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Noise Enhancement in Robust Estimation of Location
Yan Pan , Fabing Duan , François Chapeau-Blondeau , and Derek Abbott , Fellow, IEEE

Abstract—In this paper, we investigate the noise benefits to max-
imum likelihood type estimators (M-estimator) for the robust es-
timation of a location parameter. Two distinct noise benefits are
shown to be accessible under these conditions. With symmetric
heavy-tailed noise distributions, the asymptotic efficiency of the
estimation can be enhanced by injecting extra noise into the M-
estimators. With an asymmetric contaminated noise model having
a convex cumulative distribution function, we demonstrate that
addition of noise can reduce the maximum bias of the median es-
timator. These findings extend the analysis of stochastic resonance
effects for noise-enhanced signal and information processing.

Index Terms—Noise enhancement, location, M-estimator,
asymptotic efficiency, maximum bias.

I. INTRODUCTION

A
N OPTIMAL noise level, obtained by appropriately

adding extra noise to a given signal processor or by tun-

ing the existing noise level, can sometimes improve information

processing [1]–[6]. This effect was initially called stochastic res-

onance [7] but is now widely referred to as noise enhancement

[8]–[13], resulting in noise benefit—a term coined by Kosko

[14]. In recent years, noise-enhanced signal processing theory

has received significant attention [4]–[6], [8]–[33]. In the signal

estimation field, classical parameter estimation problems [6],

[11], [17], [22]–[30] and the Bayesian method [11]–[13], [16]–

[21] are of considerable current research interest. The related

results of [6], [11]–[13], [16]–[29] confirm that noise enhance-

ment can be exploited to optimize the estimator performance.

Statistical signal processing often relies on strong assump-

tions, e.g., a Gaussian distribution or a particular signal model,

under which optimal estimators or detectors are derived [34]–

[38]. Nevertheless, many areas of engineering, for instance,
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mobile communication channels, radar systems and neural net-

works, result in outliers or atypical observations that do not

obey these assumptions [38]. This fact can lead to significantly

degraded estimator performance, and also highlights the need

for robust estimation techniques that are insensitive to outliers

[34]–[38].

In this paper, we mainly focus on the noise-enhanced effect

in maximum likelihood type estimators (M-estimator) [34]–[38]

for estimating a location parameter. Under this scenario, we de-

rive two key results that demonstrate two distinct noise benefits:

(i) For the symmetric heavy-tailed noise distributions, we de-

rive the expression of the asymptotic efficiency for an array

of identical M-estimators, and show the possibility of the im-

proved asymptotic efficiency of M-estimators by injecting mutu-

ally independent noise components. For a single M-estimator, a

discriminant function, elicited from the background noise prob-

ability density and the given M-estimator function, provides the

condition of existence of the optimal additive noise. It is proven

that the optimal additive noise, when it exists, is the symmetrical

dichotomous noise given by Chen et al. [9]–[11]. When the op-

timal noise does not exist in a single M-estimator, it is observed

that the asymptotic efficiency can still be enhanced to be very

close to the upper bound of unity by an array of M-estimators

with added noise selected from a parametric class of noise. This

fact motivates us to focus on the asymptotic efficiency of an

array of identical M-estimators with more than one estimator

element. We further demonstrate that, for a given M-estimator

function and fixed noise levels, the asymptotic efficiency is a

monotonically increasing function of the M-estimator number.

Thus, the asymptotic efficiency reaches its maximum value for

an array with an infinite number of identical M-estimators. Aim-

ing to maximizing the asymptotic efficiency of an infinite num-

ber of M-estimators, the optimal probability density of the added

noise is proven to be the weighted minimum L2-norm solution

of Eq. (44). Specially, by the Cauchy-Schwarz inequality, the

upper bound of the asymptotic efficiency of an infinite number

of M-estimators is proven to be unity, and the corresponding

optimal noise density is the deconvolution of the maximum

likelihood estimator and the given M-estimator function. How-

ever, this optimal noise density is frequently unattainable, due

to absence of a solution to the deconvolution and the fact that

the infinite-size array of M-estimators can only be approached

in practice. Therefore, as an alternative to such a theoretical

optimal distribution, we can select an a priori parametric class

of noise distributions, of interest, and optimize the parameters

and variance of the added noise. The results show that, com-

pared to the method without added noise, the addition of extra

noise that obeys the optimized parametric noise distribution does
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provide an improved asymptotic efficiency. It is also noted that

the observed noise-enhanced effect for the robust estimation

of a location parameter can also be related to suprathreshold

stochastic resonance (SSR) that has been demonstrated in a par-

allel array of identical elements with the injection of independent

noise components [23]–[28], [39], [40]. In the context of SSR,

such nonlinear elements were chosen as threshold comparators

[27], quantizers [23]–[26], [31], [40] or saturating devices [28]

and have been evaluated by various performance measures such

as mean square error (MSE) [23], [26], [31], [40], Fisher in-

formation [24], [27], [28], and Cramer-Rao bound [25], [26],

[40] in the signal estimation field. By contrast here, we mainly

focus on the noise-enhanced effect in a parallel array of ro-

bust M-estimators evaluated by the measure of the asymptotic

efficiency.

(ii) In an asymmetric contaminated noise model, the bias

dominates the variance component of M-estimators for a suf-

ficiently large number of observations. We theoretically prove

that, under the condition of a convex cumulative distribution

function, the maximum bias of M-estimators can be reduced by

adding extra noise. Moreover, aiming to minimize the maximum

bias of the median estimator, the dichotomous noise is proved

to be optimal. Theoretical and numerical results also show that

the maximum bias can be distinctly diminished at an optimal

dichotomous noise level.

II. M-ESTIMATOR FOR A LOCATION PARAMETER

Consider a location model of observations [34], [37]

xi = θ + wi , i = 1, 2, · · · , n (1)

where the location parameter θ is unknown and observation

errors (noise) wi are independent and identically distributed

(i.i.d.) random variables with a common probability density

fw . Then, the observations xi have the distribution fw (x − θ).
Here, we assume w = σw0 is with the scale parameter σ that

represents the noise intensity, and w0 has its probability density

fw 0
and unity scale.

Assuming that the loss function ρ satisfies certain regularities

[34], [37], we define the M-estimator θ̂ as

θ̂ = arg min
θ

n∑

i=1

ρ(xi − θ). (2)

Differentiating Eq. (2) with respect to θ yields

n∑

i=1

ψ(xi − θ) = 0, (3)

where ψ = dρ/dθ = ρ′ and the root θ̂ that corresponds to the

global minimum of the loss function in Eq. (2) is just the

M-estimator or the generalized maximum likelihood estimator

[34]–[38]. The maximum likelihood estimator is a special case

of M-estimators when ψ = −f ′
w /fw � ψM and ρ = − log fw

[34]–[38].

In order to compare the approximation by θ̂ with the true

value of θ, we usually compute the MSE

MSE(θ̂) = E[(θ̂ − θ)2 ] = var(θ̂) + b2(θ̂), (4)

with the estimator variance var(θ̂) = E(θ̂2) − E2(θ̂) and the

bias b(θ̂) = E(θ̂) − θ [34]–[38]. Here, the expectation operator

E(·) =
∫
·fw (x − θ)dx represents the expectation according to

the shifted probability density fw (x − θ) that is the density for

the noisy random signal xi in Eq. (1). According to the central

limit theorem and for a sufficiently large observation number n, a

Fisher-consistent M-estimator θ̂ satisfies E[ψ(x − θ)] = 0 [34]–

[38], and asymptotically converges to the Gaussian distribution

with mean θ and variance

var(θ̂) ≈ 1

n

E[ψ2(x − θ)]

E2 [ψ′(x − θ)]
=

1

n

Ew [ψ2(x)]

E2
w [ψ′(x)]

, (5)

by taking the first-order Taylor expansion of ψ(xi − θ̂) at θ
[34]–[38] (also see Appendix B). Here, the expectation operator

Ew (·) =
∫
·fw (x)dx is according to the probability density of

the random noise wi . Also in Eq. (5) the change of variable

x − θ → x has been performed. It is noted that the minimum

asymptotic variance of var(θ̂) = 1/
(
nJ(θ)

)
is achieved by the

maximum likelihood estimator [37], [41], and the Fisher infor-

mation J(θ) with respect to the location parameter θ is defined

as

J(θ) = E

[
(dfw (x − θ)/dθ)2

f 2
w (x − θ)

]

= Ew

[
(dfw (x)/dx)2

f 2
w (x)

]

= J(fw ), (6)

where J(fw ) is the Fisher information of the probability den-

sity fw [41]. Therefore, in order to measure how near the M-

estimator θ̂ is to the optimal estimator, the asymptotic efficiency

is defined as the ratio [37]

Eff(θ̂) =
1

nJ(fw )

1

var(θ̂)
=

1

J(fw )

E2
w [ψ

′
(x)]

Ew [ψ2(x)]
. (7)

In the following section, we will use the asymptotic effi-

ciency of Eq. (7) and the bias b(θ̂) to assess the occurrence

of noise-enhanced effects in M-estimators associated with two

noise distribution models.

III. NOISE-ENHANCED ASYMPTOTIC EFFICIENCY

In a number of areas of engineering, outliers in the mea-

surement cause a heavy-tailed distribution and so a Gaussian

assumption no longer holds true [34]–[38]. In this Section, we

consider the symmetric heavy-tailed distribution model of noise.

Under such scenarios, the function ψ in Eq. (3) is assumed to

be odd, so that there is no bias problem for the unbiased M-

estimator θ̂ derived from Eq. (3). Thus, we mainly discuss the

noise-enhanced asymptotic efficiency effect in this situation un-

der consideration.

When the expression for the noise distribution fw is known,

the maximum likelihood estimator is the optimal option if it

exists [34]–[38]. However, in practice, the noise distribution

fw may be incompletely known, or a complete closed-form of

the maximum likelihood estimator is too complex to implement

[34]–[38]. Thus, other M-estimators with an easily implemented
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feature are frequently employed [34]–[38]. We note that M-

estimators are critically connected the ψ-function in Eq. (3),

which can be grouped into the monotone or the redescending

classes [37]. Here, we mainly consider the monotone Huber

function [34]

ψ(x) =

{
x, |x| ≤ γ,
γ sgn(x), |x| > γ,

(8)

and the redescending bisquare function [34], [37]

ψ(x) = x
[
1 − (x/γ)2

]2
, (9)

for |x| ≤ γ and otherwise zero. Here, γ is an adjustable parame-

ter of the M-estimator. We further consider a scale family of the

probability density fw (x) = fw 0
(x/σ)/σ, where fw 0

has unity

scale and the Fisher information of Eq. (6) can be expressed

as J(fw ) = J(fw 0
)/σ2 [41], [42]. Here, J(fw 0

) is the Fisher

information of the probability density fw 0
. Then, the asymptotic

efficiency of Eq. (7) can be calculated as

Eff(θ̂) =

[
1 − 2Fw 0

(− γ
σ )

]2

2J(fw 0
)
[∫ γ/σ

0 x2fw 0
(x)dx + γ 2

σ 2 Fw 0
(− γ

σ )
] (10)

for the Huber estimator of Eq. (8) and

Eff(θ̂) =

[∫ γ/σ

−γ/σ

[
1 − σ 2

γ 2 x2
][

1 − 5σ 2

γ 2 x2
]
fw 0

(x)dx
]2

J(fw 0
)
∫ γ/σ

−γ/σ x2
[
1 − σ 2

γ 2 x2
]4

fw 0
(x)dx

(11)

for the bisquare estimator of Eq. (9). Here, Fw 0
is the cumulative

distribution function of noise w0 .

For instance, we especially consider the generalized Cauchy

noise with the probability density

fw (x) = B(k, v)

{
1 +

1

v

[ |x|
A(k)

]k
}−(v+1/k)

(12)

with A(k) = σ
√

Γ(1/k)/Γ(3/k), B(k, v) = kv−1/kΓ(v +
1/k)/[2A(k)Γ(v)Γ(1/k)], and parameters σ, k, v > 0 [36],

[42]. This generalized Cauchy distribution of Eq. (12) is ca-

pable of modelling a wide range of practical noise types. For

instance, we obtain a typical heavy-tailed distribution model for

v = 1/2 and k = 2, which is the Cauchy noise [42].

In Fig. 1(a) and (b), we plot the asymptotic efficiencies of

Eq. (10) and Eq. (11) as a function of γ/σ, respectively. It is

clearly seen that, for the generalized Cauchy noise in Eq. (12)

with v = 0.5, 1, 2, 5 and k = 2, the asymptotic efficiency Eff(θ̂)
can be enhanced to its maximum as γ/σ increases. For instance,

in the case of Cauchy noise with v = 1/2 and k = 2 in Eq. (12),

the asymptotic efficiency Eff(θ̂) of Huber estimator of Eq. (10)

is maximized to the value of 0.88 at γ/σ = 0.39 and for the

bisquare estimator, the asymptotic efficiency Eff(θ̂) of Eq. (11)

has the maximum value of 0.90 as γ/σ = 3.28. For a given

parameter γ, this is the noise-enhanced effect occurring in the

location M-estimator, since the asymptotic efficiency is maxi-

mized at an optimal noise scale. Of course, if the noise scale

σ is given, we can also optimize the estimator parameter γ to

obtain the maximum asymptotic efficiency.

Fig. 1. Asymptotic efficiency Eff(θ̂) of (a) Eq. (10) for the Huber estimator
and (b) Eq. (11) for the bisquare estimator as a function of γ/σ for the gener-
alized Cauchy noise in Eq. (12) and the Laplacian noise in Eq. (18) (β = 1).
Here, the generalized Cauchy noise is with parameters v = 1/2, 1, 2, 5,∞ and
k = 2.

It is also noted that, for the Gaussian noise (v = ∞ and

k = 2 in Eq. (12)), the asymptotic efficiency Eff(θ̂) approaches

unity as γ/σ increases, as shown in Fig. 1(a) and (b). The

reason is that, as the parameter γ → ∞, both Huber and the

bisquare functions are linear, which just corresponds to the op-

timal estimator for the Gaussian noise. For the Laplacian noise

in Eq. (18) (β = 1), Fig. 1(a) shows the asymptotic efficiency

Eff(θ̂) monotonically decreases from unity as γ/σ increases.

The reason is that, as γ → 0, the Huber function of Eq. (8) be-

comes ψ(x) = sgn(x) that corresponds to the maximum likeli-

hood estimator for the Laplacian noise, i.e., the median estimator

[34]–[38].

Next, two interesting problems arise. The first problem is,

when the noise scale σ can be exactly estimated or is known and

the asymptotic efficiency is maximized at an optimal parameter

γopt , whether the addition of extra noise is beneficial or not?

The second problem arises because the noise scale σ is often

unknown, while the optimization of the asymptotic efficiency

Eff(θ̂) is closely tied with the ratio γ/σ, as shown in Fig. 1.

Thus, the M-estimators of Eqs. (8) and (9) often estimate the

location away of the maximum asymptotic efficiency obtained

by the optimal parameter γopt . Under this circumstance, can we

add extra noise to the given observations and obtain an improved

performance of a robust M-estimator with a fixed parameter γ?

In the following discussion, the answers to these two interesting

problems will be presented.
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Fig. 2. Region S+ (gray) of the positive signs of D(ψ, fw ) in Eq. (46)
where addition of noise is beneficial, and the complementary region S− of the
negative signs of D(ψ, fw ), versus the parameter v of the generalized Cauchy
distribution fw in Eq. (12) (k = 2) and the parameter γ of (a) the Huber and
(b) the bisquare function. Here, the existing noise scale σ = 1 and the added
uniform noise level d → 0.

We purposefully add the extra noise to the original observa-

tions

yi = xi + ηi = θ + zi , i = 1, 2, · · · , n (13)

where the composite noise components zi = wi + ηi and the

extra noise components ηi are the i.i.d. random variables with

the common probability density fη . Therefore, zi have a con-

volved probability density fz (z) =
∫

fw (z − η)fη (η)dη. It is

proven by the Fisher information convolution inequality in Ap-

pendix A that the addition of extra noise to the original ob-

servations cannot improve the performance of the maximum

likelihood estimator.

Furthermore, inspired by the suprathreshold stochastic reso-

nance model [39], [40], we collect L statistics θ̂l generated by

identical M-estimators for l = 1, 2, · · · , L, and average them

as the M-estimation of the location parameter in the context of

noise benefits. It is emphasized that each M-estimator is subject

to the same input xi but mutually independent noise compo-

nents ηli with the common probability density fη . Therefore,

the input of each M-estimator is

yli = θ + wi + ηli = θ + zli , (14)

where the composite noise zli = wi + ηli have the probability

density fz . The estimate θ̂l satisfies
∑n

i=1 ψ(yli − θ̂l) = 0 of

Eq. (3), and the devised M-estimator is given by

θ̂ =
1

L

L∑

l=1

θ̂l . (15)

Due to the independent characteristic of noise ηli and using the

Taylor expansion of θ̂l , the asymptotic efficiency Effa(θ̂) of θ̂
in Eq. (15) is theoretically derived in Appendix B as

Effa(θ̂) =
1

J(fw )

L E2
z [ψ

′(z)]

Ez [ψ2(z)] + (L − 1)Ew

{
E2

η [ψ(w + η)]
} ,

(16)

with the expectations Ez (·) =
∫
·fz (x)dx and Eη (·) =∫

·fη (x)dx.

For a single M-estimator (L = 1), the asymptotic efficiency

Effa(θ̂) of Eq. (16) reduces to Eq. (32), and the correspond-

ing optimal noise probability density f opt
η that maximizes the

asymptotic efficiency Effa(θ̂) of Eq. (16) is discussed in Ap-

pendix C. This optimization problem is similar to the issue

of finding the optimal additive noise addressed by Chen et al.

[9]–[11] based on Carathéodory’s theorem. It is proven [11]

that, for a general estimation parameter, the optimal noise, if

one exists, can be chosen as a suitable randomization of no

more than two constant vectors to reduce of the estimation vari-

ance without increasing the bias of the estimator. In Appendix C,

for a location parameter under the Fisher-consistent constraint

Ez [ψ(z)] = 0, we provide the existence condition of the opti-

mal noise implied by the function g(η) in Eq. (34b) and prove

the symmetrical dichotomous noise in Eq. (25) to be the opti-

mal one on the basis of a convex real-value vector function and

the Jensen’s inequality [17], [43], [44]. The demonstration of

Appendix C is in particular complementary to the approach of

Ref. [11] for location estimation.

However, the derived optimal additive noise may not exist for

a single M-estimator in some situations where the function of

g(η) in Eq. (34b) has its maximum at η = 0, e.g., the Cauchy

background noise fw of Eq. (12) and the Huber M-estimator

of Eq. (8). It is interesting to note in Fig. 3 that, even if the

added noise is not optimal, the asymptotic efficiency Effa(θ̂)
can be enhanced by injecting extra noise components into the

M-estimator of Eq. (15) with the estimator number L > 1. This

noise-enhanced effect motivates us to further consider the situ-

ation of L > 1.

Furthermore, for a given M-estimator function ψ and at a

given extra noise level, we demonstrate in Appendix D that the

asymptotic efficiency Effa(θ) in Eq. (16) is a monotonically

increasing function of the estimator number L, as illustratively

shown in Fig. 3. Here, the additive noise distribution fη is ar-

bitrary. We recognize that, due to the nonlinear functional term

Ew

{
E2

η [ψ(w + η)]
}

in Eq. (16), the theoretical determination

of the optimal probability density that maximizes the asymptotic

efficiency of Eq. (16) remains an open question for a finite M-

estimator number 1 < L < ∞. In the limiting case of L → ∞,

the asymptotic efficiency of Eq. (16) attains its maximum with

respect to L and asymptotically approaches to

Eff∞(θ̂) = lim
L→∞

Effa(θ̂) =
1

J(fw )

E2
z [ψ

′(z)]

Ew

{
E2

η [ψ(w + η)]
} ,

(17)

where Ez [ψ
2(z)] < ∞ and limL→∞ Ez [ψ

2(z)]/L → 0. In

Appendix E, aiming to maximize the asymptotic efficiency of
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Fig. 3. Asymptotic efficiency Effa (θ̂) of Eq. (16) for an array of (a) Huber
estimators with γ = 0.1 and (b) bisquare estimators with γ = 1 as a function
of uniform noise level d and the estimator number L. Here, the existing Cauchy
noise is with the fixed scale σ = 1. Using the iterative reweighting algorithm
(see Appendix G-A), the numerical results computed by 104 Monte Carlo trails
are plotted in (b) for the M-estimator number L = 1 (∗), L = 3 (▽), L = 7
(◦), L = 15 (�) and L = 100 (⋆). Here, the observation size takes n = 7000,
the number of simulation trails is 104 and the tolerance parameter ζ = 10−6 .

Eq. (17), we find the optimal noise density f opt
η is the solu-

tion of the weighted minimum L2-norm of Eq. (44), and the

asymptotic efficiency Eff∞(θ̂) is theoretically proven to be not

more than unity by the Cauchy-Schwarz inequality. Then, for

achieving the upper bound of Eff∞(θ̂) = 1, it is demonstrated

that the optimal noise probability density f opt
η of Eq. (42) is

the deconvolution of ψM (w) and ψ(x). Here, the condition of

existence of this optimal probability density f opt
η is that the

inverse of the Fourier transform in Eq. (42) must exist and be

nonnegative. In Appendix E, an achievable optimum as a logis-

tic noise is worked out as an example. Unfortunately, this kind

of optimal noise often does not exist. For instance, there is no

solution of Eq. (42) for the Huber function in Eq. (8) (or the

bisquare function in Eq. (9)) and the Cauchy noise distribution

fw in Eq. (18) (v = 1/2 and k = 2). In addition, the infinite

M-estimator number L = ∞ is also inaccessible and can only

be approached in practice.

As an alternative, some prior interesting parametric classes of

noise distributions can be selected and optimized to improve the

asymptotic efficiency of M-estimators. For example, consider

the generalized Gaussian noise ηi with its probability density

fη (x) =
c1(β)

ση
exp

(
−c2(β)

∣∣∣∣
x

ση

∣∣∣∣
2/(1+β )

)
, (18)

where c1(β) = Γ1/2(3(1 + β)/2)/(1 + β)Γ3/2((1 + β)/2),

c2(β) = [Γ(3(1 + β)/2)/Γ((1 + β)/2)]1/(1+β )
, the decay

exponent β ≥ −1 and the scale parameter ση > 0 [45]. This

generalized Gaussian noise model of Eq. (18) describes

many noise types encountered in real-world systems, ranging

from Gaussian noise (β = 0), Laplacian noise (β = 1) to

uniform noise (β = −1) [42], [45]. For β = −1 in Eq. (18),

the probability density of uniform noise can be expressed

as fη (x) = 1/(2d) for −d ≤ x ≤ d (d =
√

3ση ) and zero

otherwise.

The theoretical asymptotic efficiency of Eq. (17) is then ap-

plicable to evaluate the benefit of added noise for various back-

ground noise types. For instance, with the addition of uniform

noise, the asymptotic efficiency in Eq. (17) can be expressed as

Eff∞(θ̂, d) =
1

J(fw )

E2
w

(∫ d

−d
1
2d ψ′(w + η)dη

)

Ew

[(∫ d

−d
1
2d ψ(w + η)dη

)2]

=
1

J(fw )

E2
w [ψ(w + d) − ψ(w − d)]

Ew

{
[ρ(w + d) − ρ(w − d)]2

} . (19)

In Appendix F, we assume the uniform noise level d → 0, and

derive the condition of Eq. (46) to determine whether the addi-

tion of uniform noise is beneficial or not. For the generalized

Cauchy noise in Eq. (12) (k = 2) with the fixed scale σ = 1, the

signs of D(ψ, fw ) in Eq. (46) versus the parameter γ of the ψ
function and the parameter v of the generalized Cauchy distri-

bution fw in Eq. (12) are shown in Fig. 2(a) and (b). It is seen in

Fig. 2 that, using the discriminant inequality of Eq. (46), the re-

gions S+ of the positive signs of D(ψ, fw ) clearly manifest that

the benefit of adding uniform noise exists for substantial ranges

of the parameter pair (γ, v). In addition, the benefit of added uni-

form noise occurs for various noise distributions characterised

by the parameter v of the generalized Cauchy distribution fw in

Eq. (12).

The discriminant inequality of Eq. (46) only theoretically

demonstrates the noise benefit for a very small noise level and an

infinite M-estimator number. Furthermore, for the background

Cauchy noise and the estimator parameter γ indicated in Fig. 2

that elicits the benefit of adding noise, the asymptotic efficiency

Effa(θ̂) as a function of the uniform noise level d is shown in

Fig. 3 for different M-estimator numbers. Here, the Huber func-

tion in Fig. 3(a) has a given estimator parameter γ = 0.1, and

the bisquare function in Fig. 3(b) is with γ = 1. The fixed scale

of the Cauchy noise is σ = 1. It is seen in Fig. 3 that, for a single

M-estimator (L = 1), the asymptotic efficiency Effa(θ̂) mono-

tonically decreases with the increase of noise level d. While, for

the estimator number L > 1, the asymptotic efficiency Effa(θ̂)
can be improved to a maximum as the noise level d increases.

This kind of noise enhancement is distinct from the beneficial

effect of noise in a single processor in that it critically relies on

the collective role of the estimator number L [39]. Then, the

noise-enhanced effect shown in Fig. 3 can be regarded as a form

of SSR [39] for location estimation in essence.

We also numerically demonstrate the noise-enhanced asymp-

totic efficiency effect for the bisquare M-estimator by the

iterative reweighting method [37]. The procedure of the
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Fig. 4. (a) Asymptotic efficiency Effa (θ̂) of Eq. (16) for an array of bisquare
estimators versus the estimator parameter γ and uniform noise level d. Here,
the M-estimator number L = 1000 and the background Cauchy noise scale

σ = 1; (b) Maximum asymptotic efficiency Effa (θ̂) of Eq. (16) as a function
of the decay exponents β of generalized Gaussian distributions via the optimized
parameter pair of (ση , γ) for L = 1000 (solid line) and L = ∞ (dashed line).

(c) Asymptotic efficiency Effa (θ̂) as a monotonically increasing function of the

M-estimator number L with the parameters γopt , σopt
η and β that correspond

to the maximum asymptotic efficiency Eff∞(θ̂) = 0.999 (•) in Fig. 4(b).

numerical compution is given in Appendix G-A. In Fig. 3(b), the

asymptotic efficiency Effa(θ̂) is numerically evaluated for 104

simulation trails and the tolerance parameter ζ = 10−6 . Here,

the observation size n = 7000 is large enough but finite. The

numerical results of the asymptotic efficiency Effa(θ̂) are plot-

ted in Fig. 3(b) for the M-estimator numbers L = 1 (∗), L = 3
(▽), L = 7 (◦), L = 15 (�) and L = 100 (⋆). It is shown in

Fig. 3(b) that the numerical results of Effa(θ̂) obtained by this

method are well consistent with the theoretical values of Effa(θ̂)
in Eq. (16).

Now we return to the question of whether, for an optimized

M-estimator with its optimal parameter γopt , the addition of

extra noise is beneficial or not. For a fixed input Cauchy noise

Fig. 5. Asymptotic efficiency Eff(θ̂) of Eq. (11) without added noise (solid

line), and the maximum asymptotic efficiency Effa (θ̂) of Eq. (16) versus the
estimator parameter γ for Gaussian (◦), Laplacian (∗) and uniform (△) types
of the added noise from Eq. (18). For each point of the curves, the level ση

of added noise is optimized to achieve the maximum asymptotic efficiency

Effa (θ̂). Here, the background Cauchy noise scale σ = 1 and the M-estimator
number L = 1000.

scale σ = 1 and the M-estimator number L = 1000, we plot

the asymptotic efficiency Effa(θ̂) of the bisquare M-estimator

array as a function of both the estimator parameter γ and the

added noise level d, as shown in Fig. 4(a). It is found in Fig. 4(a)

that the asymptotic efficiency Effa(θ̂) of Eq. (16) attains its

maximum value of 0.93 (∗) at the optimized parameter pair of

(dopt , γopt) = (1.3, 2.8). Without the help of added noise (d =

0), the maximum Eff(θ̂) is 0.90 (�) with the optimal parameter

γopt = 3.28, as shown in Fig. 4(a). The maximum asymptotic

efficiency Effa(θ̂) = 0.93 via optimizing the parameter pair (γ,

d) presents a slight improvement over the maximum Eff(θ̂) of

0.90 without the help of added noise.

Furthermore, we can consider the possibility of adding extra

noise from Eq. (18) to the M-estimator. For different decay ex-

ponents β of the generalized Gaussian distributions of Eq. (18),

Fig. 4(b) shows the maximum asymptotic efficiency Effa(θ̂) in

Eq. (16) via optimizing the parameter pair (γ, ση ). It is inter-

esting to note in Fig. 4(b) that, for a finite M-estimator num-

ber L = 1000, the maximum asymptotic efficiency of Eq. (16)

can reach 0.956 (▽) for the decay exponent β = 1 (Laplacian

noise). More interestingly, based on Eq. (17) and for L = ∞,

Fig. 4(b) also shows the the maximum asymptotic efficiency

Eff∞(θ̂) can achieve as high as 0.999 (•) that is very close

to unity. Here, the decay exponent β = 1.2 and the optimal

parameter pair(γopt , σ
opt
η ) = (1.4, 8.1). Of course, this limit

value of Eff∞(θ̂) = 0.999 can only be approached in prac-

tice. Under this circumstance, Fig. 4(c) illustrates the asymp-

totic efficiency Effa(θ̂) as a monotonically increasing function

of the M-estimator number L with the parameters γopt , σopt
η

and β that correspond to the maximum asymptotic efficiency

Eff∞(θ̂) = 0.999. It is shown in Fig. 4(c) that the asymptotic

efficiency Effa(θ̂) can gradually approach the limit value of

Eff∞(θ̂) = 0.999, but at the cost of the very heavy computation

complexity induced by the large number L.

Finally, we answer the second question of the possibility

of a noise benefit to an array of robust M-estimators with a
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fixed parameter γ. Fig. 5 shows the asymptotic efficiency Eff(θ̂)
(solid line) of Eq. (11) without added noise. Furthermore, for

each given parameter γ and the estimator number L = 1000,

Fig. 5 also depicts the maximum asymptotic efficiency Effa(θ̂)
of Eq. (16) for Gaussian (◦), Laplacian (∗) and uniform (△) types

of the added noise via optimizing the noise level ση (d =
√

3ση

for uniform noise). From Fig. 5, it is visible that the asymptotic

efficiencies Effa(θ̂) obtained by optimizing the level of added

noise are always superior to the efficiency with no added noise

(solid line). These results show that, for a fixed parameter γ, the

addition of extra noise is effectively beneficial to the estimation

process.

IV. ADDING NOISE TO REDUCE THE MAXIMUM BIAS

In Section III, we discussed the noise-enhanced asymptotic

efficiency in symmetric heavy-tailed noise models. In this Sec-

tion, we further consider the case of ǫ-contaminated noise model

h ranging in the ǫ-neighborhood [34], [37]

hǫ(x, θ) = {h| h = (1 − ǫ)fw (x, θ) + ǫq(x), q ∈ Q}, (20)

of an assumed parametric distribution fw (x, θ), where q that

represents the probability model of outliers belongs to a family

of probability density functions Q and 0 ≤ ǫ < 1 indicates the

proportion of the observations generated by the contamination

model of q [34], [37]. Here, the contamination model of q is

usually not exactly known, and depicts the statistical character-

istics of the outliers produced by some unknown mechanisms

[34], [36]–[38]. In order to analyze some extreme contaminated

cases, q is chosen from the set of point mass distribution δ(x0)
such that the probability of x = x0 is unity [34], [37]. Here, δ
is the Dirac function. It has been pointed out [34], [37] that,

for the location M-estimation in neighborhoods of Eq. (20) of

a symmetric fw with a symmetric probability density q of con-

tamination, it is easy to derive an unbiased M-estimator θ̂ with

E(θ̂) = θ and we still care about the asymptotic efficiency of

M-estimators. Thus, in this Section, we mainly focus on the

asymmetric contaminated noise model of hǫ(x, θ). Under this

condition, the bias of the estimators to the true value becomes

the main factor of MSE as a measurement of estimators rather

than the variance for a sufficiently large observation size n. This

is because the estimation variance var(θ̂) of Eq. (4) tends to

zero with the order of n−1 , while the bias does not [34]–[38].

For the asymmetric contaminated noise model of hǫ(x, θ) of

Eq. (20), there are two cases: either a symmetric central proba-

bility density fw but an asymmetric point mass distribution q, or

an asymmetric fw plus an asymmetric (or symmetric) q. In the

case of the noise components wi with the asymmetric probabil-

ity density fw , we can add the i.i.d. noise components w′
i with

the probability density of −wi , i.e., fw ′(x) = fw (−x), to the

original noise components wi . Here, w′
i are independent with wi .

Then, the updated random variables w̃i = wi + w′
i have a sym-

metric probability density fw̃ (x) =
∫

fw (x − u)fw ′(u)du =∫
fw ′(−x − u)fw (u)du = fw̃ (−x). Therefore, we here only

concentrate on the maximum bias induced by the contaminated

noise model of hǫ(x, θ) with a symmetric fw but an asymmetric

q in the following parts.

Consider the estimate θ̂n depending on the observation data

(x1 , x2 , · · · , xn ) and for a location M-estimator with the mono-

tonic ψ in Eq. (3), the asymptotic value θ̂∞ = θ under fw ,

i.e., the solution of E[ψ(x − θ)] = 0 [34], [37]. Then, the bias

for an arbitrary distribution h is bθ̂ = θ̂∞(h) − θ. For a given

proportion ǫ and the assumed parametric probability density fw ,

the maximum bias is defined as [34], [37]

bǫ = max{|bθ̂ (h, θ)| : h ∈ hǫ}, (21)

over an arbitrary contamination model of q ∈ Q.

Let ψ be a nondecreasing function, instead of a redescending

function, with a bound s = ψ(∞), the fraction of contamination

0 < ǫ < 1/2 and θ = 0 (without loss of generality). It can be

shown [34], [37] that the maximum bias bǫ of a location M-

estimator is the solution of

Ew [ψ(x + b)] =
sǫ

1 − ǫ
, (22)

which is attained in the case of the point mass distribution

q = δ(x0) in Eq. (20) with x0 → ±∞.

The median estimator, as a special Huber estimator in Eq. (8)

with its parameter γ → 0, has the minimax bias property for a

symmetric unimodal distribution fw of noise [34], [37], [38].

Since the median estimator with ψ(x) = sgn(x) is bounded by

s = 1, the maximum bias bǫ in Eq. (22) can be calculated as

[34], [37]

bǫ = F−1
w [1/2(1 − ǫ)], (23)

where F−1
w is the inverse function of the cumulative distri-

bution Fw . When we add noise ηi to the median estimator,

the observations in Eq. (13) are now buried in the composite

noise zi = wi + ηi (i = 1, 2, · · · , n). Then, the maximum bias

of Eq. (23) is updated as

b̃ǫ = F−1
z [1/2(1 − ǫ)], (24)

with the inverse function F−1
z of the cumulative distribution Fz .

In Appendix H, we derive the condition for reducing maxi-

mum bias bǫ of the median estimator in Eq. (23) with additive

noise. It is demonstrated that if there exists a positive interval

where the cumulative distribution function Fw is strictly convex,

then the maximum bias bǫ of the median estimator in Eq. (23)

can be reduced. Furthermore, under the condition of convexity

of Fw , we also demonstrate in Appendix H that the optimal

noise probability density f opt
η is given by

f opt
η (η) =

1

2
[δ(η − aopt) + δ(η + aopt)], (25)

with the optimal noise level

aopt = arg max
a

1

2
[Fw (bǫ − a) + Fw (bǫ + a)]. (26)

The noise with the distribution in Eq. (25) is also referred to as

the dichotomous noise [2]. This condition applies for bimodal

noise distribution models arising in diverse problems [46]–

[51], where the cumulative distribution function Fw satisfies the

convexity condition given in Appendix H.

7



Fig. 6. (a) Maximum bias b̃ǫ (◦) of Eq. (24) obtained by optimizing the added
noise level a, and maximum bias bǫ (solid line) of Eq. (23) without the added

noise as a function of µ/τ . The numerical results of maximum bias b̃ǫ (�) and
bǫ (�) are produced by Monte Carlo simulation (see Appendix G-B). (b) The
optimal noise level aopt corresponding to (a) versus µ/τ . Here, the fraction of
contamination ǫ = 0.1.

For example, consider the Gaussian mixture noise with den-

sity

fw (x) =
1

2
[κ(x;−µ, τ) + κ(x;µ, τ)] , (27)

where κ(x;µ, τ) = (1/
√

2πτ 2) exp[−(x − µ)2/(2τ 2)] with

parameters µ, τ ≥ 0. The dichotomous noise of Eq. (25) with the

optimal noise level aopt of Eq. (26) is added to the observations.

For the fraction of contamination ǫ = 0.1, Fig. 6(a) presents

that the maximum bias bǫ (solid line) of Eq. (23) without added

noise increases as the ratio of µ/τ grows, while the maximum

bias b̃ǫ (◦) of Eq. (24) obtained by optimizing the added noise

level aopt maintains a lower value with the increase of µ/τ .

The corresponding optimal noise level aopt is also plotted in

Fig. 6(b). The results clearly show the noise-reduced bias ef-

fect in the median estimator for the asymmetric ǫ-contaminated

noise model.

V. DISCUSSION

In this paper, we study the enhancement of the asymp-

totic efficiency and the reduction of the maximum bias by

adding noise in robust location M-estimators. For symmetric

heavy-tailed noise models, we show that the asymptotic effi-

ciencies of two commonly used M-estimators with the Huber

function and the bisquare function are non-monotonic functions

of the ratio of the noise scale and the estimator parameter. With

a summing array of M-estimators, by injecting extra noise into

the array, we show the possibility of noise enhancement of the

asymptotic efficiency that is maximized by an optimal nonzero

amount of extra noise.

Furthermore, in order to maximize the asymptotic efficiency

of a single M-estimator with added noise, a discriminant func-

tion is proposed to establish whether an optimal noise condition

exists or not. When the optimal additive noise exists, its prob-

ability density function is proven to be the same one given by

Chen et al. [9]–[11]. Nevertheless, even when the optimal ad-

ditive noise does not exist, the noise-enhanced effect occurs for

an array of M-estimators with estimator number larger than one.

Moreover, it is proven that the asymptotic efficiency of an array

of M-estimators is a monotonically increasing function of the

M-estimator number, and achieves its maximum for an infinite

M-estimator number. Then, aiming to maximize the asymptotic

efficiency of an infinite number of M-estimators, we find that

the optimal noise distribution is the weighted minimum L2-

norm solution of Eq. (44). It is also theoretically demonstrated

that the upper bound of the asymptotic efficiency of an infinite

number of M-estimators is unity, and the corresponding optimal

noise is analytically derived. Unfortunately, this optimal noise

distribution often does not exist. Therefore, we select a class

of parametric noise distributions, and optimize the noise distri-

bution parameters as well as the noise variance. Specially, we

present a condition for a benefit by adding uniform noise, and

show the noise benefit is effective for a number of background

heavy-tailed noise models.

It is also shown that, compared with the method without extra

noise, the addition of noise can provide an improved asymptotic

efficiency with a local optimal probability density chosen from

the given parametric noise distributions. In addition, upon in-

creasing the M-estimator number to a sufficiently large value,

we can gradually obtain an excellent asymptotic efficiency close

to unity. The asymmetric contaminated model is also consid-

ered, which contains a proportion of the observations generated

by the true distribution, while another proportion of outliers is

mixed by an unknown mechanism. In this case, we consider the

extreme situation of contamination with an infinite point-mass

distribution, and characterize the noise type for which the max-

imum bias of the median estimator can be minimized by adding

an optimal amount of the dichotomous noise.

Several questions of interest remain open: Although the op-

timal noise density f opt
η that maximizes the asymptotic ef-

ficiency of an infinite number of M-estimators is proven to

be the weighted minimum L2-norm solution of Eq. (44), an

explicit form of f opt
η remains an interesting open question

for future study. We also note that, for achieving the upper

bound of unity of the asymptotic efficiency, the optimal addi-

tive noise exists only if the inverse of the Fourier transform

of Eq. (42) is nonnegative over all the probability space. Oth-

erwise, the optimal noise does not exist. In cases where the

inverse of the Fourier transform of Eq. (42) exists but has
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negative parts, one can envisage to clip the negative parts to

zero and renormalize the positive parts as a suboptimal solution

for the noise density. We test this approach with the following

example. Consider a zero-mean Student distribution fw (x) =
cv (1 + x2/v)−(v+1)/2 with the degree of freedom v > 0 and the

constant cv = Γ((v + 1)/2)/(
√

vπΓ(v/2)). The correspond-

ing maximum likelihood estimator ψM = −f ′
w (x)/fw (x) =

(v + 1)x/(v + x2). When the median estimator ψ(x) = sgn(x)
is employed, the inverse of the Fourier transform of Eq. (42) is

given by I(x) =
√

π/2(v + 1)(v − x2)/(v + x2)2 , which has

negative parts as |x| >
√

v and is actually not a probability

density function. We can clip these negative parts of I(x) to

zero and renormalize the nonnegative parts as a probability den-

sity function f c
η (x) =

√
v(v − x2)/(v + x2)2 for |x| ≤ √

v and

zero otherwise. It is very interesting to note that, with this clipped

probability density function f c
η and the degree of freedom v = 4,

the asymptotic efficiency of Eq. (17) is 0.995 that is very close

to unity. Thus, this suboptimal solution f c
η (x) provides a suit-

able noise density to improve the asymptotic efficiency of an

array of M-estimators. Adding noise in an array as we propose

is another alternative to improve the efficiency. However, even if

this optimal noise distribution exists, the infinite-size array can

only be approached in practice. As an alternative, it is mean-

ingful to further explore the optimal noise type that achieves

the maximum asymptotic efficiency for a finite M-estimator

number, and ideally with a noise type which is not restricted

to a prior class of parametric noise distributions. In addition,

for the special case of the median estimator, the optimal di-

chotomous noise is demonstrated to minimize the maximum

bias for estimating a location buried in bimodal noise models

with convex cumulative distributions. It is interesting to ana-

lyze the reduction of maximum bias with addition of noise for

other robust M-estimators, and prove whether there are other

contaminated models exhibiting the noise-enhanced effects or

not. We here consider the asymmetrical contaminated model of

Eq. (20) for the point mass distribution of extreme cases, and

derive the optimal symmetrical noise to reduce the maximum

bias at a given proportion of the contamination. In this contami-

nated model, the contaminating probability density q is actually

arbitrary and unknown. But, with sufficient knowledge of the

contamination distribution in Eq. (20), it is very meaningful to

further investigate the optimal asymmetrical noise obeying the

distribution of hǫ(−x). Then, the asymmetrical contaminated

model of Eq. (20) can be simplified as an unbiased location es-

timation. For robust statistics of multi-parameter problems and

M-estimators for regression models [34]–[38], the benefits of

noise also deserve to be further studied. These questions are of

interest for robust estimation where addition of noise properly

optimized may reveal, as in the present study, to be a beneficial

option.

APPENDIX A

NO NOISE-ENHANCED EFFECT FOR THE MAXIMUM

LIKELIHOOD ESTIMATOR

In this Appendix, we show that adding extra noise to obser-

vations cannot reduce the variance of the maximum likelihood

estimator. Based on Eqs. (5) and (6), the asymptotic variance

of the maximum likelihood estimator is 1/(nJ(fw )) that is

closely related to the original noise distribution fw . When we

add extra noise η to the observations and the background noise

becomes the composite noise z = w + η, the asymptotic vari-

ance of the maximum likelihood estimator that is optimal for

noise z is updated as 1/(nJ(fz )). According to the Fisher in-

formation convolution inequality J(fz ) ≤ min{J(fw ), J(fη )}
in Refs. [41] (Chapter 16.6) and [52], we can derive that

1/(nJ(fz )) ≥ 1/(nJ(fw )), which indicates no noise-enhanced

effect for the maximum likelihood estimator.

APPENDIX B

ASYMPTOTIC EFFICIENCY OF AN ARRAY OF M-ESTIMATORS

In this Appendix, we present the derivation of the asymptotic

efficiency of Eq. (16) for a summing array of M-estimators. The

location estimate θ̂l of each M-estimator satisfies
∑n

i=1 ψ(yli −
θ̂l) = 0 for l = 1, 2, · · · , L. We can perform a Taylor expansion

of ψ as a function of θ̂l around the true value of θ, so the result

yields [34], [37]

0 =

n∑

i=1

ψ(yli − θ̂l)

≈
n∑

i=1

ψ(yli − θ) − (θ̂l − θ)

n∑

i=1

∂

∂θ
ψ(yli − θ)

= An − (θ̂l − θ)Bn , (28)

where An =
∑n

i=1 ψ(yli − θ)/n and Bn =
∑n

i=1(∂ψ(yli −
θ)/∂θ)/n. Hence, by Slutsky’s lemma and according to the cen-

tral limit theorem for a sufficiently large n, Bn in probability

converges to B = E[∂ψ(y − θ)/∂θ] = Ez [ψ
′(z)], and An con-

verges to a Gaussian distribution with zero mean and variance

E[ψ2(y − θ)]/n = Ez [ψ
2(z)]/n [34], [37]. Therefore, each es-

timate θ̂l converges to a Gaussian distribution with mean θ and

variance var(θ̂l) = n−1Ez [ψ
2(z)]/E2

z [ψ
′
(z)] of Eq. (5). In line

with this general proof, the average estimate θ̂ =
∑L

l=1 θ̂l/L,

also converges to a Gaussian distribution with mean θ and vari-

ance

vara(θ̂) = var

(
1

L

L∑

l=1

θ̂l

)

=
1

L2

[
L var(θ̂l) +

L∑

l,p=1
l =p

Ez [(θ̂l − θ)(θ̂p − θ)]
]

=
1

L2

[
L var(θ̂l) + L(L − 1)Ez [(θ̂l − θ)(θ̂p − θ)]

]

=
1

L

[
var(θ̂l) + (L − 1)Ew

{
Eη [(θ̂l − θ)(θ̂p − θ)]

}]

=
1

L
var(θ̂l) +

L − 1

L
Ew

{
Eη [(θ̂l − θ)(θ̂p − θ)]

}
.

(29)

Since for a given wi , wi + ηli are i.i.d. random variables for

l = 1, 2, · · · , L and the Taylor expansion of ψ in Eq. (28), so
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we can obtain

Ew

{
Eη [(θ̂l − θ)(θ̂p − θ)]

}
=

Ew

{
E2

η [ψ(w + η)]
}

n E2
z [ψ

′(z)]
. (30)

Substituting Eqs. (5) and (30) into Eq. (29), the asymptotic

variance of θ̂ can be calculated as

vara(θ̂) =
1

n

Ez [ψ
2(z)] + (L − 1)Ew

{
E2

η [ψ(w + η)]
}

L E2
z [ψ

′(z)]
. (31)

Then, the asymptotic efficiency of Eq. (16) is obtained.

APPENDIX C

OPTIMIZATION OF THE ASYMPTOTIC EFFICIENCY OF A SINGLE

M-ESTIMATOR

For a single M-estimator (L = 1), the asymptotic efficiency

of Effa(θ̂) of Eq. (16) becomes

Effa(θ̂) =
1

J(fw )

E2
z [ψ

′(z)]

Ez [ψ2(z)]
. (32)

Thus, it is interesting to find an optimal noise probability den-

sity f opt
η to maximize the asymptotic efficiency of Effa(θ̂) in

Eq. (32) under the constraint of unbiasedness. Since the Fisher

information J(fw ) > 0, then this optimization problem can be

expressed as

max
fη

E2
z [ψ

′(z)]

Ez [ψ2(z)]
, (33)

with the constraint of Ez [ψ(z)] = 0.

Consider a real-value vector function f(Z) = Z2
1 /Z2 with

Z = [Z1 , Z2 ]
T and Z2 > 0. It is seen that f(Z) is convex, be-

cause its Hessian matrix∇2f(Z) = 2[Z2 ,−Z1 ]
T [Z2 ,−Z1 ]/Z

3
2

is positive semidefinite [43]. Then, Jensen’s inequality

E2
η (Z1)/Eη (Z2

2 ) ≤ Eη (Z2
1 /Z2) is valid in the definition do-

main {(Z1 , Z2) ∈ R
2 |Z2 > 0} [17], [41], [43], [44]. Therefore,

defining Z1 = Ew [ψ′(w + η)] and Z2 = Ew [ψ2(w + η)], we

have

E2
z [ψ

′(z)]

Ez [ψ2(z)]
=

E2
η{Ew [ψ′(w + η)]}

Eη{Ew [ψ2(w + η)]} =
E2

η (Z1)

Eη (Z2)

≤ Eη

(
Z2

1 /Z2

)
(34a)

= Eη [g(η)] (34b)

≤ max
η

g(η), (34c)

where g(η) = Z2
1 /Z2 , Z2

1 and Z2 are even functions for the odd

function ψ and the even probability density fw . It is noted that

Eη [g(η)] cannot be larger than the maximum value of g(η) in

Eq. (34c) and the optimal added noise has a density function of

one or multiple mass points (depending on the number of points

of aopt = arg max
η

g(η)). Furthermore, since g(η) is an even

function, then it must have an extremum value g(0) at the origin.

If g(0) is the absolute maximum over the real space η ∈ R, then

the optimal solution of Eq. (33) is f opt
η (η) = δ(η). This indicates

that there is no benefit in adding noise. Meanwhile, if g(η)
has two absolute maximum values of g(aopt) = g(−aopt) >
g(0) at ±aopt (aopt = 0), then the optimal dichotomous noise

density exists and can be expressed by Eq. (25) for obtaining

the maximum of g(aopt). Substituting Eq. (25) with the optimal

noise level aopt into Eq. (34a) and Eq. (34c), both equalities hold

and the maximum value of Eq. (33) can be achieved. This result

accords with the determination of the optimal noise proven by

Chen et al. [9]–[11] based on Carathéodory’s theorem [53].

APPENDIX D

ASYMPTOTIC EFFICIENCY VERSUS THE M-ESTIMATOR NUMBER

For the convex function x2 and by the Jensen inequality, we

obtain

Eη [ψ2(w + η)] ≥ E2
η [ψ(w + η)], (35)

for any fixed variable w [41]. Then, we have

Ez [ψ
2(z)] = Ew

{
Eη [ψ2(w + η)]

}

≥ Ew

{
E2

η [ψ(w + η)]
}
. (36)

Immediately, we find

1

L + 1
Ez [ψ

2(z)] +
L

L + 1
Ew

{
E2

η [ψ(w + η)]
}

≤ 1

L
Ez [ψ

2(z)] +
L − 1

L
Ew

{
E2

η [ψ(w + η)]
}
. (37)

From Eq. (16) and Eq. (37), we derive

1

J(fw )

(L + 1)E2
z [ψ

′(z)]

Ez [ψ2(z)] + LEw

{
E2

η [ψ(w + η)]
}

≥ 1

J(fw )

LE2
z [ψ

′(z)]

Ez [ψ2(z)] + (L − 1)Ew

{
E2

η [ψ(w + η)]
} ,

which indicates

Effa(θ̂, L + 1) ≥ Effa(θ̂, L). (38)

Thus, for the given M-estimator function ψ and fixed noise com-

ponents w and η, the asymptotic efficiency Effa(θ̂, L) in Eq. (16)

is a monotonically increasing function of the M-estimator num-

ber L.

APPENDIX E

OPTIMIZATION OF THE ASYMPTOTIC EFFICIENCY FOR AN

INFINITE NUMBER OF M-ESTIMATORS

By using the Cauchy-Schwarz inequality, we find that the

asymptotic efficiency Eff∞(θ̂) in Eq. (17) satisfies

Eff∞(θ̂) =
1

J(fw )

E2
w {dEη [ψ(w + η)]/dw}
Ew

{
E2

η [ψ(w + η)]
}

=
1

J(fw )

E2
w {Eη [ψ(w + η)] ψM (w)}

Ew

{
E2

η [ψ(w + η)]
}

≤ 1

J(fw )
Ew

[
ψ2

M (w)
]

= 1, (39)

where the equality occurs as

Eη [ψ(w + η)] = CψM (w), (40)

with an arbitrary constant C.
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Thereby, for the given function ψ and the background noise

distribution fw , the optimal additive noise probability density

f opt
η is the solution of Eq. (40). With the assumptions of symmet-

rical distribution function fw and the odd M-estimator function

ψ, the added noise probability density function is also even,

i.e., fη (−η) = fη (η), due to the Fisher-consistent M-estimator

satisfying Ez [ψ(z)] = 0 [37]. Then, Eq. (40) can be rewritten

as

Eη [ψ(w + η)] =

∫ +∞

−∞
ψ(w + η)fη (−η)dη

=

∫ −∞

+∞
ψ(w − u)fη (u)d(−u)

= ψ(w) ∗ fη (w)

= CψM (w), (41)

which indicates that the optimal noise probability density f opt
η

is the deconvolution of CψM (x) and ψ(x). If the Fourier trans-

formations of ψ(x) and ψM (x) both exist [54], [55], we have

f opt
η (x) = C F

−1

{
F [ψM (x)]

F [ψ(x)]

}
, (42)

where F and F−1 denote the Fourier transform and its inverse

transform, respectively. Here, we emphasize that, due to the

probability density fη (η) ≥ 0, the optimal density f opt
η exists

only if the inverse of the Fourier transform in Eq. (42) exists and

is a nonnegative function. The constant C can be calculated by

the normalization condition
∫

fη (η)dη = 1. In addition, both

ψM (x) and ψ(x) are odd functions. According to the convolu-

tion property [55], f opt
η is an even function when it exists. For ex-

ample, consider a kind of heavy-tailed noise with the hyperbolic

secant distribution fw (x) = sech(πx/2) [42] and the median es-

timator ψ(x) = sign(x). Then, from Eq. (42), the optimal prob-

ability density becomes f opt
η (x) = πeπx/[4(1 + eπx)2 ], which

indicates logistic noise as a feasible optimal noise.

It is noted that the optimal noise indicated in Eq. (42) cor-

responding to the upper bound of unity is only a special case

of

f opt
η (x) = arg max

fη

Eff∞(θ̂). (43)

An achievable optimal noise density that achieves the max-

imum of the asymptotic efficiency (not more than unity) of

Eq. (17) among all feasible densities is practically significant.

Define the inner product of two functions f and g as 〈f, g〉 =
Ew [f(w)g(w)], and the L2-norm of a function g as ‖g‖ =
〈g, g〉1/2 . Here, we define φ(w) = Eη [ψ(w + η)] and its nor-

malized function can be expressed as φ(w) = φ(w)/‖φ(w)‖.

Correspondingly, the maximum likelihood estimator ψM (w)
can be also normalized as ψM (w) = ψM (w)/‖ψM (w)‖ with

its norm ‖ψM (w)‖ =
√

J(fw). From Eqs. (17) and (41), we

have

Eff∞(θ̂) =
〈Eη [ψ(w + η)], ψM (w)〉2

‖Eη [ψ(w + η)]‖2‖ψM (w)‖2
= 〈φ(w), ψM (w)〉2 .

Note that ‖φ(w) − ψM (w)‖2 = 2 − 2〈φ(w), ψM (w)〉. Thus,

the optimal noise density indicated in Eq. (43) is just the

minimum L2-norm solution of ‖φ(w) − ψM (w)‖2 , expressed

as

f opt
η (x) = arg min

fη

‖φ(w) − ψM (w)‖2 , (44)

with the constrains of
∫

fη (x)dx = 1 and fη (x) ≥ 0 for x ∈ R.

A further point is to consider the set of all possible noise den-

sities, and then in this set there is necessarily at least one that

realizes the maximum efficiency, which is equivalent to solving

the constrained minimization of Eq. (44). How to calculate such

an achievable optimal density of the additive noise remains an

interesting open question for future study.

APPENDIX F

BENEFIT CONDITION OF ADDING UNIFORM NOISE

Based on Eq. (19), the derivative of Eff∞(θ̂, d) with respect

to the uniform noise level d is given by

∂Eff∞(θ̂, d)

∂d
=

1

J(fw )

A

E2
w

{
[ρ(w + d) − ρ(w − d)]2

} , (45)

with A = 2Ew [ψ(w + d) − ψ(w − d)]Ew [ψ′(w + d) + ψ′(w −
d)]Ew

{
[ρ(w + d) − ρ(w − d)]2

}
− 2E2

w [ψ (w + d) − ψ (w −
d)]Ew

{
[ρ(w + d) − ρ(w − d)][ψ(w + d) + ψ(w − d)]

}
. The

optimal noise level dopt is solved by ∂Eff∞(θ̂, d)/∂d = 0.

Since J(fw ) > 0 and E2
w

{
[ρ(w + d) − ρ(w − d)]2

}
> 0, then

the optimal noise level dopt is the solution of A = 0. We further

consider the small noise level d → 0 (d > 0). In this situation,

the derivative of Eff∞(θ̂, d) in Eq. (45) can be approximated

with the second-order Taylor expansion as

∂Eff∞
∂d

≈ d

J(fw)

E2
w [ψ′(w)]

Ew [ψ2(w)]

{
Ew [ψ′′′(w)]

Ew [ψ′(w)]
− Ew [ψ(w)ψ′′(w)]

Ew [ψ2(w)]

}
.

Since E2
w [ψ′(w)]/Ew [ψ2(w)] > 0 and the noise level d > 0,

then the condition of a benefit by adding uniform noise is given

by

D(ψ, fw ) =
Ew [ψ′′′(w)]

Ew [ψ′(w)]
− Ew [ψ(w)ψ′′(w)]

Ew [ψ2(w)]
> 0, (46)

which indicates when the addition of uniform noise leads to

the increase of the asymptotic efficiency Eff∞(θ̂, d). If the sec-

ond or third derivative of ψ in Eq. (46) does not exist, we can

reduce the derivative order of ψ, and explore the derivative of

fw by applying the subsection integral method. For example,

Ew [ψ′′′(w)] = −
∫

ψ′′(w)f ′
w (w)dw and note fw (±∞) = 0. In

practice, we can simply calculate the sign of D(ψ, fw ) in

Eq. (46) to determine whether the addition of uniform noise

is beneficial or not for a background noise distribution fw , as

illustrated in Fig. 2.
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APPENDIX G

NUMERICAL SIMULATION

A. Numerical Computation of the Asymptotic Efficiency

We adopt the iterative reweighting method to obtain the nu-

merical estimation θ̂ of a location parameter [37]. Assuming

W (x) =

{
ψ(x)/x, x = 0,
ψ′(x), x = 0,

(47)

then Eq. (3) can be rewritten as [37]

n∑

i=1

W (xi − θ̂)(xi − θ̂) = 0. (48)

From Eq. (48), the estimated parameter can be obtained as a

weighted mean [37]

θ̂ =

∑n
i=1 Wi xi∑n

i=1 Wi
, (49)

with Wi = W (xi − θ̂).
For the method of adding extra noise to an array of

M-estimators, we first generate L groups of updated samples

with the addition of L samples of uniform noise components ηli

with the level of d. Then, compute L values of parallel estimators

(θ̂1 , · · · , θ̂L ) by using L groups of observations respectively.

For each group of observations yl = (yl1 , yl2 , · · · , yln ), the lth

estimator θ̂l is obtained by the iterative reweighting method as

follows:

1) Set the initial estimator θ̂l(0) as the median of the updated

observations yl .

2) For k = 0, 1, 2, . . ., compute the location parameter θ̂l(k +
1) at iteration k + 1 as

θ̂l(k + 1) =

∑n
i=1 Wk,li yli∑n

i=1 Wk,li
, (50)

with the weight function Wk,li = W [yli − θ̂l(k)].

3) Stop when |θ̂l(k + 1) − θ̂l(k)| < ζ, where ζ is a small

tolerance parameter, and the numerical M-estimator θ̂l(k + 1)

is assumed to be the lth expected M-estimator θ̂l .

4) Compute the estimator θ̂ of Eq. (15) by averaging L esti-

mators (θ̂1 , · · · , θ̂L ).

Then, we can realize the numerical M-estimator θ̂ for

M = 104 Monte Carlo trails by the above iterative reweight-

ing method, and the variance of θ̂ is evaluated as var(θ̂) =
∑M

m=1(θ̂m − θ̂)2/(M − 1) with the mean θ̂ =
∑M

m=1 θ̂m /M .

Substituting the variance var(θ̂) into Eq. (7), the numerical

asymptotic efficiency Effa(θ̂) can be obtained, as shown in

Fig. 3(c).

B. Numerical Simulation of the Maximum Bias

We use 104 Monte Carlo trails to evaluate the maximum bias

with optimal noise and without added noise, respectively. For

each trail, the observation size n = 5 × 104 and the fraction

of contamination ǫ = 0.1. We generate n observations obey-

ing the Gaussian mixture distribution, then replacing 0.1n of

observations with the outliers, resulting in the contaminated

data xi . According to the contamination model of Eq. (20), the

maximum bias is theoretically evaluated with the extreme out-

liers obeying the point mass distribution q = δ(x0) at x0 → ∞.

In practice, the outliers are taken as real numbers with suffi-

ciently large magnitude as 106 ≫ µ + 3τ . Then, we generate

n random components ηi composed by two values of aopt and

−aopt with equal probabilities. Then, the updated observations

yi = xi + ηi are obtained. Next, calculate the median of the

samples by the original data xi and the updated observations

yi , respectively. Finally, the maximum bias with optimal noise

and without added noise are obtained for 104 numerical trials,

respectively, as shown in Fig. 6.

APPENDIX H

NOISE-REDUCED MAXIMUM BIAS OF THE MEDIAN ESTIMATOR

For the median estimator and a given proportion 0 < ǫ < 1/2,

we expect that the updated bias b̃ǫ of Eq. (24) is smaller than the

bias bǫ of Eq. (23), i.e., F−1
z [1/2(1 − ǫ)] < F−1

w [1/2(1 − ǫ)].
Here, the median estimator has the breakdown point of ǫ∗ = 1/2

that yields an unbounded estimator θ̂ → ∞, thus requiring 0 <
ǫ < 1/2. Since the probability density fw or fz is symmetric,

the cumulative distribution function is then analyzed for the

nonnegative domain of x ≥ 0. It is known that the cumulative

distribution function is nondecreasing, then finding a smaller

updated bias of b̃ǫ < bǫ is equivalent to satisfying the condition

of Fz (bǫ) > Fw (bǫ) for bǫ = b̃ǫ . The cumulative distribution

function Fz of the composite noise z can be calculated as

Fz (x) =

∫ x

−∞
fz (z)dz

=

∫ x

−∞

∫ ∞

−∞
fw (z − η)fη (η)dηdz

=

∫ ∞

−∞

∫ x

−∞
fw (z − η)dzfη (η)dη

=

∫ ∞

−∞
Fw (x − η)fη (η)dη

= Eη [Fw (x − η)]. (51)

For a given positive value of bǫ ∈ (U, V ) for 0 ≤ U < V and a

function Fw (x) convex over the interval (U, V ), then, according

to the Jensen inequality [41], we obtain

Fz (bǫ) = Eη [Fw (bǫ − η)] > Fw [Eη (bǫ − η)] = Fw (bǫ) (52)

with the zero mean Eη [η] = 0. This indicates that if there ex-

ists a positive interval (U, V ) where the cumulative distribution

function Fw is strictly convex, then the maximum bias of the

median estimator can be reduced by adding extra noise η.

Under the above convexity condition of Fw over a certain

positive interval (U, V ), a naturally emerging problem is to

find an optimal noise distribution f opt
η , aiming to minimize the

maximum bias of Eq. (24) without changing the consistency of

the estimator under fz , i.e., Ez [ψ(z)] = 0 with ψ(x) = sgn(x).
It is noted that minimizing the maximum bias is equivalent to

maximizing Fz (bǫ) for a given positive bias bǫ ∈ (U, V ). Thus,
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the optimal distribution f opt
η is given by

arg max
fη

Fz (bǫ) = Eη [Fw (bǫ − η)], (53)

with the constraint Ez [ψ(z)] = Eη [2Fw (η) − 1] = 0. Next, we

will demonstrate that the solution of Eq. (53) is just the noise

distribution fη of Eq. (25).

Proof: Consider the set of all pairs of (Fw (bǫ − η), 2Fw (η) −
1) named P = {(p1 , p2)|p1 = Fw (bǫ − η), p2 = 2Fw (η) − 1}.

T = {(t1 , t2)|t1 = Fz (bǫ), t2 = Ez [ψ(z)]} denotes the set of

pairs (Fz (bǫ),Ez [ψ(z)]). Let E be the convex hull of P and

the dimension Dim(E) ≤ 2. As discussed in [9]–[11], [19], we

have T = E. From Carathéodory’s theorem [53], any point in

T can be expressed as a combination of at most three elements

of P . Since our aim is to maximize Fz (bǫ) with the constraint of

Ez [ψ(z)] = 0, the optimum point can only occur on the bound-

ary of T . Therefore, the optimal pair (Fz (bǫ),Ez [ψ(z)]) can be

expressed as the convex combination of two points of P . Based

on the constraint such that Ez [ψ(z)] = 0, i.e., fη (−η) = fη (η),
we derive the optimal noise distribution fη of Eq. (25).
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