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We prove extrinsic upper bounds for the first eigenvalue of second order operator of divergence type as well as for Paneitz-like operators and two generalized Steklov problems on hypersurfaces of product spaces N × R. Examples of equality cases are given.

Introduction and statements of the results

In his seminal paper [18], Reilly proved the following well-known upper bound for the first non-zero eigenvalue of the Laplace operator on a closed n-dimensional submanifold M of a Euclidean space R m (1) ?Reilly1?

λ 1 (M ) n V (M ) M H 2 dv g ,
where V (M ) is the volume of (M, g), dv g its volume element and H is the mean curvature vector of the isometric immersion of (M, g) into R m . This inequality has been extended by many authors in different contexts: for other ambient spaces [START_REF] Heintze | Extrinsic upper bounds for λ 1[END_REF][START_REF] Soufi | Une inégalité de type "Reilly" pour les sous-variétés de l'espace hyperbolique[END_REF], in terms of higher order mean curvatures [18], other operators [START_REF] Alencar | On the first eigenvalue of Linearized operator of the r-th mean curvature of a hypersurface[END_REF][START_REF] Alias | On the first eigenvalue of the linearized operator of the higher order mean curvature for closed hypersurfaces in space forms[END_REF][START_REF] Barbosa | Stability of hypersurfaces with constant r-mean curvature[END_REF][START_REF] Grosjean | Upper bounds for the first eigenvalue of the Laplacian on compact manifolds[END_REF][START_REF] Roth | Reilly-type inequalities for Paneitz and Steklov eigenvalues[END_REF], in the anisotropic setting [19], for weighted ambient spaces [5,11,[START_REF] Roth | Reilly-type inequalities for Paneitz and Steklov eigenvalues[END_REF] or for differential forms [START_REF] Savo | On the first Hodge eigenvalue of isometric immersions[END_REF] and spinors [3,[START_REF] Ginoux | Reilly-type spinorial inequalities[END_REF]. Recently, Xiong [23] obtained extrinsic estimates of Reilly type for closed hypersurfaces of product spaces (R × N, dt 2 ⊕ h), where (N n , h) is a complete Riemannian manifold. In particular, he proved that the first eigenvalue λ 1 of the Laplace operator and the first eigenvalue σ 1 of the Steklov problem for mean-convex hypersurfaces (bounding a domain for the second one) satisfy respectively

λ 1 nκ + (M ) H ∞ and σ 1 κ + (M ) H ∞ inf M H .
In the present note, we prove extrinsic eigenvalue estimates for four types of eigenvalues, namely for divergence-type operators L T (Theorem 1.1), Paneitz-like operators (Theorem 1.3), Steklov-Wentzell problem (Theorem 1.5) and biharmonic Steklov problem (Theorem 1.6). These results are extensions for product manifolds R×N of the estimates obtained by the author in [START_REF] Roth | Reilly-type inequalities for Paneitz and Steklov eigenvalues[END_REF] for hypersurfaces of Euclidean spaces.

1.1. L T operators. Let (M n , g) be a closed connected and oriented Riemannian manifold and consider T a symmetric, divergence-free and positive definite (1, 1)tensor over M . We associate with T the following second order differential operator L T defined by L T f = -div(∇f ) for any C 2 function on M , where div and ∇ are respectively the divergence and the gradient over (M n , g). Under the above assumptions on T , the operator L T is self-adjoint, elliptic and positive. In particular, its spectrum is a increasing sequence of real numbers

0 = λ 0 < λ 1 • • • λ k -→ +∞.
The eigenvalue 0 is simple and corresponds to constant eigenfunctions. In the sequel, we will consider the first positive eigenvalue λ 1 . Now, assume that (M n , g) is isometrically immersed into a Riemannian product R × N . We set

(2) defHT H T = tr (T S),
where S is the shape operator of the immersion.

For the well understanding of the statement of the result, we will introducre at this point the following notations: if A is a (1, 1)-tensor over M , then we denote

A -= min{A -(x)|x ∈ M } where A -(x)
is the smallest eigenvalue of A at the point x and

A + = max{A + (x)|x ∈ M }
where A + (x) is the biggest eigenvalue of A at the point x. Now, we can state the first result of this note which gives an extrinsic upper bound for the first eigenvalue of L T . Namely, we have the following thm1 Theorem 1.1. Let (N n , h) be a complete Riemannian manifold and (M n , g) be a closed oriented Riemannian manifold isometrically immersed into the Riemannian product (R × N, dt 2 ⊕ h). Moreover, let T be a symmetric, positive definite and divergence-free (1, 1)-tensor over M and assume that H T is a positive function.

Then, the first eigenvalue λ 1 of the operator L T on M satisfies

λ 1 (T S) + T - H T ∞ .
Moreover, if T and S commute, then we have

λ 1 κ + (M ) H T ∞ .
Remarks 1.2.

(1) Note that since H T = tr (T S) > 0, then (T S) + > 0 and the upper bound in the theorem is positive.

(2) We also want to point out that in the case where T and S commute, the hypotheses that T is positive definite and H T is a positive function imply that M has necessarily at least one positive principal curvature and so the upper bound κ + (M ) H T ∞ is positive.

(3) In particular T and S commute if T is one the tensors T r associated with the higher order mean curvatures H r . They will be considered in the first example of Section 3.

1.2. Paneitz-like operators. On a 4-dimensional Riemannian manifold (M 4 , g), the Paneitz operator, first introduced in [START_REF] Paneitz | A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds[END_REF] by Paneitz (see also [START_REF] Paneitz | A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds[END_REF]), is the fourth order differential operator P defined by

P u = ∆ 2 u -div 2 3 Scal ∇u -2Ric(∇u) ,
for any C 4 function u, where div is the divergence, ∆ = -div∇ the Laplacian, Scal the scalar curvature and Ric the (1, 1)-Ricci tensor associated with the metric g. It has been generalized in any dimension by Branson [6]. Namely, we have for n 5,

P u = ∆ 2 u --div (n -2) 2 + 4 2(n -1)(n -2) Scal ∇u - 4 n -2 Ric(∇u) + n -4 2 Qu,
where Q is the Branson Q-curvature associated with the metric g. The Paneitz operator is conformally covariant and plays a crucial role in the problem of prescribing Q-curvature. In the last two decades, the Paneitz operator (and its links with Q-curvature) has been intensively studied by many authors (see [START_REF] Djadli | Paneitz-type operators and applications[END_REF] and reference therein for instance).

Here, we are interesting in the spectrum of the Paneitz operator and more generally of Paneitz-like operators (for which the classical Paneitz operator in dimension 4 is a particular case). In [START_REF] Roth | Reilly-type inequalities for Paneitz and Steklov eigenvalues[END_REF] we obtain general Reilly-type upper bounds generalizing previous estimates proved by Chen and Li in [8]. The Paneitz-like operators are defined for some constants a and b with b -n n-1 by

P a,b u = ∆ 2 u -div(aScal ∇u + bRic∇u),
for any smooth function u on M . The fourth order operator P a,b is elliptic and self-adjoint so that it has a discrete real spectrum. In the sequel, we will restrict to the case where P a,b is positive. The positivity of P a,b is ensured under some curvature lower bounds (see [START_REF] Yang | Positivity of Paneitz operators[END_REF] for more details). Here, we give upper bounds for the first eigenvalue of P a,b for hypersurfaces in products spaces R × N . Namely, we prove the following thm2 Theorem 1.3. Let (N n , h) be a complete Riemannian manifold and (M n , g) be a closed oriented Riemannian manifold isometrically immersed into the Riemannian product (R × N, dt 2 ⊕ h). Let a and b two real constants with b -n n-1 and na+b 0. Moreover, assume that M has nonnegative scalar curvature and that the Paneitz-like operator P a,b is positive. Then, the first eigenvalue Λ 1 of the Paneitzlike operator P a,b on M satisfies

Λ 1 nκ + (M ) H ∞ nκ + (M ) H ∞ + (aScal Id + bRic) + .
Remark 1.4. This result is of interest only if the operator P a,b is positive. As mentioned, see [START_REF] Yang | Positivity of Paneitz operators[END_REF] for details about the positivity of P a,b .

Steklov-Wentzell problem.

Let Ω be a smooth domain of the Riemannian product R × N with non-empty boundary M = ∂Ω and b a nonnegative constant. We will denote by g the induced metric on M and denote by ∆ and ∆ the Laplacian on Ω and M respectively. We consider the following Steklov-type problem for the Laplacian ∆ with the so-called Wentzell boundary condition. Namely, we consider (SW) ?Wentzell?

     ∆f = 0 on Ω -b∆f - ∂f ∂ν = αf on M.
where ∂f ∂ν =< ∇f, ν > is the derivative of the function f with the respect to the inner unit normal ν. Here, ∇ is the gradient over Ω. Note that, if b = 0, then, we recover the classical Steklov problem. The spectrum of this problem is an increasing sequence (see [START_REF] Dambrine | An extremal eigenvalue problem for the Wentzell-Laplace operator[END_REF][START_REF] Xia | Eigenvalues of the Wentzell-Laplace Operator and of the Fourth Order Steklov Problems[END_REF])

0 = α 0 < α 1 α 2 • • • α k • • • -→ +∞.
The eigenvalue 0 is simple and the corresponding eigeinfunctions are the constant ones. Here again, we prove a Reilly-type upper bound for the first positive eigenvalue of this problem. Namely, we have thm3 Theorem 1.5. Let (N n , h) be a complete Riemannian manifold and (M n , g) be a closed oriented Riemannian manifold isometrically immersed into the Riemannian product (R × N, dt 2 ⊕ h). Moreover, assume that M is mean-convex and bounds a domain Ω in R × N . Then, the first eigenvalue α 1 of the Steklov-Wentzell problem satisfies

α 1 κ + (M ) H ∞   1 inf M H + bn   .
1.4. Biharmonic Steklov problem. Let Ω be a smooth domain of the riemannian product R × N with non-empty boundary M = ∂Ω and τ a positive constant. We consider the following biharmonic Steklov problem.

(BS) Steklovbih                  ∆ 2 f -τ ∆f = 0 on Ω, ∂ 2 f ∂ν 2 = 0 on M, τ ∂f ∂ν -div ∂M P ∂M ((∇ 2 f )ν) - ∂∆f ∂ν = βf on M.
where P ∂M is the projection over the tangent space of ∂M .This problem has a discret spectrum consisting in an increasing sequence (see [7])

0 = β 0 < β 1 β 2 • • • β k • • • -→ +∞.
The eigenvalue 0 is simple and the corresponding eigeinfunctions are the constant functions. In the next theorem, we prove an extrinsic upper for the first positive eigenvalue of this problem.

thm4 Theorem 1.6. Let (N n , h) be a complete Riemannian manifold and (M n , g) be a closed oriented Riemannian manifold isometrically immersed into the Riemannian product (R × N, dt 2 ⊕ h). Moreover, assume that M is mean-convex and bounds a domain Ω in R × N . Then, the first eigenvalue of the biharmonic Steklov problem satisfies

β 1 τ κ + (M ) H ∞ inf M H .
After giving the proof of these four theorems in Section 2, we will give some examples of their equality cases in Section 3.

2. Proofs of the results sec2 2.1. Proof of Theorem 1.1. We recall that the variational characterization of λ 1 given by

λ 1 = inf        M T ∇f, ∇f dv g M f 2 dv g u = 0, M f dv g = 0        .
Here, ∇u stands for the gradient of the function u over M and dv g is the Riemannian volume form of M . Note that in the sequel, we will also use, without confusion, ∇ for the Levi-Civita connection of (M, g). We will use as test function the function t which is the coordinate in the factor R of the product R × N . First, obviously, M is invariant by translation in the direction of R, so we can assume that M tdv g = 0. Second, since the function H T is positive, we deduce that t does not vanish identically. Indeed, if t vanishes identically over M , then M is included in the slice {0} × N . Since M is a closed manifold, this is possible if and only if M = N and so M is totally geodesic in the product N × R. This is a contradiction with the fact that H T > 0. Hence, t does not vanish identically and can be used as a test function.Thus, we have

λ 1 M T (∇t), ∇t dv g M t 2 dv g .
Now, let us compute L T t. For more convience, let p ∈ M and consider {e 1 , • • • , e n } be a normal frame at p. We have

L T t = -div(T ∇t) = - n i=1 ∇ ei (T ∇t), e i = - n i,j=1
∇ ei ( ∇t, e j T e j ), e i = - e i ( ∇t, e j )T e j , e i ,

where the second part of the right hand side vanishes in the last line since T is divergence free. Hence, denoting by ∇ the Levi-Civita connection of (R×N, dt 2 ⊕h), and T i,j = T e i , e j , we have

L T t = - n i,j=1
∇ ei ∇t, e j T i,j

= - n i,j=1 ∇ ei (∂ t -∂ t , ν ν), e j T i,j ,
where ν is a unit normal vector field. Moreover, since ∂ t is parallel for ∇ and -∇ (•) ν is the shape operator S, we get

L T t = - n i,j=1 ∂ t , ν Se i , e j T i,j = - n i=1 ∂ t , ν Se i , T e i = -H T u,
where we have set u = ∂ t , ν . Then, we have

λ 1 M tL T tdv g M t 2 dv g M tL T tdv g 2 M t 2 dv g M T ∇t, ∇t dv g
But, since L T t = -H T u, we have from the Cauchy-Schwarz inequality

M tL T tdv g 2 M H 2 T u 2 dv g M t 2 dv g and so λ 1 H 2 T dv g M T ∇t, ∇t dv g .
On the other hand, we have uL T t = -H T u 2 , which after integration gives

(3) intHT M H T u 2 dv g = - M T ∇u, ∇t dv g = M T S∇t, ∇t dv g , since ∇u = n i=1 e i (u)e i = n i=1 e i ( ν, ∂t )e i = - n i=1 Se i , ∂ t e i = -S(∇t). FInally, we get λ 1 H T ∞ M T S∇t, ∇t dv g M
T ∇t, ∇t dv g and so

λ 1 (T S) + T - H T ∞ .
We recall that

T -= min{T -(x)|x ∈ M } where T -(x)
is the smallest eigenvalue of T at the point x. Note that T -is a positive number since T is positive definite and M is compact. Also, (T S) + = max{(T S) + (x)|x ∈ M } where (T S) + (x) is the largest eigenvalue of T S at the point x. Since H T is a positive function, (T S) + is also a positive number. Now, assume that T and S commute. Since T is positive definite and symmetric, there exists a square root of T , denoted U which is also symmetric, positive definite and which also commutes with S. Hence, we have

λ 1 H T ∞ M T S∇t, ∇t dv g M T ∇t, ∇t dv g H T ∞ M SU ∇t, U ∇t dv g M U ∇t, U ∇t dv g H T ∞ κ + (M ).
This concludes the proof.

2.2.

Proof of Theorem 1.3. From the variational characterization of Λ 1 , we obtain, using t as test function

Λ 1 M t 2 dv g M tP a,b tdv g M t∆ 2 t -tdiv (aScal ∇t + bRic(∇t)) dv g M |∆t| 2 + aScal |∇t| 2 + b Ric(∇t), ∇t dv g M |∆t| 2 + (aScal + bRic) + ∇t 2 dv g .
Note that from the assumption na + b 0 and Scal 0, then (aScal + bRic) + is nonnegative. Moreover, as we have seen in the proof of Theorem 1.1 (with T = Id ), we have ∆t = -nHu, with u = ∂ t , ν . Hence, we get

Λ 1 n 2 M H 2 u 2 dv g M t 2 dv g + (aScal + bRic) + M ∇t 2 dv g M t 2 dv g     n 2 M H 2 u 2 dv g M ∇t 2 dv g + (aScal + bRic) +     M ∇t 2 dv g M t 2 dv g . (4) inegLambdafinal First, since t∆t = -nHut, we have M ∇t 2 dv g = n M Hutdv g (5) Hut n M H 2 u 2 dv g 1 2 M t 2 dv g 1 2
by the Cauchy-Schwarz inequality. Hence, we get

M ∇t 2 dv g M t 2 dv g n 2 M H 2 u 2 dv g M ∇t 2 dv g n H ∞ n M Hu 2 dv g M ∇t 2 dv g n H ∞ M S∇t, ∇t dv g M ∇t 2 dv g n H ∞ κ + (M )
where we have used (3) with T = Id . Thus, reporting in (4), we obtain

Λ 1 nκ + (M ) H ∞ nκ + (M ) H ∞ + (aSId + bRic) + ,
which concludes the proof of Theorem 1.3.

2.3.

Proof of Theorem 1.5. First, we recall that the first eigenvalue α 1 of Steklov-Wentzell problem has the following variational characterization (see [START_REF] Dambrine | An extremal eigenvalue problem for the Wentzell-Laplace operator[END_REF][START_REF] Xia | Eigenvalues of the Wentzell-Laplace Operator and of the Fourth Order Steklov Problems[END_REF])

(6) ?characalpha1? α 1 = inf        Ω ∇f 2 dv g + b M ∇f 2 dv g M f 2 dv g ∂M f dv g = 0        .
As in the proof of Theorem 1.1, we may assume that the function t satisfies ∂M tdv g = 0 and thus use it as a test function. So, we get

α 1 Ω ∇t 2 dv g M t 2 dv g + b M ∇t 2 dv g M t 2 dv g . First, we have Ω ∇t 2 dv g = - Ω t∆tdv g + Ω div g (t∇t)dv g
Since ∆t = 0, using the Stokes theorem, we get

Ω ∇t 2 dv g = M t∇t, ν dv g = M tudv g ,
where u is defined as above by u = ∂ t , ν = ∇t, ν . Hence, by the Cauchy-Schwarz inequality, we obtain

Ω ∇t 2 dv g M t 2 dv g 1 2 M u 2 dv g 1 2 and thus Ω ∇t 2 dv g M t 2 dv g M u 2 dv g 1 2 M t 2 dv g 1 2
.

On the other hand, we have

n inf M (H) M u 2 dv g M nHu 2 dv g M S∇t, ∇t dv g κ + (M ) M ∇t 2 dv g κ + (M ) M nHutdv g nκ + (M ) H ∞ M utdv g nκ + (M ) H ∞ M t 2 dv g 1 2 M u 2 dv g 1 2
where we have used (3) with T = Id and (5) successively. Finally, we get

Ω ∇t 2 dv g M t 2 dv g κ + (M ) H ∞ inf M (H) . (7) lem1
Moreover, proceeding as in the proof of Theorem 1.1 with T = Id , we obtain immediately that

M ∇t 2 dv g M t 2 dv g nκ + H ∞ which gives finally α 1 κ + (M ) H ∞   1 inf M H + bn   . 
2.4. Proof of Theorem 1.6. The boundary conditions in the biharmonic Steklov problem (BS) are the natural one so that the weak formulation of this problem is the following (see [7]):

Ω ∇ 2 f, ∇ 2 φ + τ ∇f, ∇φ dv g = β M f φdv g ,
Hence, the first positive eigenvalue β 1 has the following variational characterization (8) ?characbeta1?

β 1 = inf        Ω ∇ 2 f 2 + τ ∇f 2 dv g M f 2 dv g M f dv g = 0        .
As previously, up to a possible translation, we use t as test function in the above variational characterization so that

β 1 M t 2 dv g Ω ∇ 2 t 2 + τ ∇t 2 dv g τ Ω ∇t 2 dv g ,
since ∇ 2 t = 0. Thus, we have

β 1 τ Ω ∇t 2 dv g M t 2 dv g
From the proof of Theorem 1.5, we have ( 7)

Ω ∇t 2 dv g M t 2 dv g κ + (M ) H ∞ inf M (H) ,
which concludes the proof of Theorem 1.6.

Examples of equality case sec3

We finish this note by giving examples of equality cases for each of the four theorems.

Example 3.1. We consider here the well-known operators L r associated to the higher order mean curvatures. The higher order mean curvatures are extrinsic quantities defined from the second fundamental form and generalizing the notion of mean curvature. Up to a normalisation constant the mean curvature H is the trace of the second fundamental form B:

H = 1 n tr (B).
In other words the mean curvature is

H = 1 n S 1 (κ 1 , . . . , κ n ),
where S 1 is the first elementary symmetric polynomial and κ 1 , . . . , κ n are the principal curvatures. Higher order mean curvatures are defined in a similar way for r ∈ {1, . . . , n} by

H r = 1 n r S r (κ 1 , • • • , κ n ),
where S r is the r-th elementary symmetric polynomial, that is for any n-tuple (x 1 , • • • , x n ), S r (x 1 , . . . , x n ) =

1 i1<•••<ir n x i1 • • • x ir .
which coincides with the upper bound of Theorem 1.6, that is, τ κ + (M ) H ∞ inf M (H) .

  e i ( ∇t, e j )T e j , e i + n i,j=1∇t, e j ∇ ei (T e j ), e i

By convention we set H 0 = 1 and H n+1 = 0. Finally, for convenience we also set H -1 = -X, ν .

To each H r we associate a symmetric (2, 0)-tensor, which is in coordinates given by

where S r+1 is now understood to depend on the second fundamental form and the metric. The relation between these two notions can be found in [START_REF] Barbosa | Stability of hypersurfaces with constant r-mean curvature[END_REF] for example. These tensors T r are divergence-free (see [START_REF] Grosjean | Upper bounds for the first eigenvalue of the Laplacian on compact manifolds[END_REF] for instance) and satisfy the following relations: tr (T r ) = c(r)H r and H Tr = -c(r)H r+1 ν, where c(r) = (n -r) n r and H Tr is given by the relation [START_REF] Alias | On the first eigenvalue of the linearized operator of the higher order mean curvature for closed hypersurfaces in space forms[END_REF]. The operator L r is defined as the operator L Tr associated with the tensor T r . Note that in space forms, if H r+1 > 0, then L r is a positive operator (see [START_REF] Barbosa | Stability of hypersurfaces with constant r-mean curvature[END_REF]). Now, we consider the sphere

R n+2 (see [START_REF] Alencar | On the first eigenvalue of Linearized operator of the r-th mean curvature of a hypersurface[END_REF]). On the other hand, since T r and B commute, the bound of Theorem 1.1 is 

, which is the first eigenvalue of the Paneitz operator on S 4 (R) (see [8]). Hence equality in Theorem 1.3 is attained.

Example 3.3. For the Steklov-Wentzell problem, the same example provide the sharpness of Theorem 1.5. Indeed, for the sphere S n (R) of radius R into R n+1 , the upper bound of Theorem 1.5 is

On the other hand, in [20, Theorem 3.2], we prove that for the sphere

where ω n is the volume S n , we obtain that α 1 = R+bn R 2 and equality occurs in Theorem 1.5.

Example 3.4. Finally, for the biharmonic Steklov problem, we consider again S n (R) into R n+1 . In that case, the first eigenvalue is (see [START_REF] Roth | Reilly-type inequalities for Paneitz and Steklov eigenvalues[END_REF]Theorem 3.3])