
HAL Id: hal-02170938
https://hal.science/hal-02170938

Submitted on 13 Dec 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Moving Ω to an Object-Oriented Platform
John Plaice, Yannis Haralambous, Paul Swoboda, Gabor Bella

To cite this version:
John Plaice, Yannis Haralambous, Paul Swoboda, Gabor Bella. Moving Ω to an Object-Oriented
Platform. Lecture Notes in Computer Science, 2004, 3130, pp.17-26. �10.1007/978-3-540-27773-6_2�.
�hal-02170938�

https://hal.science/hal-02170938
https://hal.archives-ouvertes.fr

Moving Ω to an Object-Oriented Platform

John Plaice1, Yannis Haralambous2, Paul Swoboda1, and Gábor Bella2

1 School of Computer Science and Engineering
The University of New South Wales
unsw sydney nsw 2052, Australia

{plaice,pswoboda}@cse.unsw.edu.au
2 Département Informatique

École Nationale Supérieure des Télécommunications de Bretagne
CS 83818, 29238 Brest Cédex, France

{yannis.haralambous,gabor.bella}@enst-bretagne.fr

Abstract. The code for the Ω Typesetting System has been substan-
tially reorganised. All fixed-size arrays implemented in Pascal Web have
been replaced with interfaces to extensible C++ classes. The code for
interaction with fonts and Ω Translation Processes (ΩTP’s) has been
completely rewritten and placed in C++ libraries, whose methods are
called by the (now) context-dependent typesetting engine. The Pascal
Web part of Ω no longer uses change files. The overall Ω architecture is
now much cleaner than that of previous versions.

Using C++ has allowed the development of object-oriented interfaces
without sacrificing efficiency. By subclassing or wrapping existing stream
classes, character set conversion and ΩTP filter application have been si-
multaneously generalised and simplified. Subclassing techniques are cur-
rently being used for handling fonts encoded in different formats, with a
specific focus on OpenType.

1 Introduction

In this article, we present the interim solution for the stabilisation of the existing
Ω code base, with a view towards preparing for the design and implementation
of a new system. We focus on the overall structure of the code as well as on
specific issues pertaining to characters, fonts, ΩTP’s and hyphenation.

Since the first paper on Ω was presented at the 1993 Aston tug Conference,
numerous experiments with Ω have been undertaken in the realm of multilingual
typesetting and document processing. This overall work has given important in-
sights into what a future document processing system, including high quality
typesetting, should look like. We refer the reader to the 2003 tug presenta-
tion [7], as well as to the position papers presented to the Kyoto Glyph and
Typesetting Workshop [3, 6, 8]. Clearly, building an extensive new system will
require substantial effort and time, both at the design and the implementation
levels, and so it is a worthwhile task to build a production version of Ω that will
be used while further research is undertaken.

1

The standard web2c infrastructure, which assumes that a binary is created
from a single Pascal Web file and a single Pascal Web change file, is simply not
well suited for the development of large scale software, of any genre. For this
reason, we have eliminated the change files, and broken up the Pascal Web file
into chapter-sized files. All fixed-size arrays have been reimplemented in C++

using the Standard Template Library. Characters are now 32 bits, using the
wchar_t data type, and character set conversion is done automatically using the
routines available in the iconv library. The entire Pascal Web code for fonts and
ΩTP’s, including that of Donald Knuth, has been completely rewritten in C++

and placed in libraries. Clean interfaces have been devised for the use of this
code from the remaining Pascal code.

2 Problems with Pascal Web

When we examine the difficulties in creating Ω as a derivation of tex.web, we
should understand that there is no single source for these difficulties.

Pascal was designed so that a single-pass compiler could transform a mono-
lithic program into a running executable. Therefore, all data types must be
declared before global variables; in turn, all variables must be declared before
subroutines, and the main body of code must follow all declarations. This choice
sacrificed ease of programming for ease of compiler development; the resulting
constraints can be felt by anyone who has tried to maintain the TEX engine.

Pascal Web attempts to alleviate this draconian language vision by allowing
the arbitrary use within code blocks – called modules – of pointers to other
modules, with a call-by-name semantics. The result is a programming environ-
ment in which the arbitrary use of gotos throughout the code is encouraged,
more than ten years after Dijkstra’s famous paper. Knuth had responded cor-
rectly to Dijkstra’s paper, stating that the reasonable use of gotos simplifies
code. However, the arbitrary use of gotos across a program, implicit in the
Pascal Web methodology, restricts code scalability. Knuth himself once stated
that one of the reasons for stopping work on TEX was his fear of breaking it.

For a skilled, attentive programmer such as Knuth, developing a piece of
code that is not going to evolve, it is possible to write working code in Pascal
Web, up to a certain level of complexity. However, for a program that is to
evolve significantly, this approach is simply not tenable, because the monolithic
Pascal vision is inherited in Pascal Web’s change file mechanism. Modifications
to TEX are supposed to be undertaken solely using change files; the problem
with this approach is that the vision of the code maintainer is that they are
modifying functions, procedures, and so on. However, the real structure of a
Pascal Web program is the interaction between the Pascal Web modules, not
the functions and procedures that they define. Hence maintaining a Pascal Web
program is a very slow process. Back in 1993, when the first Ω work was being
undertaken, “slow” did not just mean slow in design and programming, but also
in compilation: the slightest modification required a 48-minute recompilation.

2

The size limitations created by tex.web’s compile-time fixed-size arrays are
obvious and well known. This issue was addressed publicly by Ken Thompson
in the early 1980s, and both the existing Ω and the web2c distribution have
substantially increased the sizes. However, these arrays raise other problems. The
eqtb, str_pool, font_info and mem arrays all have documented programming
interfaces. However, whenever these interfaces are insufficient, the TEX code
simply makes direct accesses into the arrays. Hence any attempt to significantly
modify these basic data structures requires the modification of the entire TEX
engine, and not simply the implementations of the structural interfaces.

In addition, the single input buffer for all active files of tex.web turns out
to be truly problematic for implementing ΩTP’s. Since an ΩTP can read in
an arbitrary amount of text before processing it, a new input buffer had to be
introduced to do this collection. The resulting code is anything but elegant, and
could certainly be made more efficient.

Finally, problems arise from the web2c implementation of Pascal Web. Many
of the routines written in C to support the web2c infrastructure make the implicit
assumption that all characters are 8 bits, making it difficult to generalise to
Unicode (currently 21 bits), even though C itself has a datatype called wchar_t.

3 Suitability of C++

The advantages of the use of C++ as an implementation language for stream-
oriented typesetting, over the Pascal Web architecture, are manifold. The chief
reason for this is that the rich set of tools and methodologies that have evolved
in the twenty-five years since the introduction of TEX includes developments not
only in programming languages and environments, but in operating systems,
file structure, multiprocessing, and in the introduction of whole new paradigms,
including object-oriented software and generic programming.

C++ is the de facto standard for object-oriented systems development, with
its capability to provide low-level C-style access to data structures and system
resources (and, in the case of Unix-like systems, direct access to the kernel system
call api), for the sake of efficiency.

In addition, the C++ Standard Template Library (stl) offers built-in sup-
port for arbitrary generic data structures and algorithms, including extensible,
random-access arrays. It would be foolish to ignore such power when it is so
readily available.

Since C++ is fully compatible with C, one can still take advantage of many
existing libraries associated with TEX, such as Karl Berry’s kpathsea file search-
ing library, and the iconv library character-set conversion between Unicode and
any other imaginably-used character set.

The abilities to use well-known design patterns for generic algorithm support
(plug-in paragraphers, generic stream manipulation), as well as generic repre-
sentation of typesetting data itself, add a wealth of possibilities to future, open
typesetting implementations.

3

4 Organisation of the Ω Code Base

Obviously, we are moving on. Our objective is to include the existing Ω function-
ality, to stretch it where appropriate, leaving clean interfaces so that, if others
wish to modify the code base, they can do so. Our current objective is not to
rewrite TEX, but its underlying infrastructure.

4.1 Reorganising the Pascal Web Code

The tex.web file has been split into 55 files called 01.web to 55.web. The tex.ch
file has been converted into 55 files, 01.ch to 55.ch. Data structure by data
structure – specifically the large fixed-size arrays – we have combed the code,
throwing out the definitions of the data structures and replacing their uses with
Pascal procedure calls which, once passed through the web2c processor, become
C++ method calls. In the process, most of the code in the change files ends up
either being unnecessary, or directly integrated in the corresponding .web files.

4.2 The External Interface with Ω

We envisage that Ω will be used in a number of different situations, and not
simply as a batch standalone program. To facilitate this migration, we have
encapsulated the interface to the external world into a single class. This interface
handles the interpretation of the command line, as well as the setup for the file
searching routines, such as are available in the kpathsea library. Changing this
class will allow the development of an Ω typesetting server, which could be used
by many different desktop applications.

4.3 Characters, Strings and Files

The other interface to the outside world is through the data passed to Ω itself.
This data is in the form of text files, whose characters are encoded in a multitude
of different character encodings.

For characters, TEX has two types, ASCII_code and text_char, the respec-
tive internal and external representations of 8-bit characters. The new Ω uses the
standard C/C++ data type, wchar_t. On most implementations, including GNU
C++, wchar_t is a 32-bit signed integer, where the values 0x0 to 0x7fffffff

are used to encode characters, and the value 0xffffffff (-1) is used to encode
EOF. Pascal Web strings are converted by the tangle program into str_number,
where values 0 to 255 are reserved for the 256 8-bit characters. We have modi-
fied tangle so that the strings are numbered -256 downwards, rather than 256

upwards. Hence, str_number and wchar_t are both 32-bit signed integers.
When dealing with files, there are two separate issues, the file names, and the

file content. Internally, all characters are 4-byte integers, but on most systems, file
names are stored using 8-bit encodings, specified according to the user’s locale.
Hence, character-set conversion is now built into the file-opening mechanisms,
be they for reading or writing.

4

The actual content of the files may come from anywhere in the world and
a single file system may include files encoded with many different encoding
schemes. We provide the means for opening a file with a specified encoding,
as well as opening a file with automatic character encoding detection, using a
one-line header at the beginning of the file. The actual character set conversion
is done using the iconv library. As a result of these choices, the vast majority
of the Ω code can simply assume that characters are 4-byte Unicode characters.

In addition to the data files, the following information must be passed through
a character encoding converter: command line input, file names, terminal input,
terminal output, log file output, generated intermediate files, and \special out-
put to the .dvi file.

4.4 The Fixed-Size Arrays

The core of the the new Ω implementation is the replacement of the large fixed-
size arrays, which are quickly summarized in the table below:

str_pool string pool
buffer input buffer
eqtb, etc. table of equivalents
font_info, etc. font tables
mem dynamically allocated nodes
trie, etc. hyphenation tables

For the cumulative data arrays, such as the string pool, we have created a new
class, Collection, subclass of vector, that can be dump’ed to and undump’ed
from the format file.

Currently no work has been done with the dynamically allocated nodes and
the hyphenation tables. Replacing the mem array with any significantly different
structure for the nodes would effectively mean rewriting all of TEX, which is not
our current goal.

4.5 The String Pool

The TEX implementation used two arrays: str_pool contained all of the strings,
concatenated, while str_start held indices into str_pool indicating the begin-
ning of each string. This has all been replaced with a Collection<wstring*>,
where wstring is the stl string for 4-byte characters. As a result, we can di-
rectly take advantage of the hashing facilities provided in the stl. Note that the
omega.pool file generated by tangle has been transformed into a C++ file.

4.6 The Input Buffer

The TEX implementation used a single array buffer, holding all the active lines,
concatenated. This has now been broken up into a Collection of string streams.
This setup simplifies the programming of ΩTPs, which must add to the input
buffer while a line is being read.

5

4.7 The Table of Equivalents

The table of equivalents holds the values for the registers, the definitions for
macros, and the values for other forms of globally accessible data. The TEX
implementation used three arrays: eqtb held all of the potential equivalent en-
tries, hash mapped string numbers to equivalent entries, and hash_used was an
auxiliary Boolean table supporting the hashing.

The table has now been broken into several tables map<unsigned,Entry*>

(for characters or register numbers) or map<wstring,Entry*> (for macro defini-
tions), where Entry is some kind of value. Support is provided for characters up
to 0x7fffffff, and the stl hashing capabilities are used. This infrastructure
has been built using the intense library [9], thereby allowing each Entry to be
versioned. allowing different definitions of a macro for different contexts.

4.8 Fonts and ΩTPs

In terms of numbers of lines written, most of the new code in Ω is for handling
fonts and ΩTPs. However, because we are using standard oo technology, it is
also the most straightforward.

The original TEX and Ω code for fonts was concerned mostly with bit pack-
ing of fields in the .tfm and .ofm files, and unpacking this information inside
the typesetting engine whenever necessary. This approach was appropriate when
space was at a premium, but it created very convoluted code. By completely sep-
arating the font representations in memory and on disk, we have been able to
provide a very simple oo interface in the character-level typesetter of the Ω en-
gine, greatly simplifying the code for ligatures and kerning inside the typesetter,
as well as for the font conversion utilities.

Similarly, for the ΩTPs, filters can be implemented as function objects over
streams using iterators, tremendously simplifying the code base.

5 Supporting OpenType

Since we are using a programming language supporting type hierarchies, it is
possible to support many different kinds of font formats. In this section, we con-
sider different options for supporting OpenType, the current de facto standard.

The OpenType font format has been officially available since 1997. Unlike its
predecessors, TrueType and PostScript Type 1 and 2, it facilitates handling of
lgc (Latin-Greek-Cyrillic) scripts and also provides essential features for proper
typesetting of non-lgc ones. Competing formats with similar capabilities (Apple
gx/aat and Graphite) do exist, but the marketing forces are not as strong.

At the EuroTEX conference in the summer of 2003, we presented our first
steps towards an OpenType-enabled Ω system. At the time, OpenType and Ω
were just flirting, but since last year their relationship has become more and
more serious. In other words, what began simply as the adaptation of Ω to
OpenType fonts has now become a larger-scale project: the authors are planning

6

to restructure Ω’s font system and make OpenType a base font format. As it will
be shown, full OpenType compatibility requires serious changes inside both Ω
and odvips. The other goal of the project is to simplify the whole font interface,
eliminating the need for separate metric files, virtual fonts and the like (while
the old system will of course continue to be supported).

Such a project, however, will certainly need some time to finish. Fortunately,
the work done until now already provides users with the possibility to typeset
using OpenType fonts, even if only a limited number of features are supported.
It will be shown below that further development is not possible without major
restructuring of the Ω system. Nevertheless, the present intermediate solution is
in fact one of the three that we will retain.

Before getting to the discussion of possible solutions, let us briefly present the
most important aspects of OpenType and their implications for Ω development.

5.1 OpenType vs. Omega

The key features of the OpenType format are summarised in the list below. As
each one of these features raises a particular compatibility issue with Ω, they
will all be elaborated below.

1. Font and glyph metric information;
2. Type 2 or TrueType glyph outlines (and hints or instructions);
3. Advanced typographic features (mainly gsub and gpos);
4. Clear distinction between character and glyph encodings;
5. Pre-typesetting requirements;
6. Extensible tabular file format.

Font and Glyph Metrics. OpenType provides extensive metric information
dispersed among various tables (post, kern, hmtx, hdmx, OS/2, VORG, etc.), both
for horizontal and vertical typesetting. Although in most cases Ω’s and Open-
Type’s metrics are interconvertible a few but important exceptions do exist (e.g.,
height/depth) where conversion is not straightforward. See [1, 4].

Glyph Outlines, Hints and Instructions. Since the OpenType format it-
self is generally not understood by PostScript printers, a conversion to more
common formats like Type 1 or Type 42 is necessary. As explained in [1], to
speed up this conversion process, we create Type 1 charstring collections using
our own pfc tables which are used by odvips to create small, subsetted Type 1
fonts (a.k.a. minifonts) on the fly. This solution, on the other hand, does not
preserve hints nor instructions, at least not in the present implementation. We
are therefore planning to also provide Type 42 support for TrueType-flavoured
OpenType. This solution would allow us to preserve instructions, at the expense
of subsetting and compatibility.

7

Advanced Typographic Features. These are perhaps the most important as-
pect of OpenType. Its gsub (glyph substitution) and gpos (glyph positioning)
tables are essential for typesetting lots of non-lgc scripts. In Ω, the equivalent
of gsub features are the ΩTP’s: they can do everything gsub features can, in-
cluding contextual operations. Glyph positioning is a different issue: since the
ΩTPs are designed for text rearrangement (substitutions, reordering etc.), they
are not suitable for doing glyph placement as easily. Context-dependent type-
setting microengines for character-level typesetting have been proposed for Ω to
provide modular, script- and language-specific positioning methods, along the
lines of ΩTP files; however, they have yet to be implemented. The positioning
features in OpenType gpos tables are in fact the specifications for microengines.

Character and Glyph Encodings. The above discussion of advanced typo-
graphic features brings us to a related issue: the fundamental difference between
Ω’s and OpenType’s way of describing them. Although both Ω and OpenType
are fully Unicode compatible, OpenType’s gsub and gpos features are based on
strings made of glyph id’s and not of Unicode characters. As for Ω and some of
its ΩTP’s, tasks such as contextual analysis or hyphenation are performed on
character sequences and the passage from characters to “real” glyph id’s happens
only when odvips replaces virtual fonts by real ones. To convert a glyph-based
OpenType feature into a character-based ΩTP would require Ω to offer means
of specifying new “characters” (the glyph id’s) that do not correspond to any
Unicode position. The conversion itself would not be difficult since Ω’s possi-
ble character space is much larger than Unicode’s. This, however, would lead
us to glyph id-based, hence font-specific, ΩTP’s and hyphenation, which is not
a lovely prospect, to say the least. To solve this problem, it will certainly be
necessary to keep both character and glyph information of the input text in par-
allel during the whole typesetting and layout process. This dual representation
of text is also crucial for the searchability and modifiability of the output (pdf,
ps, svg or any other) document.

Pre-typesetting Requirements. OpenType relies on input text reordering
methods for its contextual lookups to work correctly. If Ω is to use the same
lookups, these reordering methods must also be implemented, either by ΩTP’s
or by an external library.

Extensibility. Finally, the OpenType format has the important feature of being
extensible: due to its tabular structure, new tables can be added into the font
file, containing, for example, data needed by Ω with no OpenType-equivalents
(like metrics or pfc charstrings, see below). However, it is necessary that the
given font’s license allow additions.

5.2 Solutions

From the above discussion it should now be clear that complete and robust
OpenType support is not a simple patch to Ω and odvips. Three solutions are
proposed below, in order of increasing difficulty and of our working plan.

8

1. Convert OpenType fonts into existing Ω font metrics and ΩTP’s;
2. Provide built-in support within Ω for a fixed but extensive set of OpenType

features and read data directly from the OpenType font file;
3. Finally, provide extensible means for using the full power of OpenType fonts.

The Current Solution. This, described in detail in the EuroTEX article [1],
corresponds to the first solution. Here we give a short summary.

The initial solution was based on the approach that OpenType fonts should
be converted to Ω’s own formats, i.e., .ofm (metrics), .ovf (virtual fonts) and
ΩTP. Anish Mehta wrote several Python scripts to generate these files, of which
the most interesting is perhaps the one that converts the whole OpenType gsub
table into ΩTP’s. Type 2 and TrueType outlines themselves are converted into
the Type 1-based pfc format and are subsetted on the fly by a modified odvips.

In summary, the present solution is a working one. Admittedly far from being
complete (gpos support is missing, among others), it is intended to provide Ω
users with the possibility to typeset using OpenType fonts, including even some
of its advanced features, while further development is being done.

Future Solutions. The second and third solutions mentioned above require
that the Ω engine be capable of directly reading OpenType fonts, which can be
done using a public library such as freetype or Kenichi Handa’s libotf. This
would also eliminate the need to create .ofm and .ovf files.

Providing built-in support for a fixed set of features corresponds to the afore-
mentioned microtypesetting engines. For a given set of features, a new engine
can be written. This approach can be taken using standard oo techniques.

A more general approach requires the ability to reach into an OpenType font,
reading tables that were not known when the Ω engine was written. For this to
work requires some kind of programming language to be able to manipulate
these new tables. A simple such language is Handa’s Font Layout Tables [2].

It should be clear that these solutions are not mutually exclusive and that
backwards compatibility with the classic font system will be maintained.

6 Conclusions

At the time we are writing, this work is not completely finished. Nevertheless, it
is well advanced: the infrastructure is substantially cleaned up, and is extensible,
with clear api’s. Detailed documentation will be forthcoming on the Ω website.

If we view things in the longer term, we are clearly moving forward with two
related goals, the stabilisation of existing Ω infrastructure, and abandonment of
the TEX infrastructure for the design and implementation of a next-generation
open typesetting suite.

Such a suite should be a generic framework with an efficient C++ core, that
is universally extensible through a number of well-known scripting interfaces,
for example, Perl, Python, and Guile. Implementation of libraries similar to the
popular LATEX suite could then be done directly in C++, on top of the core api,
or as a linked-in C++ stream filter.

9

References

1. Gábor Bella and Anish Mehta. Adapting Ω to OpenType Fonts. TUGboat, 2004. In
press.

2. Kenichi Handa, Mikiko Nishikimi, Naoto Takahashi and Satoru Tomura. FLT: Font
Layout Table. Kyōto University 21st Century COE Program, 2003.
http://coe21.zinbun.kyoto-u.ac.jp/papers/ws-type-2003/052-handa.pdf

3. Tereza Haralambous and Yannis Haralambous. Characters, Glyphs and Beyond.
Kyōto University 21st Century COE Program, 2003.
http://coe21.zinbun.kyoto-u.ac.jp/papers/ws-type-2003/017-tereza.pdf

4. Yannis Haralambous and John Plaice. Omega and OpenType Fonts.
Kyōto University 21st Century COE Program, 2003.
http://coe21.zinbun.kyoto-u.ac.jp/papers/ws-type-2003/067-yannis.pdf

5. The OpenType Specification v1.4.
http://www.microsoft.com/typography/otspec/default.htm

6. John Plaice and Chris Rowley. Characters are not simply names, nor documents
trees. Kyōto University 21st Century COE Program, 2003.
http://coe21.zinbun.kyoto-u.ac.jp/papers/ws-type-2003/009-plaice.pdf

7. John Plaice, Paul Swoboda, Yannis Haralambous and Chris Rowley. A multidimen-
sional approach to typesetting. TUGboat, 2003. In press.

8. Chris Rowley and John Plaice. New directions in document formatting: What is
text? Kyōto University 21st Century COE Program, 2003.
http://coe21.zinbun.kyoto-u.ac.jp/papers/ws-type-2003/001-rowley.pdf

9. Paul Swoboda and John Plaice. A new approach to distributed context-aware com-
puting. In A. Ferscha, H. Hoertner and G. Kotsis, eds., Advances in Pervasive

Computing. Austrian Computer Society, 2004. ISBN 3-85403-176-9.

10

	1 Introduction
	2 Problems with Pascal Web
	3 Suitability of C++
	4 Organisation of the Ω Code Base
	4.1 Reorganising the Pascal Web Code
	4.2 The External Interface with Ω
	4.3 Characters, Strings and Files
	4.4 The Fixed-Size Arrays
	4.5 The String Pool
	4.6 The Input Buffer
	4.7 The Table of Equivalents
	4.8 Fonts and ΩTPs

	5 Supporting OpenType
	5.1 OpenType vs. Omega
	5.2 Solutions

	6 Conclusions
	References

