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Split-Step TLM (SS TLM)—A New Scheme for

Accelerating Electromagnetic-Field Simulation
Sandrick Le Maguer, Alain Peden, Daniel Bourreau, and Michel M. Ney, Senior Member, IEEE

Abstract—A new unconditionally stable three-dimensional (3-D)
transmisson-line (TLM) algorithm is presented. It is stable regard-
less of the selected time-step. This new algorithm is based on a
split-step theory, whose numerical implementation is given in de-
tail. In addition, the theoretical proof of its unconditional stability
is provided. This feature provides some potential advantage for
time-domain electromagnetic-field computation as the number of
iterations can be arbitrarily reduced for a given space sampling.
Unfortunately, it is shown that the numerical dispersion of the new
scheme increases when the time-step is different from the max-
imum value of the standard TLM. However, it is shown that some
substantial computer cost reduction can be achieved when irreg-
ular meshing is used, as compared to classical 3-D TLM schemes.
Thus, a new meshing strategy to improve the scheme accuracy is
presented and validated through several examples.

Index Terms—Irregular mesh, split step (SS), transmission-line
matrix (TLM), unconditional stability.

I. INTRODUCTION

T
HE transmission-line matrix (TLM) method is an efficient

numerical technique for electromagnetic-field computa-

tion [1], [2]. This method is based on a volume discretization

of the computational domain and is, hence, well suited for the

analysis of arbitrary geometry. As the finite difference time do-

main (FDTD), the TLM is a time-domain technique that al-

lows wide-band characterization in a single run by applying

Fourier transform to time-domain responses. However, the TLM

is less dispersive and has the advantage of computing the six-

field components at the same location and time. In addition, the

TLM is fully compatible with rigorous segmentation techniques

[3]. Unfortunately, like FDTD, the TLM is computationally ex-

pensive in both CPU time and memory. In particular, this re-

quirement becomes exhaustive when analyzed structures con-

tain fine details. Indeed, in that case, graded mesh is usually

used to reduce memory requirement. As a result, the time-step is

reduced in proportion to the smallest cell size and, correspond-

ingly, the amount of iterations.

The symmetrical condensed node (SCN) is the basic three-di-

mensional (3-D) TLM cell (or node). It was introduced by Johns

in 1987 [4] and requires the storage of 18 voltage values since

much effort has been driven to decrease the computer cost of

this numerical scheme. For instance, two new nodes: the hybrid
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SCN (HSCN: 15 voltages) [5], [6] and the super SCN (SSCN:

12 voltages) [7] were proposed. Also, these nodes provide some

advantage in term of the time-step while using a graded mesh.

Nevertheless, there exist a maximum time-step value to enforce

stability. Note that several accelerating procedures for the above

schemes have been proposed. They are listed and compared in

[8].

A major improvement in memory reduction was the creation

of the alternating TLM scheme (ATLM) [9]. This model allows

the use of any type of TLM node while decreasing the com-

putational effort by a factor of two. Unfortunately, this tech-

nique has a major drawback: boundaries have to be placed at

the center of the TLM cell. This condition breaks the gener-

ality of the TLM scheme since special nodes have to be cre-

ated for each type of boundary. This technique was also associ-

ated with the rotated TLM (RTLM) [10], which leads to another

50% computer-cost reduction. With the same objective, the al-

ternating rotated TLM (AR-TLM) scheme was proposed [11].

However, boundary treatment in some configurations has not

yet been solved.

Recently, a new FDTD scheme without a maximum time-step

limit was proposed [i.e., alternating-direction implicit FDTD

(ADI FDTD)]. First implemented as a two-dimensional (2-D)

scheme by Namiki [12], it was then extended to 3-D by Zheng

et al. [13]. Such a scheme has significant advantage in simu-

lations involving a graded mesh [14]. Alternating-direction im-

plicit (ADI) schemes were implemented for the TLM [15]–[17].

However, it was found in [15] that ADI schemes were not ap-

propriate for implementation to TLM since some time-step am-

biguity remains.

In this paper, a new approach to implement such a type of

unconditionally stable algorithm is presented. This technique,

called split-step (SS), is then applied to 3-D TLM and numerical

implementation is given in details. It is shown that the memory

requirement per cell is divided by a factor of three. In addition, it

is shown that the numerical scheme is unconditionally stable for

any time-step. A short study of the numerical dispersion leads

to imposing a meshing strategy that takes advantage of using

a larger time-step while keeping the numerical dispersion error

negligible.

II. SCHEME DERIVATION

A. ADI-FDTD Technique

The ADI-FDTD scheme is a two-step algorithm, which leads

to a semi-implicit method by approximating Maxwell’s equa-

tions in a convenient manner. Let us describe the ADI approxi-
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mation of the Maxwell–Ampère equation for the temporal vari-

ation of the -component. First, the usual iterative scheme is

subsequently applied in time as follows.

First step:

(1)

Second step:

(2)

where is the time-step index, is the permittivity of free

space, is the relative permittivity in the -direction, and

is the electric losses along the same direction. As shown, the

time derivative is approximated at ( being the time-step),

while spatial derivatives are approximated at and

. This step is then followed by a step where the time

derivative is approximated at , while spatial deriva-

tives are approximated at and . These

time shifts are the basis of the ADI process. It can be demon-

strated that the finite-difference approximation of (1) and (2)

using Yee’s grid [18] leads to an unconditionally stable algo-

rithm [12], [13].

B. SS Technique and Its TLM Implementation

As mentioned before, ADI is not advantageously applicable

to the TLM. A similar approach based on SS theory [19] is

used instead, as its numerical implementation is simpler. It con-

sists of splitting a 3-D phenomenon in successive sub-one-di-

mensional (1-D) phenomena. To achieve this, a modification of

the time-sampling procedure in Maxwell’s field equations has

to be carried out. The technique splits the basic equations into

two successive steps. For instance, the time dependence of the

electric-field component given by the Maxwell-Ampère

equation is divided into the following two equations:

(3)

(4)

According to the theory of split algorithms, (3) and (4) have to

be solved subsequently in the iterative process to obtain uncon-

ditional stability. Furthermore, to get a coherent spatial mapping

of field components, the scheme is divided into the following

two steps.

Step 1) An approximation of (3) between and

is obtained followed by an approximation of (4)

between and .

Step 2) An approximation of (4) between and

is obtained followed by an approximation

of (3) between and .

The above approximations are performed using the approach

proposed by Peña and Ney [20]: from field component sample to

arm-voltage correspondences, enforcement of curl’s Maxwell’s

Fig. 1. 3-D TLM fields samples in the (yoz)-plane with respect to Johns’
notation [4].

equations lead to relationships between reflected voltages and

total fields at the node center. This approach can also be used

with Maxwell’s equation derivatives. For example, let us ap-

proximate (3) between and using the TLM

grid. Field samples on this grid in the -plane of the Carte-

sian grid are depicted in Fig. 1.

Using the finite-difference approximation of time and space

derivatives in (3) leads to

(5)

where is the speed of light in vacuum and is the impedance

of free space. , , and are the cell size for each direction

of the Cartesian grid. is the -field component at the center

of the cell at . denotes a field component (in this case,

-component) on the face of the cell, which corresponds to port

1 with respect to Johns’ notation [4]. It should be stressed that,

in (5), is unknown and that field components are known

on the faces of the cell at . Thus, to solve (5), one

can enforce

(6)

which is an average comparable to those usually used in the

TLM schemes’ derivation (for instance, see [20]). Injecting (6)

in (5) leads to

(7)

where , ,

, , and .

The same approximation is applied from to

to (4) that yields

(8)

where .

Applying the same procedure to the other scalar differential

equations derived from Maxwell’s curl equations, one can ob-

tain the complete set of updating equations provided in the Ap-

pendix.

2



One can note from (7) and (8) that the combination of fields

on the faces of the cell corresponds to the usual TLM voltages.

For example, the reflected voltage on port 2 of the SCN is usu-

ally defined as

(9)

because the impedance of this port is [4]. Hence, the voltage

notation is not maintained here because corresponding arm im-

pedances are not the same depending on what field component

is evaluated at the center of the cell. For example, from (A.7)

and (A.11) (see the Appendix), it can be seen that port 2 has

two different characteristic impedances at the same time. Thus,

the voltage notation is no longer unified and one has to work

directly with field components. Furthermore, arm impedances

can never be zero or negative. Thus, from a TLM point-of-view,

the scheme appears to be unconditionally stable. This point will

be theoretically proven in Section III.

From (7), it can be seen that the field value at the center of the

cell can be easily calculated from tangential-field components

on the faces at the previous half time-step. However, a problem

arises when one tries to estimate those tangential-field compo-

nents from fields at the center at the previous half time-step [see

(8)]. Considering an isolated cell, one has to solve a system of

six equations with 12 unknowns. Consequently, this part of the

scheme has to be solved by taking into account the neighboring

cells. As for ADI FDTD, this procedure leads to an implicit so-

lution step of the algorithm.

To illustrate this point, consider a part of a computational

volume that consists of three adjacent cells only distributed

along the -direction (see Fig. 2). The space is limited by two

perfect electric conductors (PECs).

Using (A.7) and (A.11) in the lossless case (i.e., and

), one obtains the following linear system of equations:

field components on

the faces (unknowns) field components at the

centers of the cells (known)

(10)

In (10), the superscripts indicate either the cell or face

numbers given in Fig. 2. Note that the first and last lines of (10)

Fig. 2. Illustration of the implicit solution step in the case of three adjacent
cells along the z-direction.

pertain to boundary conditions. Thus, for the case discussed

here, the electric-field components that are tangent to perfect

conductors are set to zero. Also, note that, as for classical TLM

schemes, the SS TLM can straightforwardly simulate a wide

range of boundary conditions (perfect magnetic, impedance,

etc.). To solve the above system, one has to invert the above

matrix that yields the tangential-field components on the

faces as a function of fields at the center of all cells along the

-direction.

It is worth noting that this matrix is inverted only once and

stored before the time iterations start. Thus, for one -directed

line through the space lattice, the field on the faces are calculated

at directly followed by the calculation of field at the

center at using the updated (B.1) and (B.5). Hence,

only the six field components at the center need to be stored.

This represents a memory gain of a factor of three compared to

the classical 3-D TLM scheme. The above implicit procedure

must be repeated for each -cut through the grid and repeated

for all - and -cuts. The whole SS TLM scheme is described

in Fig. 3.

One should note that the amount of multiplications and ad-

ditions is much larger than for the classical TLM scheme. This

drawback is essentially due to the use of an inverted matrix to

calculate fields on the faces of the cell [see (10)]. However, it

should be stressed that the potential advantage brought by the

SS TLM scheme resides in the case of irregular mesh where the

time-step imposed by the smallest mesh size need not be en-

forced with the SS TLM.

III. STABILITY ANALYSIS OF SS TLM SCHEME

As seen in Section II, impedances of the new SS TLM can

never be negative. It indicates that the scheme appears to be

unconditionally stable. The theoretical proof of this assertion

is given below.

The new scheme can be written recursively as follows:

with

(11)
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Fig. 3. Illustration of the SS TLM algorithm.

The stability of such a scheme can be proven using the Fourier

method described in [19] and used in [13] to prove ADI-FDTD

stability. The field components are represented in the spatial

spectral domain. The eigenvalues of the matrix are then de-

termined. Stability is ensured if they are located within or on the

limit of the unit circle in the complex plane.

Let us assume that , , and are the spatial frequencies

along the -, -, and -directions. Thus, field components in the

spatial spectral domain can be expressed, for example, as

(12a)

(12b)

where , , and are the indexes of the coordinates of the center

of the cell.

Both steps of the SS TLM can be written in the matrix form

(13a)

for the first step. The second step is

(13b)

where and correspond to the implicit procedures, while

and correspond to the explicit parts of the algorithm.

Their expressions are obtained by injecting the expressions of

the type (12) into (A.1)–(A.12) and (B.1)–(B.12). For example,

the first line of and is obtained by substituting expres-

sions of fields on the faces such as (12) in (A.1) and (A.7), which

leads to

(14)

By substituting (13a) in (13b), the following expression is

then found:

(15)

The eigenvalues of are found by solving the equation

(16)

where is the identity matrix. Condition (16) yields

(17)

TABLE I
CPU EXPENDITURE OF SS TLM COMPARED WITH TLM

with

with

and

with

Note that, without loss of generality, the medium is consid-

ered isotropic ( and )

and lossless. From (17), it can be seen that there are six eigen-

values. Two of them correspond to the static solution

, while the others pertain to the propagating solutions.

Each of them has a magnitude of unity, which implies that the

SS TLM is unconditionally stable. There is no more maximum

time-step. Last, but not least, the above conclusion proves that,

unlike the standard TLM, the SS TLM algorithm does not gen-

erate spurious solutions.

IV. ACCELERATING PROCEDURES

As explained before, the SS TLM algorithm requires some

overhead in computer expenditure due to the implicit part

of the technique. However, the matrix involved in (10) is

very sparse since it is a band matrix. Thus, dedicated accel-

erating procedures can be used. For instance, the software

NAG FORTRAN Library1 provides routines adapted to block

diagonal matrices (referred to as F04LHF), band matrices

(referred to as F07BEF), and tri-diagonal matrices (referred to

as F04LEF) since the matrix in (10) can easily be rearranged

in a tri-diagonal form. The CPU expenditure was tested for a

3-D 50 50 50 cells volume and compared to the classical

TLM. Results are presented in Table I. One can observe that the

routine for a tri-diagonal matrix is really efficient and reduces

the overall CPU time overhead to only 30%. Furthermore, this

overhead remains the same whatever the size of the problem

1NAG FORTRAN Library, Mark 19, Numerical Algorithm Group.
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treated is. This is due to the fact that the tri-diagonal procedure

CPU time increases linearly with the amount of cells, just as

the TLM does.

In conclusion, directly using the inverted matrix is around ten

times longer than the classical TLM, which balance any avail-

able advantage of the SS TLM algorithm. However, if specific

procedures are used such as a band matrix or tri-diagonal matrix,

the CPU time becomes comparable to the SCN TLM. Hence, the

SS TLM is only slightly slower than the usual TLM schemes

while providing the advantage of using an arbitrary time-step.

This aspect will be discussed in more details in Section V.

V. NUMERICAL RESULTS

A. Comparison Between SS TLM and Standard TLM

The new SS TLM scheme was tested and compared to the

SCN TLM [4] in the case of a cavity made of an empty short-cir-

cuited rectangular waveguide (20 10 mm cross section) with

50-mm total length. The cavity is excited so that modes

resonate. The relative error is given by

(18)

where is the simulated resonance frequency of the modes and

is the theoretical one. Fig. 4 shows the error as a function of

cell size to wavelength ratio for different time-steps. The total

time of the simulation is 16.7 ns. It means that the amount of

iterations depends on the time-step chosen to perform the sim-

ulation.

It is observed that when the maximum time-step of the

SCN TLM is used, no difference appears between

the two schemes. Thus, the strict equivalence between both

can be proven theoretically at this maximum time-step value

(see [21]). In addition, it is noted that, at , the error is

below 0.1% up to the acceptable dispersion limit

for both schemes. It is well known that numerical dispersion

is minimum at a maximum time-step with the SCN TLM.

This feature still holds for the SS TLM. Furthermore, when

the time-step decreases, the dispersion error increases for both

schemes. However, it can be observed from Fig. 4 that the error

produced by the SS TLM is larger than the one produced by

the SCN TLM.

B. Numerical Dispersion of SS TLM as a Function of

Time-Step

In spite of the high accuracy of the SS TLM at the SCN TLM

maximum time-step, one has to consider the evolution of the

dispersion error, especially when using a larger time-step.

For this purpose, a simulation under the same conditions as

used in Fig. 4 is performed, but for several (values

for which the SCN TLM would be instable). As in a classical

TLM, the numerical dispersion of the SS TLM increases with

(see Fig. 5). However, if , the error increases

very rapidly with the relative cell size, as compared to cases with

(see Fig. 4).

Therefore, the advantage of using an arbitrary larger time-step

for the SS TLM is greatly reduced by the numerical dispersion

increase. However, by examining Fig. 5, a significant advantage

Fig. 4. Error on resonance frequencies (markers) obtained in a rectangular
cavity. Comparison between the SS TLM and SCN TLM (�t

is the maximum time-step of the SCN TLM) with cubic cells (i.e.,
�l = �x = �y = �z = 1 mm).

Fig. 5. Error on resonance frequencies (markers) of an empty rectangular
cavity. Simulations are performed for several time-steps with the SS TLM
(�t is the classical TLM maximum time-step).

can be gained when irregular meshing is used, as is explained

below.

Usually, when using a variable mesh, one has to impose to

the whole meshing the lowest time-step typically enforced by

considering the smallest cell dimension. This implies a large

amount of iterations to obtain a nontruncated time response. In

the case of the SS TLM, one can use for which dispersion

is minimum. As a result, large cells will produce negligible ve-

locity error up to the standard limit (see the example

in Fig. 5). On the other hand, small cells will be processed with

a time-step much larger than , but with very low values

of . As can be observed in Fig. 5, ratios below 0.03 im-

plies a negligible dispersion error. Thus, the choice of a max-

imum standard TLM time-step acts like a compromise between

the time-step and numerical error in each region of the mesh. As

a result, the time-step used in the SS TLM can be much larger

than the time-step used in a classical TLM for an irregular mesh,

and substantial gain in terms of the CPU time is expected.
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Fig. 6. Geometry of the variable mesh used in a rectangular cavity to test the
new meshing strategy.

Fig. 7. Error on resonance frequencies (markers) of an empty rectangular
cavity with a variable mesh (Fig. 6). Comparison between the SS TLM mesh
strategy and the SCN TLM.

The above meshing strategy was tested and compared to the

SCN TLM. The geometry is the same as in Figs. 4 and 5, except

that the mesh density in the longitudinal direction is increased

by a factor of four at each extremity of the cavity, as depicted in

Fig. 6. Consequently, the maximum time-step of the SCN TLM

is four times smaller than for the SS TLM selected time-step.

This means that the amount of iteration with the SS TLM is four

times smaller. From previous observations, the overall cost for

the SS TLM analysis is three times faster than with SCN TLM

computations.

As observed in Fig. 7, the reduction of numerical disper-

sion with the SS TLM is maintained. Consequently, error does

not exceed 0.4%. On the other hand, since the time-step of the

SCN TLM is smaller, the numerical dispersion increases in the

large-cell regions. As a result, the error obtained can be larger

than 1.4%. This experiment validates the new SS TLM mesh

strategy. It should be noted that, if accuracy is maintained, the

CPU time is decreased. However, this technique has to be ex-

perimented with more complex structures to ascertain the above

conclusion.

C. Frequency-Selective Surface (FSS) Simulation

Finally, the SS TLM and conventional TLM are compared

by simulating an FSS at millimeter wavelength. A quasi-optical

test bench developed at the Laboratoire d’Electronique et des

Systèmes de Telecommunication (LEST), Brest, France [22] is

used to measure -parameters. The screen under test is com-

posed of a dielectric substrate with a 2-D period-

ical square metallization. Since the wave impinges at normal

incidence (perpendicular to periodicity directions), the simula-

tion can be reduced to one-quarter of a single motive by prop-

Fig. 8. Geometry of the simulation performed to characterize an FSS (basic
cell: �l = 63:5 �m).

Fig. 9. Reflection coefficient obtained with the FSS depicted in Fig. 8.
Comparison between the SS TLM, TLM, and measurements.

erly choosing boundary conditions, as shown in Fig. 8. Perfect

magnetic walls are used in the -planes and perfect elec-

tric walls in the -planes to limit the computational volume.

The structure is excited by a plane wave with a polarization in

the -direction. In addition, PML absorbing boundary condi-

tions (ABCs) are used at both ends of the computational do-

main to simulate free space [23]. The total volume simulated is

composed of 30 30 120 cells and a variable mesh is used

around the metal edges to decrease the coarseness error. The re-

flection coefficients obtained with the SS TLM and SCN TLM

are shown in Fig. 9, in which they are compared to measure-

ments.

At first glance, the SS TLM seems more accurate than the

SCN TLM. However, as losses were not included in the sim-

ulation, a slight downward frequency shift is usually expected

when they are taken into account. Therefore, the TLM and SS

TLM should provide comparable accuracy around 1% in terms

of frequency.

It should also be mentioned that the comparison with mea-

surements are shown up to 98 GHz. The reason is that a higher

order mode (referred to as Floquet modes or grating modes [24])

is generated around 100 GHz. Since simulated -parameters

were extracted considering single-mode propagation, the com-

parison with measurements would be meaningless.
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Finally, note that by using the meshing strategy described in

the Section IV, the SS TLM simulation is performed 3.4 times

faster than the conventional TLM with a three-factor memory

storage reduction, confirming SS TLM advantages.

VI. CONCLUSION

A new approach to obtain an unconditionally stable algorithm

has been presented and implemented in a 3-D TLM form. Based

on SS theory, the SS TLM includes two subsequent time oper-

ations in the time iterative scheme. Consequently, the memory

storage per cell is divided by a factor of three. The stability of

the new algorithm is theoretically proven and it is found that

spurious modes inherent to the classical TLM no longer exist.

However, like the ADI FDTD, the SS TLM involves an implicit

solution procedure to be performed before time iterations start.

It is shown that the overall CPU time ratio SS TLM over a stan-

dard TLM does not exceed 1.3.

Numerical results confirm that at the maximum time-step,

the new scheme and classical SCN TLM are equivalent. As ob-

served in FDTD, the numerical dispersion of the new method

increases with the time-step. However, unlike the ADI FDTD,

for which numerical dispersion continuously increases with the

time-step, the numerical dispersion of the SS TLM is minimal

at the SCN TLM maximum time-step. From this observation,

a new meshing strategy for irregular meshing is proposed and

tested. Results show that, while keeping dispersion error at a

negligible level, some substantial gain in terms of overall com-

puter expenditure is obtained with the SS TLM.

APPENDIX

The complete SS TLM updating equations are listed here for

both time-steps.

First step:

Explicit part (from to ):

(A.1)

(A.2)

(A.3)

(A.4)

(A.5)

(A.6)

Implicit part (from to ):

(A.7)

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

Second step:

Explicit part (from to ):

(B.1)

(B.2)

(B.3)

(B.4)

(B.5)
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(B.6)

Implicit part (from to ):

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

with

and

with

with

with

and
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