from a specification point of
view. Furthermore, this enables less static analysis
of the program and less compilation optimization.

4.3 The AAA methodology and the SynDEx software
The AAA methodology [10] (Algorithm Architecture
Adequation) and its associated tool SynDEx are
meant for designing distributed real-time embedded
software. In this methodology, a system is modelled
with graphs. The algorithm graph models the
functional part of the system following the
synchronous approach, while the architecture graph
models the hardware of the system.
The algorithm graph is a Directed Acyclic Graph
(DAG): vertices are operations (similar to nodes in
Lustre) and edges stand for data communications.
An operation can in turn be defined by an algorithm
graph, enabling hierarchical definitions. The
algorithm graph describes an iteration of the system
repeated indefinitely. The architecture graph is a
non-oriented graph: vertices are either computation
operators or communication operators and edges
stand for physical connections between those
operators. Paths in the architecture graph strictly
alternate between computation and communication
operators. An architecture graph can model
heterogeneous hardware including general purpose
microprocessors as well as special purpose

 Page 7/10

integrated circuits. The user must finally specify the
execution durations of operations on computing
operators and the transmission durations of data
types used by the operations on communication
operators.
The Adequation process tries to find an optimized
implementation of the algorithm graph on the
architecture graph. It schedules and distributes the
operations on computing operators and also
schedules communications on communication
operators. The result of the Adequation is then used
to generate a synchronous distributed executive,
which consists in one executive for each computing
operator. The executive of each operator contains
the code of the operations allocated on the operator
but also code for synchronisations with other
computing operators. Interesting work [11] has been
done more recently to introduce multiple latency and
periodicity constraints on operations, though the
implementation currently does not seem to be
complete, so we will not present this part in details.
Our case study can be programmed with SynDEx
using a fast base rate very similarly to the version
programmed in Lustre in Figure 5. We will rather
detail a version using a slow base rate, which is
inspired by a solution proposed by the authors of this
methodology. The algorithm graph is given in Figure
9. Operations env

i and otherMSU
i
 acquire inputs on

sensors and operations toEnv
i
 and toOtherMSU

i

produce outputs on actuators. These fast operations
along with operations of the fast task (basicOp

i
 and

applyCmd
i
) are repeated five times. The pre

i

operations specify delayed communications, used
for communications from slow operations to fast
operations. The operations of the slow task are split
into several operations, as previously in Lustre. We
still need to constrain the fast operations to execute
at the right time inside the slow cycle. As proposed
by the team developing this methodology, this can
be performed by introducing “timing operations”. The
specified execution duration of these operations is
100ms, i.e. one fast cycle. They are executed on a
dedicated “timing operator”. The first timing
operation (t100) executes from date 0 to date 100,
the second (t200) from 100 to 200 and so on.
Finally, we add precedence dependences
(dependences displayed on the top of operations)
from the timing operations to the computing
operations. As a consequence, the start date of
operations can be constrained after a specific date.
For instance the precedence from t200 to env2
delays the start date of operation env2 after date 200
and transitively delays the start date of operation
basicOp2. The architecture graph is a bi-operator
architecture: the main computing operator and the
timing operator linked by a “synchronisation”
communication operator.
The major issue of this solution is that it does not
constrain the end date of fast operations.

Consequently the Adequation may schedule some
fast operations too late. Still, the schedule is
computed statically, so it can be checked (and
modified by adding precedences to manually “guide”
the Adequation) before actually implementing the
system. Furthermore, if we obtain a correct
schedule, the executive produced by SynDEx will be
a correct implementation of our case study. Let us
however point out that the implementation of the
timing operator and timing operations may be
difficult. It is very unlikely that an operator dedicated
to timing purposes will be available on the final
hardware. Yet, this operator could be emulated by a
software process, for instance using threads (though
this might not suit critical systems).

5. The Time-Triggered Approach

In the synchronous approach, order between
processes is defined through their precedence
relations. In the Time-Triggered approach [12],
order between processes is defined through their
start dates. We have seen previously that time-
triggered architectures can be used as the execution
platform of synchronous programs (section 4.1). In
this section we will study how it can be used at the
modelling level.

5.1 Giotto: a time-triggered language for embedded
programming
Giotto [13] provides a programming model based on
the time-triggered approach for developing
embedded systems with hard real-time constraints.
Such systems consist in a set of multi-periodic tasks
and mode switching conditions for enabling or
disabling tasks. Giotto assembles a set of tasks
implemented outside Giotto (similarly to MetaH [14]
or AADL [15]). The way operations are assembled
abstracts from the execution platform, from the
scheduling policy and from the implementation of the
tasks.
The basic element in Giotto is the task. A task is
defined by a set of input/output ports, by the function
implementing the task (the external code) and by its
frequency. The instantiation of a task specifies a
driver, which provides the task inputs. A mode is
made up of a set of tasks related by data
dependences between task ports. A mode has a
period and the frequency of a task is specified by the
number of times it must be executed during the
period of its mode. For instance, a task of frequency
2 in a mode of period 10ms is executed every 5ms.
Data produced by this task is considered available
only at the end of 5ms, even if the task executes in
less than 5ms. Data dependences between tasks do
not imply precedences. A task uses the last inputs
produced before its start date. A mode switch from a
mode m to a mode m’ relies on a Boolean guard,
which is evaluated at the frequency of mode m. If the

 Page 8/10

guard is true, m’ becomes the active mode. Notice
that the intersection of the set of tasks of m and m’
does not have to be empty. A Giotto application
consequently consists in a set of modes among
which one is the initial mode. Annotations constrain
the scheduling of the system. Distribution
annotations constrain tasks to execute on a specific
host. Scheduling annotations depend on the host
type and on its scheduling policy (these annotations
can be task priorities, deadlines and so on).
Annotations (and scheduling algorithms) are not
directly part of the global model of Giotto but instead
depend on different possible implementations of
Giotto.

5.2 Application to our case study
The Giotto program for our case study is given
Figure 10. This time, the base rate of the program is
the slow rate. The program is made up of one single
mode (mode standard()) of period 500ms. During
this period, the mode executes each fast operation
five times (taskfreq 5), at regular time intervals
and each slow operation one time (taskfreq 1).
Actuators are also activated five times (actfreq 5),
however it does not seem possible to repeat data
acquisition on sensors. Communications between
tasks are performed through drivers used at task
instantiation.

output
 integer_port us1 :=integer_zero;
 integer_port us2 :=integer_zero;
 integer_port ds1 :=integer_zero;
 integer_port bop1 :=integer_zero;
 integer_port bop2 :=integer_zero;
 integer_port bop3 :=integer_zero;
 integer_port app1 :=integer_zero;

actuator integer_port toEnv;
 integer_port toMSU;

sensor integer_port fromEnv;
sensor integer_port fromMSU2;

////// tasks //////
task upStream(integer_port ius1) output (us1,
us2) state () {
 schedule UpStream(ius1,us1,us2)
}
task downStream(integer_port ids1) output (ds1)
state () {
 schedule DownStream(ids1,ds1)
}
task basicOp(integer_port iop1, integer_port
iop2, integer_port iop3)
 output (bop1,bop2,bop3) state () {
 schedule
BasicOp(iop1,iop2,iop3,bop1,bop2,bop3)
}
task applyCmd(integer_port iapp1, integer_port
iapp2)
 output (app1) state () {
 schedule ApplyCmd(iapp,app1)
}

////// drivers //////
driver prodEnvData(app1) output (integer_port
envData) {
 if constant_true() then
ComputeEnv(app1,envData)
}
driver prodMSUData(bop3) output () {

 if constant_true() then ComputeMSU(bop3,
msuData)
}
driver getUsData(bop1) output(integer_port
tous1) {
 if constant_true() then
 copy_integer1(bop1,tous1)
}
driver getDsData(us1) output(integer_port tods1)
{
 if constant_true() then
 copy_integer1(us1,tods1)
}
driver getBopData(fromEnv,fromMSU2,ds1)
 output (integer_port env, integer_port msu,
integer_port ds) {
 if constant_true() then
 copy_integer3(fromEnv,fromMSU2,ds1,env,msu,ds)
}
driver getAppData(bop2,us1)
 output(integer_port toiapp1,integer_port
toiapp2) {
 if constant_true() then
 copy_integer2(bop2,us1,toiapp1,toiapp1)
}

////// modes //////
start standard {
 mode standard() period 500 {
 actfreq 5 do toEnv(prodEnvData);
 actfreq 5 do toMSU(prodMSUData);
 taskfreq 1 do upStream(getUsData);
 taskfreq 1 do downStream(getDsData);
 taskfreq 5 do basicOp(getBopData);
 taskfreq 5 do applyCmd(getAppData);
 }
}

Figure 10: Programming our case study in Giotto

The main problem of this new version is that data
dependences do not imply precedences, so we
cannot constrain the execution order of tasks. We
cannot specify delayed communications and cannot
use hierarchical definitions either. Actually, the
description level of Giotto is too high for our case
study, it is meant for assembling high level tasks and
we want to be able to describe our system more
precisely.

6. Conclusion

We have presented different solutions for
implementing embedded systems with real-time
constraints, using high level programming
languages. The synchronous approach is already
frequently used in the embedded systems industry,
at least for design or simulation purposes. It is
indeed well adapted to the description of embedded
systems. However we pointed out that the classical
synchronous languages lack some high level
primitives for programming real-time aspects. These
aspects can be programmed manually, but the
process is tedious and error-prone. The
synchronous approach has been extended recently
to tackle these difficulties, by adding real-time
primitives or by changing the execution mechanisms
of the synchronous programs. This makes for the
closest solution to our problem but could still be
improved, in particular when handling
communications between processes of different
rates. The time-triggered approach used at

 Page 9/10

modelling level, as implemented in Giotto, is not so
well adapted to our problem. Time-triggered seems
to fit better at the execution platform level (for
instance to implement synchronous programs)
instead of the programming level.
Through the different implementations proposed for
our case study, we have emphasized a key issue:
choosing the base rate on which to describe our
system. Usually, the fastest rate of the system is
chosen. However, less usual solutions using the
slowest rate can be considered. Still, the approaches
we studied all clearly favour one of the two solutions
making the other one at least tedious if not
impossible. We believe that designing a new
language, which allows both could lead to improved
expression capabilities and also to interesting
compilation processes. Furthermore this would allow
choosing an intermediate rate (neither the fastest
nor the slowest) as the description rate of the
system, which could sometimes be more adapted.

7. References

[1] A. Benveniste, G.Berry: “The synchronous
approach to reactive and real-time systems”,
Readings in hardware/software co-design, p147-
159, Kluwer Academic Publishers, 2002.

[2] F. Boussinot, R. De Simone: “The Esterel
Language”, Proceedings of the IEEE, 79(9), 1991

[3] P. Raymond, D. Pillaud, N. Halbwachs: “The
synchronous data-flow programming language
LUSTRE”, Proceedings of the IEEE, 79(9), 1991.

[4] A. Benveniste, P. Le Guernic, C. Jacquemot:
“Synchronous programming with events and
relations : the SIGNAL language and its
semantics”, Science of Computer Programming,
16: 103-149, 1991.

[5] M. Pouzet : “Lucid Synchrone, version 3. Tutorial
and reference manual”, Univertisy Paris-Sud, LRI,
2006.

[6] D.G. Messerschmitt, E.A. Lee: “Synchronous Data
Flow”, Proceedings of the IEEE, 75(9), 1987.

[7] Esterel Technologies, Inc: “SCADE Language –
Reference manual”.

[8] A. Curic: "Implementing Lustre Programs on
Distributed Platforms with Real-Time Constraints",
PhD thesis, University Joseph Fourier, Grenoble,
July 2005.

[9] H. Kopetz: “Real-Time Systems: Design Principles
for Distributed Embedded Application”, Kluwer
Academic, 1997.

[10] Y. Sorel, T. Grandpierre, C. Lavarenne: “Optimized
rapid prototyping for real-time embedded
heterogeneous multiprocessors”, 7th International
workshop on Hardware/Software Co-Design,
CODES’99, Rome, Italy, 1999.

[11] L. Cucu, Y. Sorel: “Real-Time scheduling for
systems with precedence, periodicity and latency
constraints”, 10th international conference on Real-
Time Systems (RTS’02), Paris, France, 2002.

[12] H. Kopetz: “Real-Time Systems: Design Principles
for Distributed Embedded Applications”, Kluwer
Academic, 1997.

[13] C. Kirsch, T. Henzinger, B. Horowitz: “Giotto: A
time-triggered language for embedded
programming”, Proceedings of the IEEE, 91:84-99,
January 2003.

[14] P. Binns, P Vestal: “Scheduling and communication
in MetaH”, Real-Time Systems Symposium, NC,
USA, 1993.

[15] J. Hudak, P. Feiler: “The architecture analysis &
design language (aadl): an introduction”, Technical
Report, Carnegie Mellon University, 2006.

[16] C. Sofronis, S. Tripakis, P. Caspi: “A memory-
optimal buffering protocol for preservation of
synchronous semantics under preemptive
scheduling”, Proceedings of the 6th ACM & IEEE
International conference on Embedded Software
(EMSOFT '06), ACM Press, Seoul, Korea, 2006.

[17] MathWorks: “Simulink: User’s Guide”

 Page 10/10

