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Abstract—In this work, we show that the Chapel high-
productivity language is suitable for the design and implemen-
tation of all aspects involved in the conception of parallel tree
search algorithms for solving combinatorial problems. Initially,
it is possible to hand-optimize the data structures involved in
the search process in a way equivalent to C. As a consequence,
the single-threaded search in Chapel is on average only 7%
slower than its counterpart written in C. Whereas programming
a multicore tree search in Chapel is equivalent to C-OpenMP
in terms of performance and programmability, its productivity-
aware features for distributed programming stand out. It is
possible to incrementally conceive a distributed tree search
algorithm starting from its multicore counterpart by adding
few lines of code. The distributed implementation performs load
balancing among different computer nodes and also exploits all
CPU cores of the system. Chapel presents an interesting trade-
off between programmability and performance despite the high
level of its features. The distributed tree search in Chapel is on
average 16% slower and reaches up to 80% of the scalability
achieved by its C-MPI+OpenMP counterpart.

Index Terms—High-productivity Language, PGAS, Chapel,
MPI+OpenMP, Tree Search Algorithms.

I. INTRODUCTION

Tree-based search algorithms are strategies that implicitly
enumerate a solution space, dynamically building a tree. This
class of algorithms is often used for the exact resolution of
permutation combinatorial optimization problems (COP), and
it is present in many areas, such as operations research, artifi-
cial intelligence, bioinformatics, and machine learning [1], [2].
Algorithms that belong to this class are compute-intensive and
highly irregular, which demands hand-optimized data struc-
tures for efficient single-core utilization and load balancing
between processes [3]–[5].

High-productivity languages historically suffer from severe
performance penalties, do not provide low-level features, and
are not suited to parallelism [6], [7]. Therefore, they are
not often employed within the scope of parallel tree search.
Instead, this kind of algorithm is frequently coded in either C
or C++, and different libraries and programming models are
combined for exploiting parallelism [8], [9].

Among the high-productivity languages, Chapel is one
that stands out. It was designed for high-performance com-
puting, and it is competitive to both C-OpenMP and C-
MPI+OpenMP in terms of performance, considering different
benchmarks [10]. The objective of the present research is

to investigate whether Chapel is suitable for the design and
implementation of all aspects involved in the conception of
a parallel tree search algorithm for solving combinatorial
problems. To the best of our knowledge, the present research
is the first one that investigates the use of a high-productivity
language for this purpose.

The experimental results show that Chapel is a suitable
language for the design and implementation of parallel tree
search algorithms. It is possible to hand-optimize the data
structures involved in the search process. As a consequence,
the single-threaded search in Chapel is on average only 7%
slower than its counterpart written in C. Whereas programming
a tree search in Chapel is equivalent to C-OpenMP in terms
of performance and programmability, its productivity-aware
features for distributed programming stand out.

Thanks to Chapel’s global view of the control flow and
data structures, it is possible to conceive a distributed tree
search starting from its multicore counterpart by incrementally
adding few lines of code. The distributed implementation
performs load balancing among different processes and also
uses all CPU cores that a computer node has. Despite the
high level of its features, the distributed tree search in Chapel
is on average 16% slower and reaches up to reaches 80%
of the scalability reached by its C-MPI+OpenMP counterpart.
Finally, the distributed load balancing strategies provided are
effective: the dynamic load balancing version is up to 1.5×
faster than its static counterpart.

The remainder of this paper is structured as follows.
Section II brings background information and the related
works. Section III presents the incremental and PGAS-based
distributed tree search algorithm. In turn, Section IV and
Section V present the multicore and distributed evaluations,
respectively. Next, Section VI brings a discussion of the
results obtained in Sections IV and VI. Finally, conclusions
are outlined in Section VII.

II. BACKGROUND AND RELATED WORKS

A. The Chapel Programming Language

Chapel is an open-source parallel programming lan-
guage designed to improve the programmability for high-
performance computing. It incorporates features from com-
piled languages such as C, C++, and Fortran, as well as high-
level elements related to Python and Matlab. The parallelism



is expressed in terms of lightweight tasks, which can run on
several locales or a single one. In this work, the term locale
refers to a symmetric multiprocessing computer in a parallel
system [11].

In Chapel, both global view of control flow and global view
of data structures are present [10]. Concerning the first one,
the program is started with a single task and parallelism is
added through data or task parallel features. Moreover, a task
can refer to any variable lexically visible, whether this variable
is placed in the same locale on which task is running, or
in the memory of another one. Concerning the second one,
indexes of data structures are globally expressed, even in case
the implementation of such data structures distributes them
across several locales. Thus, Chapel is a language that realizes
the Partitioned Global Address Space (PGAS) programming
model [12].

Finally, indexes of data structures are mapped to different
locales using distributions. Contrasting to other PGAS-based
languages, such as UPC and Fortran, Chapel also supports
user-defined distributions [13].

B. Tree-based Search Algorithms

Tree-based search algorithms are strategies that implicitly
enumerate a solution space, dynamically building a tree [2].
The internal nodes of the tree are incomplete solutions,
whereas the leaves are solutions. Algorithms that belong to this
class start with an initial node, which represents the root of the
tree, i.e., the initial state of the problem to be solved. Nodes are
branched during the search process, which generates children
nodes more restricted than their parent node. As shown in
Fig. 1, generated nodes are evaluated, and then, the valid and
feasible ones are stored in a data structure called Active Set.

At each iteration, a node is removed from the active set
according to the employed search strategy [1]. The search
generates and evaluates nodes until the data structure is empty
or another termination criterion is reached. If an undesirable
state is reached, the algorithm discards this node and then
chooses an unexplored (frontier) node in the active set. This
action prunes some regions of the solution space, keeping
the algorithm from unnecessary computation. The degree of
parallelism of tree-based search algorithms is potentially very
high, as the solution space can be partitioned into a large
number of disjoint portions, which can be explored in parallel.
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Fig. 1. Visual representation of a tree-based search algorithm (Own repre-
sentation based on [9]).

As these algorithms are compute intensive, diverse strate-
gies have been used for improving performance, such as
instruction-level parallelism, architecture-specific code opti-
mizations and problem-specific data structures [3]–[5], [14].
Thus, parallel tree-based search algorithms are frequently
written in C/C++, due to their low-level features and supported
parallel computing libraries [8]. In the context of distributed
algorithms, the performance-aware strategies above mentioned
are combined with distributed programming libraries for im-
plementing load balancing and explicit communication be-
tween processes [9], [15], [16]. As a consequence, program-
ming distributed tree search algorithms can be challenging and
time-consuming.

III. PARALLEL TREE-BASED SEARCH ALGORITHMS IN
CHAPEL

A major objective of Chapel concerning productivity is
allowing distributed programming using concepts close to the
ones of shared-memory programming [10]. In this section, a
multicore and single-locale tree search algorithm is initially
proposed. Then, it is incrementally extended using Chapel’s
productivity-aware features for distributed programming.

A. Algorithm Overview

This work focuses on permutation combinatorial problems,
for which an N -sized permutation represents a valid and
complete solution. Permutation combinatorial problems are
used to model diverse real-world situations, and their decision
versions are often NP-Complete [1], [16].

This section presents two backtracking algorithms for enu-
merating all complete and feasible solutions of the N-Queens.
Backtracking is a fundamental problem-solving paradigm that
consists in dynamically enumerating a solution space in a
depth-first fashion. Due to its low memory requirements and its
ability to quickly find new solutions, depth-first search (DFS)
is often preferred [1].

The N-Queens problem consists in placing N non-attacking
queens on a N × N chessboard, and it is often used as a
benchmark for novel tree-based search algorithms [14], [17].
The N-Queens is easily modeled as a permutation problem:
position r of a permutation of size N designates the column
in which a queen is placed in row r. Furthermore, the concepts
herein presented are similar to any permutation combinatorial
problem and can be adapted for solving other problems of this
class with straightforward modifications [4], [5].

B. The Single-locale Multicore Implementation

Algorithm 1 presents a pseudocode for the single-locale
backtracking in Chapel. The algorithm starts receiving the
problem to be solved (line 1) and the cutoff depth (line 2).
Then, it is required to generate an initial load for the parallel
search. For this purpose, task 0 performs backtracking from
depth 1 (initial problem configuration) until the cutoff depth
cutoff , storing all feasible, valid, and incomplete solutions
at depth cutoff in the active set A (line 4). After generating



the initial load, the parallel search strategy begins through a
forall statement (line 5).

As one can see in Fig. 2, nodes in the centralized active
set A are assigned to tasks in chunks. Each task has its active
set and executes a backtracking search strategy. In turn, nodes
are used to initialize the backtracking, which enumerates the
solution space rooted by a node. The load balancing is done
through the iterator (DynamicIters) used to assign indexes
of A to tasks, like in OpenMP.

Metrics are reduced through Reduce Intents. In Chapel, it
is possible to use the Tuple data type (equivalent to C-
structs) and reduce all metrics at once (line 6). Differently
from OpenMP, it is not required to define a tuple reduction.
Finally, the parallel search finishes when the active set A is
empty.

Algorithm 1: The multicore tree search algorithm.
1 I ← get problem()
2 cutoff ← get cutoff depth()
3 A← ∅
4 A← generate initial active set(cutoff, I)
5 forall node in A with(+ reduce metrics) do
6 metrics+ = tree search(node, cutoff, I)
7 end

C. The Multi-locale Implementation

One can see in Algorithm 2 a pseudocode for the distributed
tree-based search algorithm in Chapel. Thanks to Chapel’s
global view of control flow, the search also starts serially, with
task 0 generating the initial load to populate the active set A
(line 4). To make it possible to distributed the nodes of A
across several locales, it is required to define a domain (line
5) and to indicate how the indexes of this domain are mapped
across different locales (line 6). In this work, only standard
distributions are used 1. Finally, the distributed active set Ad

of type Node is defined over the mapped domain D (line 8).
After the initial load generation, the nodes of A are dis-

tributed by using a parallel forall (line 9), which generates
the distributed active set Ad. Thanks to Chapel’s global view
of Ad, the indexes of both active sets are directly accessed

1https://chapel-lang.org/docs/modules/layoutdist.html
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Fig. 2. Task 0 is responsible for managing the centralized active set A
and performing load balancing. The searches are independent, and metrics
are reduced using the Reduce Intents of Chapel (Own representation adapted
from [9]).
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Fig. 3. Task 0 is responsible for distributing the active set across several
locales. The distributed active set Ad consists of several sets Ai

d, i ∈
{0, ..., l − 1}, where l is the number of locales on which the application
is going to run.

in line 10. Moreover, as shown in Fig. 3, Ad is an abstrac-
tion. The distributed active set Ad consists of several sets
Ai

d, i ∈ {0, ..., l − 1}, where l is the number of locales on
which the application is going to run.

The parallel search takes place in line 12. As one can
see in Algorithm 2, its forall is similar to the one of
Algorithm 1. However, distributed iterators are used instead
(DistributedIters). Additionally, the distributed search
exploits two levels of parallelism, and the compiler is also
responsible for generating the code that exploits all CPU cores
a locale has. Finally, the metrics are reduced in the same way
as in the single-locale algorithm.

Algorithm 2: The multi-locale tree search algorithm.
1 I ← get problem()
2 cutoff ← get cutoff depth()
3 A← ∅
4 A← generate initial active set(cutoff, I)

5 Space← {0..(|A| − 1)}
6 D ← Space mapped according to a standard distribution
7 Ad ← ∅
8 Ad ← [D] : Node

9 forall s in Space do
10 Ad[s]← A[s]
11 end
12 forall node in Ad following the iterator with(+ reduce metrics) do
13 metrics+ = tree search(node, cutoff, I)
14 end

D. Search Procedure and Data Structures

The kernel of both parallel algorithms previously presented
is based on a serial and hand optimized backtracking for
solving permutation combinatorial problems, originally written
in C [4]. The serial backtracking was then adapted to Chapel,
obeying the handmade optimizations, instruction-level paral-
lelism, data structures, and C-types.

The data structure Node is similar to any permutation
combinatorial problem. It contains an unsigned 8-bit integer
vector of size cutoff , identified by board, and an unsigned
integer variable. The vector board stores the feasible and valid
incomplete solution. In turn, the integer variable, identified by
bitset, keeps track of board lines by setting its bit n to 1 each
time a queen is placed in the n-th line.



TABLE I
LIST OF BEST PARAMETERS FOUND EXPERIMENTALLY FOR THE CHAPEL

AND C-OPENMP IMPLEMENTATIONS.

Parameters Settings
Implementation Load Balancing Chunk Optimization cutoff

Chapel Dynamic default --fast 4
C −OpenMP Dynamic default -O3 4

The search performed by the kernel (Algorithm 1, line 6
and Algorithm 2, line 13) is a non-recursive backtracking that
does not use dynamic data structures, such as stacks. Initially
depth receives the value of cutoff . Next, board and bitset
are initialized with the incomplete solution that Node[i]
contains.

The semantics of a stack is obtained by using a variable
depth and by trying to increment the value of the vector board
at position depth. If this increment results in a feasible and
valid incomplete solution, the depth variable is then incre-
mented, and the search proceeds to the next depth. After trying
all configurations for a given depth, the search backtracks to
the previous one.

IV. A SINGLE-LOCALE PERFORMANCE EVALUATION OF
CHAPEL

The primary objective of this section is to investigate
the single-locale programming features and performance of
Chapel.

A. Protocol

For this evaluation, the following programs were conceived
for enumerating all valid and complete solutions of the N-
Queens problem.
• Multicore: Chapel and C-OpenMP implementations of

the backtracking search algorithm described in Sec-
tion III-B.

• Serial: Chapel and C implementations corresponding to
the kernel of the multicore programs above listed (refer
to Section III-D).

All implementations apply the data structures and search
procedure detailed in Section III-D.

B. Parameters Settings

In the experiments, both multicore and serial implementa-
tions enumerate all complete and valid solutions of the N-
Queens problem, for which sizes (N ) range from 10 to 19.
The experiments take from few milliseconds to several hours
of parallel processing.

The testbed Operates under SMP Debian 4.9.65 64 bits,
and it is composed of two AMD EPYC 7301, with 32 cores
@2.7 GHz, 64 threads, and 128 GB RAM. All C programs
were compiled with gcc 6.3.0. The Chapel version used
was 1.8.0.

Chapel provides three task layer implementations: qthreads
(default), Tokio’s University Massive Threads, and POSIX
Threads (Pthreads). A preliminary experiment was performed
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Fig. 5. Average execution time required by the multicore implementation
written in Chapel to solve the N-Queens problem of size 17. Results are
for the different built-in load balancing strategies provided by Chapel and
qthreads task implementation.

to verify which thread implementation is the most advanta-
geous in the context of this work. It is important to point out
that the task layer is chosen in terms of environment variables
and this action means no coding efforts. Fig. 4 shows that both
massive threads and Pthreads are much heavier than qthreads
for the smaller tree sizes. All task layer implementations
perform similarly as the size of the solution space grows.

As OpenMP, Chapel makes available various load balancing
strategies, which are implemented as built-in iterators used in
forall statements. They are close to OpenMP’s schedul-
ing policies, such as guided and dynamic. A preliminary
experiment was carried on to figure it out the best Chapel’s
built-in load balance strategy for solving the N-Queens. It is
shown in Fig. 5 the average execution time required by the
multicore Chapel backtracking to solve the N-Queens problem,
taking into account different built-in load balance strategies.
According to the results, the dynamic approach is the fastest
one.

Experiments were also carried out to choose a suitable



cutoff depth for both Chapel and OpenMP implementations.
One can see in Table I the best parameters experimentally
found for the Chapel and C-OpenMP implementations.

C. Results

One can see in Fig. 6 a comparison between Chapel and
C serial implementations. As previously pointed out, it is
possible to write in Chapel a hand-optimized code similar to
C. For sizes ranging from 10 to 11, the serial implementation
in Chapel is on average 1.4× and 1.21× slower than its
counterpart written in C, respectively. However, as the size
of the problem grows, this difference becomes much smaller.
In turn, taking into account problem sizes ranging from 12 to
18, the Chapel serial implementation is on average 7% slower
than its C counterpart.

It is shown in Fig. 4 the average execution time of spent by
Chapel for solving the N-Queens compared to its C-OpenMP
counterpart. The results also consider all task implementations
of Chapel and use the best parameters found, summarized in
Table I. The version running over the qthreads task layer is
comparable to C-OpenMP even for the smallest sizes (10 to
13). For sizes ranging from 14 to 18, the version over qthreads
is on average 8% slower than the search in C-OpenMP.

Both massive threads and Pthreads task layer implemen-
tations contrast to qthreads. For these two task layers, the
overhead of managing threads amounts negatively when enu-
merating small solution spaces, and they perform poorly for
sizes ranging from 10 to 13. The massive threads version
is from 29× (N = 10) to 2.52× (N = 13) slower than
its C-OpenMP counterpart. In turn, the implementation over
Pthreads is from 16× (N = 10) to 1.8× (N = 13) slower
than its counterpart written in C-OpenMP. As the size of
the solution space grows, both Pthreads and massive threads
version stand out. From sizes ranging from 15 to 19, both
implementations are on average on average 5% faster than
C-OpenMP and 13% faster than its counterpart over qthreads.
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Fig. 6. Average execution time of the serial backtracking in Chapel compared
to its counterpart written in C. Problem sizes (N) range from 10 to 18.

V. A MULTI-LOCALE PERFORMANCE EVALUATION OF
CHAPEL

In this section, the incrementally conceived distributed al-
gorithm presented in Section III-C is evaluated. The primary
goal of this section is to show that it is possible to use a high-
productivity language for programming distributed tree search
algorithms and achieve metrics similar to MPI+X.

A. Protocol

The following applications were programmed for enumer-
ating all valid and complete configurations of the N-Queens
problem.
• Chapel: implementation of the multi-locale backtracking

search algorithm described in Algorithm 2, written in
Chapel.

• MPI+X: single program - multiple data (SPMD) counter-
part written in C of the program above introduced. In this
case, MPI is applied for communication, and X means
the use of OpenMP for exploiting all CPU cores/threads
a locale has.

Both applications implement the data structures and search
procedure detailed in Section III-D.

In this evaluation, it is investigated how the applications
scale according to the number of locales. Furthermore, the
influence of the PGAS data structure distribution on the appli-
cation execution time is also studied. Moreover, the impact
of the distributed load balancing strategies on the overall
performance of the application is also investigated. Finally,
all metrics collected for the implementation in Chapel are
compared to the ones achieved by its MPI+X counterpart.

B. Parameters Settings

Problems of size (N ) ranging from 15 to 20 are considered.
The experiments take from few seconds to several hours of
parallel processing. The number of locales ranges from 1 to
32, and the application is the same for either one or more than
one computer node(s). The number of locales is passed to the
application using Chapel’s built-in command line parameter
-nl l (-np l for MPI), where l is the number of locales
on which the application is executed.

All computer nodes are symmetric and operate under De-
bian 4.9.130 − 2, 64 bits. They are equipped with two Intel
Xeon X5670 @ 2.93 GHz (a total of 12 cores/24 threads),
and 96 GB RAM. Thus, up to 384 cores/768 threads are used
in the experiments. All locales are interconnected through an
Infiniband network: Mellanox Technologies MT26428 (Con-
nectX VPI PCIe 2.0 5GT/s - IB QDR / 10GigE).

The Chapel implementation was programmed in its current
version (1.18), and the default task layer (qthreads) is the
one employed. Chapel’s multi-locale code runs on top of
GASNet, and several environment variables should be set
with the characteristics of the system the multi-locale code
is supposed to run. Concerning the MPI+X implementation,
OpenRTE 2.0.2 along with gcc 6.3.0 and OpenMP 4.5 were
used for compilation and execution.



TABLE II
SUMMARIZATION OF THE ENVIRONMENT CONFIGURATION FOR

MULTI-LOCALE EXECUTION AND COMPILATION.

Variable Value
CHPL_RT_NUM_THREADS_PER_LOCALE 24

CHPL_TARGET_ARCH native
CHPL_COMM gasnet

CHPL_COMM_SUBSTRATE ibv
GASNET_IBV_SPAWNER mpi

One can see in Table II a summarization of the run-
time configurations for multi-locale execution. The Infiniband
GASNet implementation is the one used for communication
(CHPL_COMM_SUBSTRATE) along with MPI, which is re-
sponsible for getting the executables running on different
locales (GASNET_IBV_SPAWNER).

Chapel provides several standard distributions to map data
structures onto locales. Different tests were also carried out to
identify the best option in the context of this work. The one
chosen was the one-dimension BlockDist, which horizontally
maps elements across locales. For instance, in case l = 3
and |Ad| = 8, elements 0, ..., 2 are on locale l0, 3, .., 5 on
locale l1, and 6, 7 on locale l2. In the scope of the present
research, choosing a different standard distribution does not
lead to performance improvements.

Experiments were carried out to choose a suitable cutoff
depth (Algorithm 2, line 2). This parameter directly influences
the size of Ad, and therefore the time spent in distributing the
active set across locales. As observed in Fig. 7, the fastest data
structure distribution is observed for cutoff = 3. However,
such a cutoff value limits parallelism, resulting in a slow
distributed search. In contrast, when the cutoff is set to 6,
the distribution of Ad becomes 10× slower than the search
procedure itself. This behavior happens due to the combina-
torial nature of N-Queens: a cutoff depth twice deeper results
in an active set 725× bigger. When choosing cutoff = 5, the
search takes the same time as for cutoff = 4. Despite that, the
distribution of Ad is on average 9× slower for cutoff = 5.
Thus, the cutoff depth chosen is 4. Preliminary experiments
also show that cutoff = 4 is the best value for the MPI+X
implementation.

Chapel also provides two different distributed load balanc-
ing iterators: guided and dynamic, which are also similar to
OpenMP’s schedules of the same name. Experiments were
carried out to identify the best chunk for both load balancing
strategies. They present the best performance when using the
default chunk size.

C. Results

First of all, the benefits of using distributed load balancing
are not observed for the smallest solution space, i.e., for the
problem of size N = 15. In such a situation, the static search
performs slightly better because there is no communication
among locales during the search. As shown in Fig. 8, the over-
head of data structure initialization and distribution becomes
less detrimental as the solution space grows, and the benefits
of using distributed load balancing can be observed.
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For sizes bigger than 15, using the dynamic iterator is from
1.17× to 1.51× times faster than using no load balancing
(static version). Moreover, the guided iterator does not seem
a suitable load balancing in the scope of this work: it shows
benefits compared to the static version only for sizes ranging
from 18 to 20. For these problem sizes, using the guided
iterator makes the search up to 1.21× faster than its static
counterpart. In turn, using the dynamic distributed iterator
results in a search from 1.21× to 1.25× faster than using
the guided one.

It is shown in Fig. 9 how the distributed searches in Chapel
and MPI+X scales according to the number of locales. The
worst scalability is observed for the smallest size (N = 15).
In such a situation, the initialization and distribution of Ad

amount for almost the whole execution time (see Fig. 8). For
problem sizes ranging from 17 to 20, the dynamic version
scales up to 20.5× (N = 19), whereas guided and static
scale up to 16.8× and 16.9×, respectively (also N = 19).
The MPI+X version scales up to 25.4× (N = 18). Therefore,
the distributed search in Chapel achieves up to 80% of the
scalability observed for its MPI+X counterpart.
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It is worth to mention that the time spent on distributing Ad

does not grow linearly according to the number of locales, as
shown in Fig. 10. The time required to distribute Ad grows
up to size N = 16, then it becomes almost constant. This
behavior comes from the fact that the size of Ad is the same
for one or more locale(s). Thus, as the number of locales
grows, the number of messages sent grows as well, but their
size decreases. Moreover, the Ad distribution is performed
in parallel (Algorithm 2, line 9), and the Infiniband GASNet
implementation supports one-sided communication.

In terms of wall-clock time, Chapel is equivalent to
MPI+OpenMP when running on one locale. For the smaller
solution space (N = 15), Chapel stands out, and it is up
to 25% faster than MPI+X. In such a situation, Ad is not
distributed, and the program behaves like a single-locale and
multicore one. Moreover, MPI implements the SPMD pro-
gramming model. This way, MPI is started, and its functions
are called even for one locale. Additionally, it is worth to
mention that Chapel is a compiled language and it is possible
to program in Chapel both search strategy and data structures
equivalent to the ones present in its counterpart written in C.
In contrast, for multiple locales and bigger problem sizes, the
Chapel distributed search is on average 16% slower than its
MPI+X counterpart.

VI. DISCUSSION

In this work, all aspects of the search process were pro-
grammed in Chapel, even though C code can be incorporated
into a Chapel program. It was possible to hand-optimize the
search kernel in a way similar to C. Both codes are equivalent
in terms of types, data structures and code size, which resulted
in a single-threaded performance competitive to C. This fact
is essential in the context of this work, otherwise using the
parallel features of Chapel would result in low-performance.

Programming a multicore search in Chapel involves almost
the same effort as using C-OpenMP. Both provide built-in
load balancing features and reduction of variables. However,
Chapel presents some advantages, as it provides more load
balancing strategies, and it is possible to reduce all metrics at
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Fig. 10. Normalized time required to initialize and distribute the PGAS-based
active set (Ad). Results are for 2 to 32 locales.

once. Moreover, there are several task layer implementations,
which may be advantageous for some users. Concerning
performance, the multicore Chapel implementation using the
default task layer is competitive to C-OpenMP even when
solving the smallest problems.

Thanks to Chapel’s global view of the control flow and
data structures, the main difference between the multi- and
single-locale versions lies mainly in the use of the PGAS
data structures and distributed iterators for load balancing.
There is no need for explicitly dealing with communication,
metrics reduction, or distributed load balancing. Furthermore,
the compiler generates code for exploiting all CPU cores
a locale has. Differently from the classic MPI+X, there is
no need for an additional library to exploit each level of
parallelism.

Concerning the program size, Chapel’s multi-locale im-
plementation is only 8 lines longer than its single-locale
counterpart, which results in a code 33% bigger. Consequently,
the two communication behaviors presented in Fig. 11 are
achieved by the same program, but different parameters. In
contrast, it is required to add 24 lines to the backtracking
written in C-OpenMP to use MPI, which almost doubles the
program size and also incorporates the SPMD programming
model. Therefore, Chapel presents an interesting trade-off
between programmability and performance.

The most significant limitations found concern neither pro-
grammability nor performance. Instead, they are related to

(a) (b)

Fig. 11. Output of Chplvis [18] for (a) static load distribution (b) Dynamic
distributed iterator. Results are for size N = 18 running on 16 locales. In the
figure, when the color of an edge {x, y} is red closer to x means that much
more communication happen from x to y rather than y to x.



technical issues. For instance, it took much more time to
configure the GASNet library for running on a cluster than
programming the multi-locale backtracking itself. In our case,
a modification in the GASNet source code was necessary to
run the Chapel distributed search on an MXM network with
a non-default partition key. This problem would keep a not
so enthusiastic user from Chapel. The bright side is that it
was not a Chapel-only effort, as other PGAS libraries, such as
UPC, Fortran, SHMEM use GASNet as communication layer.

VII. CONCLUSION

This work has investigated the use of Chapel high-
productivity language for the design and implementation of
all aspects involved in the conception of parallel tree search
algorithms. This research covered from instruction-level par-
allelism used to improve the single-threaded search to the dis-
tributed and multi-level parallelism. According to the results,
Chapel is a suitable language for programming such a complex
and compute-intensive application. It is possible to hand-
optimize the data structures involved in the search process in a
way equivalent to C. Moreover, Chapel’s multicore features are
similar to OpenMP. Additionally, programmers familiarized
with shared memory programming can incrementally conceive
a multi-level and distributed tree search.

Chapel presented an interesting trade-off between perfor-
mance and programmability, despite the high level of its
features for distributed programming. One would argue that
it could be possible to program an MPI+X version faster than
the one used; however, that is also the case for Chapel. For
instance, the code for exploiting all CPU cores a locale has
could be programmed by hand, as well as the communication
and load balancing among locales. However, the latter does
not seem necessary, as the use of high-productivity features
resulted in performance competitive to MPI+OpenMP.

It is worth to point out that the parallel optimization
community already possesses legacy code mainly written in
C/C++. Therefore, programmers may be resistant to learn
another language and translate programs to Chapel [7]. The
capacity of Chapel to include C code can be a partial solution
for this situation. One could use C could along with Chapel’s
high-productivity features for distributed programming. Fi-
nally, graphics processing units are crucial for solving big
and challenging combinatorial optimization problems [5]. The
adoption of Chapel by the parallel optimization community,
besides performance and productivity, also may also depend
on the support of GPUs.
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