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We prove that a large class of discrete-time insurance surplus processes converge weakly to a generalized Ornstein-Uhlenbeck process, under a suitable re-normalization and when the time-step goes to 0. Motivated by ruin theory, we use this result to obtain approximations for the moments, the ultimate ruin probability and the discounted penalty function of the discrete-time process.

Introduction

Let (ξ k ) k∈N * and (ρ k ) k∈N * be two i.i.d. and independent sequences of random variables, with ρ k > 0 (Pa.s.) for all k ∈ N * . The autoregressive process of order 1 with random coefficients, abbreviated RCA [START_REF] Anděl | Autoregressive series with random parameters[END_REF] or RCAR [START_REF] Anděl | Autoregressive series with random parameters[END_REF], see e.g. [START_REF] Nicholls | Random coefficient autoregressive models: an introduction[END_REF], is given by [START_REF] Anděl | Autoregressive series with random parameters[END_REF] 

θ k = ξ k + θ k-1 ρ k , k ∈ N * . 0
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and θ 0 = y ∈ R. Such processes, which are also called stochastic recurrence or difference equations, appear frequently in applied probability. For example, it is suggested in [START_REF] Anděl | Autoregressive series with random parameters[END_REF] that RCA processes could be useful in problems related to hydrology, meteorology and biology. We also refer to [START_REF] Vervaat | On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables[END_REF] for a more exhaustive list of examples. In ruin theory, the RCA [START_REF] Anděl | Autoregressive series with random parameters[END_REF] process is a classic model for the surplus capital of an insurance company where (ξ k ) k∈N * represents a stream of random payments or income and (ρ k ) k∈N * represents the random rates of return from one period to the next, see for example [START_REF] Nyrhinen | On the ruin probabilities in a general economic environment[END_REF], [START_REF] Nyrhinen | Finite and infinite time ruin probabilities in a stochastic economic environment[END_REF], [START_REF] Nyrhinen | On stochastic difference equations in insurance ruin theory[END_REF] and [START_REF] Tang | Precise estimates for the ruin probability in finite horizon in a discrete-time model with heavy-tailed insurance and financial risks[END_REF].

In this paper, we prove the convergence of the process (1) when the time-step goes to 0 and under a suitable re-normalization to the generalized Ornstein-Uhlenbeck (GOU) process given by ( 2)

Y t = e Rt y + t 0+ e -R s-dX s , t ≥ 0,
where R = (R t ) t≥0 and X = (X t ) t≥0 are independent stable Lévy processes with drift. One of the main uses of weak convergence is to prove the convergence of certain functionals of the path of the processes to the functional of the limiting process and to use the value of the latter as an approximation for the former, when the steps between two payments and their absolute values are small. Motivated by ruin theory, we will use this technique to prove the convergence of the ultimate ruin probability, a simple form of the discounted penalty function and the moments.

In general, [START_REF] Bankovsky | On the ruin probability of the generalised Ornstein-Uhlenbeck process in the Cramér case[END_REF] is chosen as a model for insurance surplus processes with investment risk on an a priori basis. The ruin problem is then studied under the heading "ruin problem with investment" for different choices of R and X. We refer to [START_REF] Paulsen | Ruin models with investment income[END_REF] and the references therein for an overview of the relevant literature. The main convergence results of this paper could thus also be seen as a theoretical justification for the continuoustime model [START_REF] Bankovsky | On the ruin probability of the generalised Ornstein-Uhlenbeck process in the Cramér case[END_REF] in the context of models for insurance surplus processes with both insurance and market risks, in the same spirit as the results in [START_REF] Duffie | From discrete-to continuous-time finance: Weak convergence of the financial gain process[END_REF].

In actuarial mathematics, similar convergence results and approximations of functionals of surplus processes are a well-developed line of research. In [START_REF] Iglehart | Diffusion approximations in collective risk theory[END_REF] it is shown that the compound Poisson process with drift converges weakly to a Brownian motion with drift and it is shown that the finite-time and ultimate ruin probability converge to those of the limiting model. These results are extended to more general jump times in [START_REF] Grandell | A class of approximations of ruin probabilities[END_REF] and to more general jump sizes in [START_REF] Burnecki | Self-similar processes as weak limits of a risk reserve process[END_REF] and [START_REF] Furrer | Stable Lévy motion approximation in collective risk theory[END_REF]. Similar convergence results are proven for the integral of a deterministic function w.r.t. a compound Poisson process in [START_REF] Harrison | Ruin problems with compounding assets[END_REF], this corresponds to the assumption that the insurance company can invest at a deterministic interest rate. Some of the previous results are generalized in [START_REF] Paulsen | Ruin theory with stochastic return on investments[END_REF], where it is shown that a general model with a jump-diffusion surplus process and stochastic jump-diffusion investment converges to a particular diffusion process.

More closely related to our result are the papers [START_REF] Cumberland | Weak convergence of an autoregressive process used in modeling population growth[END_REF] and [START_REF] Dufresne | Weak convergence of random growth processes with applications to insurance[END_REF]. In [START_REF] Cumberland | Weak convergence of an autoregressive process used in modeling population growth[END_REF], it is shown that the AR(1) process (i.e. when the coefficients ρ k are deterministic and constant) converges weakly to a standard Ornstein-Uhlenbeck process. In [START_REF] Dufresne | Weak convergence of random growth processes with applications to insurance[END_REF], it is shown that when the variables ξ k are deterministic and satisfy some regularity conditions, we have a similar weak convergence result where the process X in ( 2) is replaced by a deterministic function.

The results in [START_REF] Duffie | From discrete-to continuous-time finance: Weak convergence of the financial gain process[END_REF] are also closely related. In that paper, the authors study the weak convergence of certain discrete-time models to continuous-time models appearing in mathematical finance and prove the convergence of the values of certain functionals such as the call option price. In particular, for the case ξ k = 0, for all k ∈ N * , they show, using the same re-normalization as we do (see below at the beginning of Section 2), that the discrete-time process (1) converges to the Doléans-Dade exponential of a Brownian motion with drift. This generalizes the famous paper [START_REF] Cox | Option pricing: A simplified approach[END_REF] where it is shown that the exponential of a simple random walk correctly re-normalized converges to the Black-Scholes model.

Finally, the relationship between the discrete-time process (1) and ( 2) was also studied in [START_REF] De Haan | Embedding a stochastic difference equation into a continuous-time process[END_REF], where it is shown that GOU processes are continuous-time analogues of RCA(1) processes in some sense. More precisely, they show that any continuous-time process S = (S t ) t≥0 for which the sequence (S nh ) n∈N * of the process sampled at rate h > 0 satisfies an equation of the form (1), for all h > 0, with some additional conditions, is a GOU process of the form (2), where X and R are general Lévy processes. Our main result is coherent with this analogy but does not seem to be otherwise related.

The rest of the paper is structured as follows: after introducing the assumptions and notations, we prove the weak convergence of (1) to (2) in Theorem 1. From this result, we deduce the convergence in distribution of the ruin times in Theorem 2. Then, we give sufficient conditions for the convergence of a simple form of the discounted penalty function in Theorem 3, of the ultimate ruin probability in Theorem 4 and of the moments in Theorem 5, when ξ 1 and ln(ρ 1 ) are both square-integrable. We illustrate these results using examples from actuarial theory and mathematical finance.

Weak Limits of Autoregressive Processes and Convergence of the Ruin Times

In this section, we show that the discrete-time process converges weakly to the GOU process and prove the convergence in distribution of the ruin times.

Assumptions and Convergence

Results. We will use the following set of assumptions.

Assumption (H α ). We say that a random variable Z satisfies (H α ) if its distribution function satisfies

P(Z ≤ -x) ∼ k Z 1 x -α and P(Z ≥ x) ∼ k Z 2 x -α , as x → ∞, for some 1 < α < 2, where k Z 1 , k Z 2 are constants such that k Z 1 + k Z 2 > 0.
Note that this implies that E(|Z|) < ∞. Assumption (H 2 ). We say that a random variable Z satisfies (H 2 ) if Z is square-integrable with Var(Z) > 0, where Var(Z) is the variance of Z.

We now introduce some notations and recall some classical facts about weak convergence on metric spaces, stable random variables and Lévy processes.

Recall that the space D of càdlàg functions R + → R can be equipped with the Skorokhod metric which makes it a complete and separable metric space, see e.g. Section VI.1, p.324 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]. Let D be the Borel sigma-field for this topology. Given a sequence of random elements

Z (n) : (Ω (n) , F (n) , P (n) ) → (D, D), with n ≥ 1, we say that (Z (n) ) n≥1
converges weakly or in distribution to Z : (Ω, F , P) → (D, D), if the laws of Z (n) converge weakly to the law of Z, when n → ∞. We denote weak convergence by Z (n) d → Z and we use the same notation for the weak convergence of measures on R. We refer to Chapter VI, p.324 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] for more information about these notions.

Concerning stable random variables Z of index α, the most common way to define them is trough their characteristic functions:

E(e iuZ ) = exp[iγu -c|u| α (1 -iβsign(u)z(u, α))], where γ ∈ R, c > 0, α ∈ (0, 2], β ∈ [-1, 1] and z(u, α) = tan πα 2 if α = 1, - 2 
π ln |u| if α = 1. Stable Lévy processes (L t ) t≥0 are Lévy processes such that L t is equal in law to some stable random variable, for each t ≥ 0, with fixed parameters β ∈ [-1, 1] and γ = 0 (see e.g. Definition 2.4.7 p.93 in [START_REF] Embrechts | Modelling extremal events, for insurance and finance[END_REF].) Finally, note that if (Z k ) k∈N * is a sequence of i.i.d. random variables such that Z 1 satisfies either (H α ) or (H 2 ), then there exists a stable random variable K α and a constant c α > 0 such that

(3) n k=1 Z k -µ Z c α n 1/α d → K α ,
as n → ∞, where µ Z = E(Z 1 ). In fact, when Z 1 satisfies (H 2 ), α = 2, c α = 1 and K α is the standard normal distribution with variance Var(Z 1 ). (See e.g. Section 2.2 p.70-81 in [START_REF] Embrechts | Modelling extremal events, for insurance and finance[END_REF] for these facts.) Remark 1. The assumptions (H α ) and (H 2 ) do not cover all possible cases. For example, the random variable Z whose distribution function satisfies P(Z ≤ -x) ∼ x -2 , as x → ∞, satisfies neither (H α ) nor (H 2 ). In that case, the proofs of Theorems 1 and 2 below can still work. Then, the normalizing sequence (c α n 1/α ) n∈N * in (3) is replaced by (S α (n)n 1/α ) n∈N * , where S α : R * + → R * + is a slowly varying function (see Theorem 2.2.15 in [START_REF] Embrechts | Modelling extremal events, for insurance and finance[END_REF]) and the definitions of the sequences (ξ

(n) k ) k∈N * and (ρ (n)
k ) k∈N * below have to be adapted by replacing c α by S α (n). Moreover, to be able to obtain [START_REF] Embrechts | Modelling extremal events, for insurance and finance[END_REF] in the proof of Theorem 1 below, we need an additional assumption ; for example, it is enough that lim x→∞ S α (x) > 0 exists and is finite.

We now turn to the presentation of the main assumptions and results of this section.

Assumption (H). We assume that (ξ k ) k∈N * and (ρ k ) k∈N * are two i.i.d. and independent sequences of random variables, with ρ k > 0 (Pa.s.) for all k ∈ N * , and such that ξ 1 (resp. ln(ρ 1 )) satisfies either (H α ) or (H 2 ) (resp. (H β ) or (H 2 ).) We denote by c α (resp. c β ) the constant and by K α (resp. K β ) the limiting stable random variable appearing in [START_REF] Burnecki | Self-similar processes as weak limits of a risk reserve process[END_REF]. Denote by (L α t ) t≥0 (resp. (L β t ) t≥0 ) the stable Lévy processes obtained by putting L α

1 d = K α (resp. L β 1 d = K β ).
Fix n ∈ N * , we want to divide the time interval into n subintervals of length 1/n and update the discrete-time process at each time point of the subdivision. To formalize this, we define the following process (4)

θ (n) k n = ξ (n) k + θ (n) k -1 n ρ (n) k , k ∈ N * ,
where (ξ

(n) k ) k∈N * and (ρ (n)
k ) k∈N * have to be defined from the initial sequences. Following an idea in [START_REF] Dufresne | Weak convergence of random growth processes with applications to insurance[END_REF], we let µ ξ = E(ξ 1 ) and µ ρ = E(ln(ρ 1 )) and define:

ξ (n) k = µ ξ n + ξ k -µ ξ c α n 1/α
and ρ

(n) k = exp(γ (n) k ) where γ (n) k = µ ρ n + ln(ρ k ) -µ ρ c β n 1/β .
These definitions ensure that

E n k=1 ξ (n) k = µ ξ and E n k=1 ln(ρ (n) k ) = µ ρ .
Moreover, when ξ 1 and ln(ρ 1 ) both satisfy (H 2 ), we choose α = β = 2 and c α = c β = 1, and then we have the following variance stabilizing property:

Var

n k=1 ξ (n) k = Var(ξ 1 ) and Var n k=1 ln(ρ (n) k ) = Var(ln(ρ 1 )).
Finally, we define the filtrations

F (n) 0 = {∅, Ω}, F (n) k = σ((ξ (n) i , ρ (n) i ), i = 1, . . . , k), k ∈ N * and F (n) t = F (n)
[nt] , for t ≥ 0, where [.] is the floor function and define θ (n) as the (continuous-time) stochastic process given by

θ (n) t = θ (n) [nt] n , t ≥ 0. Theorem 1. Under (H), we have θ (n) d → Y , as n → ∞
, where Y = (Y t ) t≥0 is the GOU process (2) with X t = µ ξ t+L α t and R t = µ ρ t+L β t , for all t ≥ 0. In addition, Y satisfies the following stochastic differential equation :

(5) Y t = y + X t + t 0+ Y s-d Rs , t ≥ 0,
where

Rt = R t + 1 2 R c t + 0<s≤t e ∆Rs -1 -∆R s , t ≥ 0,
and R c is the continuous martingale part of R and ∆R t is its jump at time t ≥ 0.

Example 1 (Pareto losses and stable log-returns). The assumption (H α ) is quite general and simple to check. To illustrate it we take the negative of a Pareto (type I) distribution with shape parameter 1 < α < 2 for the loss ξ 1 , i.e. the random variable defined by its distribution function F ξ (x) = (-x) -α , for x ≤ -1. The condition on α ensures that ξ 1 has a finite first moment, but an infinite second moment. Moreover, ξ 1 then satisfies (H α ), with constants k ξ 1 = 1 and k ξ 2 = 0. We also have that µ ξ = -α/(α -1) and that

n k=1 ξ k -µ ξ c α,ξ n 1/α d → -K α,ξ , as n → ∞, with c α,ξ = π 2Γ(α) sin(απ/2) ,
where Γ is the Gamma function and where K α,ξ is a stable random variable of index α, with γ = 0, c = 1 and β = 1 (see e.g. p.62 in [START_REF] Uchaikin | Chance and stability, Stable distributions and their applications[END_REF]).

For the log-returns ln(ρ 1 ), we take a stable distribution with index 1 < α < 2, and parameters γ = 0, c = 1 and β ∈ [-1, 1]. Then, we have µ ρ = 0 and

n k=1 ln(ρ k ) -µ ρ c α,ρ n 1/ α d → K α,ρ , as n → ∞. Thus, Theorem 1 implies that θ (n) d → Y , as n → ∞, where Y t = e Rt y + t 0+ e -R s-dX s , t ≥ 0, with X t = µ ξ t + L α t and R t = µ ρ t + L α t ,
where L α and L α are stable Lévy processes with L α

1 d = -K α,ξ and L α 1 d = K α,ρ .
As already mentioned, we will be interested in the application of Theorem 1 to ruin theory and we now state the main consequence for this line of study. Define the following stopping times, for n ≥ 1,

τ n (y) = inf{t > 0 : θ (n) t < 0}
with the convention inf{∅} = +∞, and also

τ (y) = inf{t > 0 : Y t < 0}.
Theorem 2. Assume that (H) holds. We have, for all T ≥ 0,

lim n→∞ P(τ n (y) ≤ T ) = P(τ (y) ≤ T ) and, equivalently, τ n (y) d → τ (y), as n → ∞.
Theorem 2 implies the convergence of E(f (τ n (y)) to E(f (τ (y)), for any continuous and bounded function f : R + → R. For example, we can obtain the following convergence result for a simple form of the discounted penalty function.

Corollary 1. Assume that (H) holds. We have

lim n→∞ E(e -ατ n (y) 1 {τ n (y)<+∞} ) = E(e -ατ (y) 1 {τ (y)<+∞} ),
for all α > 0.

When ξ 1 and ln(ρ 1 ) both satisfy (H 2 ), the limiting stable random variable is, in fact, the standard normal random variable and the limiting process is defined by two independent Brownian motions with drift.

Corollary 2 (Pure diffusion limit). Assume that ξ 1 and ln(ρ 1 ) both satisfy (H 2 ), then θ

(n) d → Y , as n → ∞, for Y = (Y t ) t≥0 defined by (2) with R t = µ ρ t + σ ρ W t and X t = µ ξ t + σ ξ Wt ,
for all t ≥ 0, where (W t ) t≥0 and ( Wt ) t≥0 are two independent standard Brownian motions and σ 2 ξ = Var(ξ 1 ) and σ 2 ρ = Var(ln(ρ 1 )). Example 2 (Pareto losses and NIG log-returns). To illustrate (H 2 ) we take again the negative of a Pareto (type I) distribution for the loss ξ 1 but with shape parameter α > 2, so that the distribution admits also a second moment. For the log-returns, ln(ρ 1 ) we take the normal inverse gaussian NIG(α, β, δ, µ) with parameters 0 ≤ |β| < α, δ > 0 and µ ∈ R, i.e. the random variable defined by the following moment generating function [START_REF] Cox | Option pricing: A simplified approach[END_REF] E(e u ln(ρ

1 ) ) = exp µu + δ λ -α 2 -(β + u) 2 ,
where λ = α 2β 2 , for all u ∈ R.

Then, it is well known that

µ ξ = - α α -1 , σ 2 ξ = α (α -1) 2 (α -2)
and that

µ ρ = µ + βδ λ , σ 2 ρ = δ α 2 λ 3 . Thus, in this case, Corollary 2 yields θ (n) d → Y , with Y t = e µρt+σρWt y + t 0+ e -µρs-σρWs d(µ ξ s + σ ξ Ws ) , t ≥ 0,
and where (W t ) t≥0 and ( Wt ) t≥0 are two independent standard Brownian motions.

The UT Condition and the Proofs of Theorems 1 and 2.

We now turn to the proofs of the Theorems. The strategy is to rewrite the discrete-time process as a stochastic integral and to use the wellknown weak convergence result for stochastic integrals based on the UT (uniform tightness) condition for semimartingales.

To rewrite the discrete-time process, note that, by induction, the explicit solution of ( 4), for all n ∈ N * and k ∈ N * , is given by

θ (n) k n = y k i=1 ρ (n) i + k i=1 ξ (n) i k j=i+1 ρ (n) j = k i=1 ρ (n) i y + k i=1 ξ (n) i i j=1 (ρ (n) j ) -1 ,
where, by convention, we set k j=k+1 ρ

(n) j = 1, for all n ∈ N * . Thus, (7) θ 
(n) t = [nt] i=1 ρ (n) i   y + [nt] i=1 ξ (n) i i j=1 (ρ (n) j ) -1   .
and setting

X (n) t = [nt] i=1 ξ (n) i and R (n) t = [nt] i=1 γ (n) i , we obtain (8) θ (n) t = e R (n) t y + t 0+ e -R (n) s-dX (n) s .
In fact, the above rewriting of the discrete-time process will prove very useful for most proofs in this paper.

Remark 2. An other way to prove the weak convergence would be to remark that since [X (n) , R (n) ] t = 0, for all n ∈ N * , we find that θ (n) satisfies the following stochastic differential equation :

θ (n) t = y + X (n) t + t 0+ θ (n) s-d R(n) s , where R(n) t = R (n) + 0<s≤t (e ∆R (n) s -1 -∆R (n) s ) = [nt] i=1 (e γ (n) i -1),
and to use the well-known stability results for the solutions of stochastic differential equations. We refer to [START_REF] Duffie | From discrete-to continuous-time finance: Weak convergence of the financial gain process[END_REF] for an interesting application of this method for different models in mathematical finance. However, this way seems harder, in our case, since the process (

R(n) t ) t≥0 is less explicit than (R (n) t ) t≥0 .
We now recall the UT condition, the weak convergence result and give two lemmas to check the condition in our case.

Definition 1. Consider a sequence of real-valued semimartingales Z (n) defined on (Ω (n) , F (n) , (F (n) t ) t≥0 , P (n) ), for each n ∈ N * . Denote by H (n)
the set given by

H (n) = {H (n) |H (n) t = L n,0 + p i=1 L n,i 1 [t i ,t i+1 ) (t), p ∈ N, 0 = t 0 < t 1 < • • • < t p = t, L n,i is F (n) t i -measurable with |L n,i | ≤ 1}.
The sequence (Z (n) ) n∈N * is UT (also called P-UT in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF], for "uniformly tight" and "predictably uniformly tight") if for all t > 0, for all ǫ > 0, there exists M > 0 such that, sup

H (n) ∈H (n) ,n∈N * P (n) t 0+ H (n) s-dZ (n) s > M < ǫ.
For more information about the UT condition see Section VI.6 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]. One of the interesting consequences of the UT condition is given by the following proposition which is a particular case of Theorem 6.22 p.383 of [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF].

Proposition 1. Let (H (n) , Z (n) ) n∈N * be a sequence of real-valued semi- martingales defined on (Ω (n) , F (n) , (F (n) t ) t≥0 , P (n) ). If (H (n) , Z (n) ) d → (H, Z) as n → ∞ and the sequence (Z (n) ) n∈N * is UT, then Z is a semimartingale and when n → ∞, H (n) , Z (n) , . 0 H (n) s-dZ (n) s d → H, Z, . 0 H s-dZ s .
The following lemma is based on Remark 6.6 p.377 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF].

Lemma 1. Let (Z (n) ) n∈N * be a sequence of real-valued semimartingales with locally bounded variation defined on (Ω (n) , F (n) , (F (n) t ) t≥0 , P (n) ). If for each t > 0 and each ǫ > 0, there exists M > 0 such that

sup n∈N * P (n) V (Z (n) ) t > M < ǫ,
where V (.) denotes the total first order variation of a process, then

(Z (n) ) n≥1 is UT. Proof. For each n ∈ N * , H (n) ∈ H (n) and t > 0, we find p ∈ N and 0 = t 0 < t 1 < • • • < t p = t such that t 0+ H (n) s-dZ (n) s ≤ |L n,0 | + p i=1 |L n,i ||Z t i+1 -Z t i | ≤ 1 + p i=1 |Z t i+1 -Z t i | ≤ 1 + V (Z (n) ) t .
Thus, the assumption implies the UT property.

The following lemma is based on Remark 2-1 in [START_REF] Mémin | Condition UT et stabilité en loi des solutions d'équations différentielles stochastiques[END_REF].

Lemma 2. Let (Z (n) ) n∈N * be a sequence of real-valued local martingales defined on (Ω (n) , F (n) , (F (n) t ) t≥0 , P (n) ) and Z a real-valued semimartingale on (Ω, F , (F t ) t≥0 , P). Denote by ν (n) the compensator of the jump measure of Z (n) . If Z (n) d → Z as n → ∞, then the following conditions are equivalent:

(i) (Z (n) ) n∈N * is UT,
(ii) for each t > 0 and each ǫ > 0, there exists a, M > 0 such that

sup n≥1 P (n) t 0 R |x|1 {|x|>a} ν (n) (ds, dx) > M < ǫ.
Proof. From Lemma 3.1. in [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace D 1 de Skorokhod[END_REF] we know that, under the assumption

Z (n) d → Z as n → ∞, ( 
i) is equivalent to asking that for each t > 0 and each ǫ > 0, there exists M > 0 such that

sup n≥1 P (n) (V (B a,n ) t > M) < ǫ,
where V (.) is the total first order variation of a process and B a,n is the first semimartingale characteristic of Z (n) (for the truncation function h(x) = x1 {|x|>a} ).

Let's compute V (B a,n ) in this case. For a > 0 and n ∈ N * , define Zn,a

t = Z (n) t -0<s≤t ∆Z s 1 {|∆Zs|>a} and B a,n t = t 0 R x1 {|x|>a} ν (n) (ds, dx). We have, Zn,a t = Zn,a t + B a,n t -B a,n t = Z (n) t - t 0 R x1 {|x|>a} (µ (n) (ds, dx) -ν (n) (ds, dx)) -B a,n t ,
where µ (n) is the jump measure of Z (n) . Thus, since the two first terms on the r.h.s. of the last line above are local martingales, their difference is a local martingale with bounded jumps and thus the first semimartingale characteristic of

Z (n) is B a,n t . So, V (B a,n ) t = t 0 R |x|1 {|x|>a} ν (n) (ds, dx)
and this finishes the proof.

We are now ready for the proof of Theorem 1.

Proof of Theorem 1. To be able to apply Proposition 1, we need show that (e R (n) , X (n) ) n∈N * converges in law as n → ∞ and that (X (n) ) n∈N * is UT.

First, note that by definition of γ

(n) k , we have (9) R (n) t = [nt] i=1 γ (n) k = µ ρ [nt] n + [nt] i=1 ln(ρ i ) -µ ρ c β n 1/β .
But [nt]/n → t as n → ∞. By the stable functional convergence theorem (see e.g. Theorem 2.4.10 p.95 in [START_REF] Embrechts | Modelling extremal events, for insurance and finance[END_REF]), the sum in the r.h.s. of the equation above converges weakly to a stable Lévy process (L β t ) t≥0 with L β

1 d = K β . Thus, we obtain (e -R (n) t ) t≥0 =   exp   - [nt] i=1 γ (n) k     t≥0 d → e -µρt-L β t t≥0
.

Similarly, by the definition of ξ

(n) i , we have (10) X (n) t = [nt] i=1 µ ξ n + [nt] i=1 ξ i -µ ξ c α n 1/α = µ ξ A (n) t + N (n)
t , for all t ≥ 0.

Applying the stable functional convergence theorem again, we obtain (N

(n) t ) t≥0 d → (L α t ) t≥0 , as n → ∞
, where L α is a stable Lévy motion, with L α 1 d = K α , which is independent of (L β t ) t≥0 since the sequences (ξ k ) k∈N * and (ρ k ) k∈N * are independent. Using the independence, we also have the convergence of the couple (e R (n) , X (n) ), as n → ∞.

To prove that (X (n) ) n∈N * is UT, it is enough to prove that (A (n) ) n∈N * and (N (n) ) n∈N * are both UT. Note that A (n) is a process of locally bounded variation for each n ≥ 1 with

V (A (n) ) = A (n) . Since A (n) t ≤ t, for all n ∈ N * , we have sup n≥1 P(A (n) t > M) ≤ P(t > M),
for all M > 0 and thus, by Lemma 1, the sequence (A (n) ) n∈N * is UT. Now, note that, when t > s and [nt] ≥ [ns]+1, using the i.i.d. property of (ξ k ) k∈N * we obtain

E(N (n) t -N (n) s |F s ) = [nt] i=[ns]+1 E ξ i -µ ξ c α n 1/α = 0. When t > s and [nt] < [ns] + 1, N (n) t -N (n) s
= 0, and thus E(N

(n) t - N (n)
s |F s ) = 0. This shows that N (n) is a local martingale for each n ∈ N * . Then, denoting by ν (n) the compensator of the jump measure of N (n) (which is deterministic since N (n) is also a semimartingale with independent increments), we set

s n = t 0 R |x|1 {|x|>1} ν (n) (ds, dx),
for each n ∈ N * , and we will show that the (deterministic) sequence (s n ) n∈N * converges (and thus is bounded).

First, we have

t 0 R |x|1 {|x|>1} ν (n) (ds, dx) = E 0<s≤t |∆N (n) s |1 {|∆N (n) |≥1} = [nt] i=1 E ξ i -µ ξ c α n 1/α 1 ξ i -µ ξ cαn 1/α ≥1 = [nt] c α n 1/α E |ξ 1 -µ ξ | 1 {|ξ 1 -µ ξ |≥cαn 1/α } .
To compute the expectation on the r.h.s., note that for any nonnegative random variable Z and constant a ≥ 0 we have

E(Z1 {Z≥a} ) = E Z 0 1 {Z≥a} dx = E ∞ 0 1 {Z≥x∨a} dx = ∞ 0 P(Z ≥ x ∨ a)dx = aP(Z ≥ a) + ∞ a P(Z ≥ x)dx.
Thus,

s n = [nt] c α n 1/α E (ξ 1 -µ ξ ) 1 {(ξ 1 -µ ξ )≥cαn 1/α } + [nt] c α n 1/α E -(ξ 1 -µ ξ ) 1 {-(ξ 1 -µ ξ )≥cαn 1/α } = [nt]P ξ 1 ≥ µ ξ + c α n 1/α + [nt] c α n 1/α ∞ cαn 1/α P (ξ 1 ≥ µ ξ + x) dx + [nt]P ξ 1 ≤ µ ξ -c α n 1/α + [nt] c α n 1/α ∞ cαn 1/α P (ξ 1 ≤ µ ξ -x) dx.
Using the fact that ξ 1 satisfies (H α ), we see that

P ξ 1 ≤ µ ξ -c α x 1/α ∼ k ξ 1 1 c -α α x -1 and P ξ 1 ≥ µ ξ + c α x 1/α ∼ k ξ 1 2 c -α α x -1 , as x → ∞. So, lim n→∞ s n = lim n→∞ k ξ 1 1 c α α [nt] n -lim n→∞ [nt] c α n 1/α k ξ 1 1 c 1-α α n (1-α)/α 1 -α + lim n→∞ k ξ 1 2 c α α [nt] n -lim n→∞ [nt] c α n 1/α k ξ 1 2 c 1-α α n (1-α)/α 1 -α = k ξ 1 1 + k ξ 1 2 c α α α α -1 t. (11) 
Thus, the sequence is bounded and taking M > 0 large enough, we find sup n≥1 P(s n > M) < ǫ, for each ǫ > 0, and, by Lemma 2, we have then shown that the sequence (N (n) ) n∈N * is UT.

To conclude we obtain, using Proposition 1 and the continuous mapping theorem with h(x 1 , x 2 , x 3 ) = (x 3 + y)/x 2 , (θ

(n) t ) t≥0 d → (Y t ) t≥0 where Y = (Y t ) t≥0 is given by (2) with R t = µ ρ t + L β t , X t = µ ξ t + L α t , for all t ≥ 0.
In this case, we have [R, X] t = 0, for all t ≥ 0, (see e.g. Theorem 33 and its proof p.301-302 in [START_REF] Protter | Stochastic integration and differential equations[END_REF]) and thus, using Itô's lemma and Theorem II.8.10 p.136 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF], we obtain the stochastic differential equation [START_REF] Cont | Financial modelling with jump processes[END_REF].

Proof of Theorem 2. We start by proving that P(inf 0≤t≤T Y t = 0) = 0. First, note that inf 0≤t≤T

Y t = 0 = sup 0≤t≤T - t 0+ e -R s-dX s = y .
Using the independence of the processes, we then obtain

P inf 0≤t≤T Y t = 0 = D P sup 0≤t≤T - t 0+ g(s-)dX s = y P e -R (dg)
where D is the space of càdlàg functions and P e -R is the law of the process (e -Rt ) t≥0 . Denote S(g) t = -t 0+ g(s-)dX s , for all t ≥ 0. Let (t i ) i∈N * be an enumerating sequence of [0, T ] ∩ Q. Since S(g) = (S(g) t ) t≥0 is a process with independent increments, S(g) has, for each fixed time t i > 0, the same law as a Lévy process L = (L t ) t≥0 defined by the characteristic triplet (a L , σ 2 L , ν L ) with

a L = µ ξ t i t i 0 g(s-)ds, σ 2 L = σ 2 ξ t i t i 0 g 2 (s-)ds and ν L (dx) = ν ξ (dx) t i t i 0 g(s-)ds,
where (a ξ , σ 2 ξ , ν ξ ) is the characteristic triplet of X, see Theorem 4.25 p.110 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]. Then, it is well known that L t i admits a density if σ 2 L > 0 or ν L (R) = ∞, see e.g. Proposition 3.12 p.90 in [START_REF] Cont | Financial modelling with jump processes[END_REF]. But, when ξ 1 satisfies (H 2 ), we have σ 2 ξ > 0 and σ 2 L > 0. When ξ 1 satisfies (H α ), we have ν ξ (R) = ∞ and ν L (R) = ∞. Thus, in both cases, L t i admits a density and we have P(S(g)

t i = y) = P(L t i = y) = 0. Since (S(g) t ) t≥0 is càdlàg we have sup 0≤t≤T S(g) t = sup t∈[0,T ]∩Q S(g) t ,
and, since a càdlàg process reaches its supremum almost surely,

P sup 0≤t≤T S(g) t = y = P sup t∈[0,T ]∩Q S(g) t = y ≤ P i∈N {S t i = y} = lim N →∞ P N i=1 {S t i = y} ≤ lim N →∞ N i=1 P(S t i = y) = 0.
Thus, P(inf 0≤t≤T Y t = 0) = 0.

Next, note that we have

inf 0≤t≤T Y t < 0 ⊆ {τ (y) ≤ T } ⊆ inf 0≤t≤T Y t ≤ 0 and inf 0≤t≤T θ (n) t < 0 ⊆ {τ n (y) ≤ T } ⊆ inf 0≤t≤T θ (n) t ≤ 0 .
Since θ (n) d → Y by Theorem 1, we obtain from the continuous mapping theorem that inf 0≤t≤T θ (n) t d → inf 0≤t≤T Y t , for all T ≥ 0, since the supremum (and also the infimum) up to a fixed time are continuous for the Skorokhod topology (see e.g. Proposition 2.4, p.339, in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]). So, by the portmanteau theorem, lim sup

n→∞ P(τ n (y) ≤ T ) ≤ lim sup n→∞ P inf 0≤t≤T θ (n) t ≤ 0 ≤ P inf 0≤t≤T Y t ≤ 0 = P inf 0≤t≤T Y t < 0 = P(τ (y) ≤ T ), and lim inf n→∞ P(τ n (y) ≤ T ) ≥ lim inf n→∞ P inf 0≤t≤T θ (n) t < 0 ≥ P inf 0≤t≤T Y t < 0 = P inf 0≤t≤T Y t ≤ 0 = P(τ (y) ≤ T ).

Convergence and Approximation of the Ruin

Functionals in the Pure Diffusion Case

In this section, we obtain sufficient conditions for the convergence of a simple form of the discounted penalty function, the ultimate ruin probability and the moments and give a manner to approximate these quantities. To be able to go further (and to obtain practical expressions for the ruin functionals of the limiting process), we now restrict ourselves to the (H 2 ) case.

Assumption (H ′ ). We assume that ξ 1 and ln(ρ 1 ) both satisfy (H 2 ). So Y is given by ( 2) with X t = µ ξ t + σ ξ Wt and R t = µ ρ t + σ ρ W t or, equivalently, is given by the solution of ( 5) with the same X and Rt = κ ρ t + σ ρ W t and κ ρ = µ ρ + σ 2 ρ /2.

3.1.

Approximation of the Discounted Penalty Function. We have seen in Corollary 1 that a simple form of the discounted penalty function converges. In this section, we give an expression of this quantity for the limiting process which will depend on the solution of a second order ODE.

Lemma 3. Let α > 0. The equation

(12) (σ 2 ξ + σ 2 ρ x 2 )f ′′ α (x) + 2(µ ξ + κ ρ x)f ′ α (x) -2αf α (x) =
0, admits a solution f α : R + → R satisfying (P) f α (x) > 0, for all x ∈ R + , and f ′ α (x) ≤ 0, for all x ∈ (0, +∞). Moreover, if µ ρ ≤ 0, every other solution fα of ( 12) satisfying (P) is given by fα (x) = Kf α (x), for all x ∈ R + , for some constant K ∈ R * + .

Proof. Define

p(x) = exp 2 x 0 µ ξ + κ ρ z σ 2 ξ + σ 2 ρ z 2 dz = exp 2µ ξ σ ξ σ ρ arctan σ ρ σ ξ x 1 + σ 2 ρ σ 2 ξ x 2 κρ/σ 2 ρ , and 
g(x) = - 2α σ 2 ξ + σ 2 ρ x 2
, for all x ∈ R + . Then, we can rewrite [START_REF] Furrer | Stable Lévy motion approximation in collective risk theory[END_REF] in the Sturm-Liouville form

(p(x)f ′ α (x)) ′ + p(x)g(x)f α (x) = 0.
The existence of a (principal) solution satisfying (P) then follows form Corollary 6.4. p.357 in [START_REF] Hartman | Ordinary differential equations[END_REF]. The fact that the solutions are uniquely determined up to a constant factor follows from ∞ 1 p(x) -1 dx = ∞ and Exercise 6.7. p.358 in [START_REF] Hartman | Ordinary differential equations[END_REF]. Remark 3. Under the condition α > κ ρ , it is possible to obtain an explicit solution of ( 12) using the method of contour integration as was done in Theorem A.1 in [START_REF] Paulsen | Ruin theory with stochastic return on investments[END_REF]. Otherwise, the ODE can be solved using numerical integration. We now prove the approximation result.

Theorem 3. Assume that (H ′ ) holds and that µ ρ ≤ 0. Let α > 0 and let f α : R + → R be any solution of ( 12) satisfying (P). We have

lim n→∞ E(e -ατ n (y) 1 {τ n (y)<+∞} ) = E(e -ατ (y) 1 {τ (y)<+∞} ) = f α (y) f α (0) .
Proof. The convergence of the discounted penalty function is the content of Corollary 1.

We now compute the value for the limiting process using the idea in the proof of Theorem 2.1. in [START_REF] Paulsen | Risk theory in a stochastic economic environment[END_REF]. First, we show that L = (f α (Y t∧τ (y) )e -α(t∧τ (y)) ) t≥0 is a martingale with respect to the natural filtration of Y . Using Itô's lemma and the fact that

Y, Y t = σ 2 ξ t + σ 2 ρ t 0 Y 2
s ds, we obtain

f α (Y t∧τ (y) )e -α(t∧τ (y)) = f α (y) + σ ξ N (1) t + σ ρ N (2) t + t∧τ (y) 0 e -αs 2 I(Y s )ds,
where

N (1) t = t∧τ (y) 0 e -αs f ′ α (Y s )d Ws = t 0 1 {s≤τ (y)} e -αs f ′ α (Y s )d Ws , N (2) t = t∧τ (y) 0 e -αs f ′ α (Y s )Y s dW s = t 0 1 {s≤τ (y)} e -αs f ′ α (Y s )Y s dW s and I(Y s ) = (σ 2 ξ + σ 2 ρ Y 2 s )f ′′ α (Y s ) + 2(µ ξ + κ ρ Y s )f ′ α (Y s ) -2αf α (Y s )
. Since 1 {s≤τ (y)} is adapted to the natural filtration of Y , N (1) and N (2) are local martingales and since f α solves [START_REF] Furrer | Stable Lévy motion approximation in collective risk theory[END_REF] L is also a local martingale.

Note that Y t∧τ (y) ≥ 0 (Pa.s.), for all t ≥ 0, and that f α is nonincreasing by (P). Thus, we have f α (Y t∧τ (y) ) ≤ f α (0) and we find that L is a bounded local martingale, and thus a martingale. Using the property of constant expectation, we then obtain, for t ≥ 0,

f α (y) = E f α (Y t∧τ (y) )e -α(t∧τ (y))
or equivalently

f α (y) = E f α (Y t∧τ (y) )e -α(t∧τ (y)) 1 {τ (y)<+∞} + e -αt E f α (Y t )1 {τ (y)=∞} .
Again since f α (Y t∧τ (y) ) ≤ f α (0), we can pass to the limit t → ∞ in the first expectation. Similarly, on the event {τ (y) = ∞}, we have Y t ≥ 0 (Pa.s.) and f α (Y t ) ≤ f α (0), for all t ≥ 0, and the second term goes to 0 as t → ∞. Finally, using the fact that Y is an almost surely continuous process, we obtain Y τ (y) = Y τ (y)-= 0 (Pa.s.) and

f α (y) = E f α (Y τ (y) )e -ατ (y) 1 {τ (y)<+∞} = f α (0)E e -ατ (y) 1 {τ (y)<+∞} .
Lemma 3 also guarantees that this result does not depend on the particular choice of the solution of (12).

3.2.

Approximation of the Ultimate Ruin Probability. We have seen that, when ξ 1 and ln(ρ 1 ) both satisfy (H 2 ), we have lim n→∞ P(τ n (y) ≤ T ) = P(τ (y) ≤ T ), for all T ≥ 0. We would like to replace the finite-time ruin probability with the ultimate ruin probability P(τ (y) < ∞) since for the latter, an explicit expression exists for the limiting process. However, the following classic example (see e.g. [START_REF] Grandell | A class of approximations of ruin probabilities[END_REF]) shows that the ultimate ruin probability may fail to converge even if the finite-time ruin probability does. In fact, take (Z (n) ) t≥0 to be the deterministic process defined by

Z (n) t = 0 if t < n, -1 if t ≥ n.
Then, we have Z (n) → Z, as n → ∞, where Z t = 0, for all t ≥ 0, and we have also convergence of the finite-time ruin probability, since, as

n → ∞, inf 0≤t≤T Z (n) t → 0, for all T > 0. But inf 0≤t<∞ Z (n) t
= -1, for all n ∈ N * , and so the ultimate ruin probability fails to converge.

In general, proving the convergence of the ultimate ruin probability is a hard problem and depends on the particular model (see [START_REF] Grandell | A class of approximations of ruin probabilities[END_REF] for another discussion). Still, we can give a sufficient condition for this convergence.

Theorem 4. Assume that (H ′ ) holds. When µ ρ ≤ 0, we have

lim n→∞ P(τ n (y) < ∞) = 1.
When µ ρ > 0, we assume additionally that there exists C < 1 and n 0 ∈ N * such that [START_REF] Grandell | A class of approximations of ruin probabilities[END_REF] sup

n≥n 0 E e -2γ (n) 1 n = sup n≥n 0 E (ρ (n) 1 ) -2 n ≤ C.
Then,

lim n→∞ P(τ n (y) < ∞) = P(τ (y) < ∞) = H(-y) H(0) where, for x ≤ 0, H(x) = x -∞ (σ 2 ξ + σ 2 ρ z 2 ) -(1/2+µρ/σ 2 ρ ) exp 2µ ξ σ ξ σ ρ arctan σ ρ σ ξ z dz.
Before turning to the proof of the theorem, we give two examples to illustrate Condition [START_REF] Grandell | A class of approximations of ruin probabilities[END_REF].

Example 3 (Approximation of the ruin probability with normal log-returns). Take ξ 1 to be any random variable satisfying (H 2 ) and ln(ρ 1 )

d = N (µ ρ , σ 2 ρ ), with µ ρ > 0, then E e -2γ (n) 1 n = e -2(µρ-σ 2 ρ ) ,
for all n ∈ N * , so n 0 = 1 and the condition C < 1 is equivalent to µ ρ > σ 2 ρ . Example 4 (Approximation of the ruin probability with NIG log-returns). More generally, take ξ 1 to be any random variable satisfying (H 2 ) and ln(ρ 1 ) to be a normal inverse gaussian NIG(α, β, δ, µ) random variable with 0 ≤ |β| < α, δ > 0 and µ ∈ R (recall Example 2 for the definition). We can then use Taylor's formula on the function

x → α 2 -(β -x) 2 around 0, to obtain (14) α 2 -β - 2 √ n 2 = λ + 2 √ n β λ - 2 n α 2 [α 2 -(β -x n ) 2 ] 3/2 , for some x n ∈ [0, 2/ √ n], where λ = α 2 -β 2 .
Since the mean is given by µ ρ = µ + δβ/λ, we obtain using ( 6) and ( 14)

lim n→∞ E e -2γ (n) 1 n = exp -2µ ρ + 2δα 2 λ 3 = exp -2 µ + δβλ 2 -δα 2 λ 3 .
Thus, when

µ + δβλ 2 -δα 2 λ 3 > 0,
this limit is strictly smaller than 1 and we can find n 0 ∈ N * and C < 1 such that ( 13) is satisfied. Taking β = 0 and σ 2 = δ/α we retrieve the condition for normal returns given in Example 3.

Proof of Theorem 4. We have, for all n ∈ N * and T > 0,

P(τ n (y) < ∞) ≥ P(τ n (y) ≤ T )
and, by Theorem 2, [START_REF] Paulsen | Sharp conditions for certain ruin in a risk process with stochastic return on investments[END_REF], there is nothing else to prove. So we assume that P(τ (y) < ∞) < 1, or µ ξ > 0, and we will prove that lim sup

lim inf n→∞ P(τ n (y) < ∞) ≥ P(τ (y) ≤ T ). So, letting T → ∞, lim inf n→∞ P(τ n (y) < ∞) ≥ P(τ (y) < ∞). Now if P(τ (y) < ∞) = 1, which is equivalent to µ ξ ≤ 0 by
n→∞ P(τ n (y) < ∞) ≤ P(τ (y) < ∞),
under the additional condition [START_REF] Grandell | A class of approximations of ruin probabilities[END_REF].

Fix y > ǫ > 0, T > 0 and, when τ n (y) > T , denote by

K (n) ǫ,T the event K (n) ǫ,T = τ n (y) T + e -R (n) s-dX (n) s < ǫ .
We have,

{τ n (y) < ∞} = {τ n (y) ≤ T } ∪ {τ n (y) ∈ (T, ∞), K (n) ǫ,T } ∪ {τ n (y) ∈ (T, ∞), (K (n) ǫ,T ) ∁ }. But, on the event {τ n (y) ∈ (T, ∞), K (n) ǫ,T }, T 0+ e -R (n) s-dX (n) s + τ n (y) T + e -R (n) s-dX (n) s < -y which implies T 0+ e -R (n) s-dX (n) s < -y + ǫ,
or equivalently that τ n (yǫ) ≤ T , by [START_REF] De Haan | Embedding a stochastic difference equation into a continuous-time process[END_REF]. Thus,

{τ n (y) ≤ T } ∪ {τ n (y) ∈ (T, ∞), K (n) ǫ,T } ⊆ {τ n (y -ǫ) ≤ T }.
Then, we have {τ n (y) ∈ (T, ∞), (K

(n) ǫ,T ) ∁ } ⊆ (K (n) ǫ,T ) ∁ and thus lim sup n→∞ P(τ n (y) < ∞) ≤ P(τ (y -ǫ) ≤ T ) + lim sup n→∞ P (K (n) ǫ,T ) ∁ .
So, we need to show that lim

T →∞ lim sup n→∞ P (K (n) ǫ,T ) ∁ = 0.
Using the decomposition [START_REF] Dufresne | Weak convergence of random growth processes with applications to insurance[END_REF], we obtain (K

(n) ǫ,T ) ∁ ⊆ |µ ξ | τ n (y) T + e -R (n) s-dA (n) s ≥ ǫ 2 ∪ τ n (y) T + e -R (n) s-dN (n) s ≥ ǫ 2
Denote by E

2,T the sets on the r.h.s. of the above equation.

When n ≥ n 0 , we obtain, recalling the explicit form of the integral and using Markov's inequality,

P(E (n) 1,T ) ≤ 2|µ ξ | nǫ E   [nτ n (y)]+1 i=[nT ]+1 e -i j=1 γ (n) j   ≤ 2|µ ξ | nǫ E   ∞ i=[nT ]+1 i j=1 e -γ (n) j   = 2|µ ξ | nǫ ∞ i=[nT ]+1 E e -γ (n) 1 i = 2|µ ξ | nǫ E e -γ (n) 1 [nT ] ∞ j=1 E e -γ (n) 1 j . But, since E(e -γ (n) 1 ) ≤ E(e -2γ (n) 1 ) 1/2 ≤ C 1/(2n) < 1, we have P(E (n) 1,T ) ≤ 2|µ ξ | ǫ C 1/(2n) n(1 -C 1/(2n) ) C T .
Moreover it is easy to see that C -1/(2n) (n(1-C -1/(2n) )) -1 → -2/ ln(C) as n → ∞, and so lim T →∞ lim sup n→∞ P(E

(n) 1,T ) = 0.
On the other hand, using the Chebyshev and Burkholder-Davis-Gundy inequalities, we obtain

P(E (n) 2,T ) ≤ 4 ǫ 2 E   τ n (y) T + e -R (n) s-dN (n) s 2   ≤ 4 ǫ 2 E sup T <t<∞ t T + e -R (n) s-dN (n) s 2 ≤ 4K ǫ 2 E ∞ T + e -2R (n) s-d[N (n) , N (n) ] s ,
where K is a constant. But,

[N (n) , N (n) ] t = 0<s≤t (∆N (n) s ) 2 = [nt] i=1 ξ i -µ ξ √ n 2 .
Thus, writing the stochastic integral explicitly and using the same computation as before, we obtain

P(E (n) 2,T ) ≤ 4K ǫ 2 E   ∞ i=[nT ]+1 ξ i -µ ξ √ n 2 e -2 i j=1 γ (n) j   = 4Kσ 2 ξ ǫ 2 n ∞ i=[nT ]+1 E(e -2γ (n) 1 ) i ≤ 4K ǫ 2 C T σ 2 ξ C 1/n n(1 -C 1/n ) .
Again, using the fact that the expression on the r.h.s. above converges, when n → ∞, we find that lim

T →∞ lim sup n→∞ P E (n) 2,T = 0 and lim sup n→∞ P(τ n (y) < ∞) ≤ P(τ (y -ǫ) < ∞).
So, letting ǫ → 0 and using the continuity of y → P(τ (y) < ∞), we obtain lim sup n→∞ P(τ n (y) < ∞) ≤ P(τ (y) < ∞).

The explicit expression for the ultimate ruin probability of the limiting process is given in [START_REF] Paulsen | Ruin theory with stochastic return on investments[END_REF].

3.3. Approximation of the Moments. In this section, we obtain a recursive formula for the computation of the moments of the limiting process Y at a fixed time which, for simplicity, we choose to be T = 1 and prove the convergence of the moments of θ

(n) 1
to the moments of Y 1 . This gives a way to approximate the moments of θ Proposition 2. Assume that the limiting process Y = (Y t ) t≥0 is given by ( 2) with X t = µ ξ t + σ ξ Wt and R t = µ ρ t + σ ρ W t , for all t ≥ 0. We have, for all p ∈ N,

(15) E sup 0≤t≤1 |Y t | p < ∞.
Moreover, letting m p (t) = E[(Y t ) p ], for each 0 ≤ t ≤ 1 and p ∈ N, we have the following recursive formula: m 0 (t) = 1, ( 16)

m 1 (t) = ye κρt + µ ξ
κρ (e κρt -1) when κ ρ = 0, y + µ ξ t when κ ρ = 0, andE[(Y 0 ) p ] = y p . This is an inhomogeneous linear equation of the first order which can be solved explicitly to obtain [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF].

with κ ρ = µ ρ + σ 2 ρ /
] = pκ ρ + p(p -1) 2 σ 2 ρ E[(Y t ) p ] + pµ ξ E[(Y t ) p-1 ] + p(p -1) 2 σ 2 ξ E[(Y t ) p-2 ],
For p = 1, using the same technique as above, we obtain

E(Y t ) = y + µ ξ t + κ ρ t 0 E(Y s )ds.
If κ ρ = 0, there is nothing to prove. If κ ρ = 0, we obtain by differentiating w.r.

t. t, d dt E(Y t ) = µ ξ + k ρ E(Y t ),
with E(Y 0 ) = y and this can be solved to obtain [START_REF] Iglehart | Diffusion approximations in collective risk theory[END_REF].

We now state the approximation result.

Theorem 5. Assume that (H ′ ) holds. Assume that E(|ξ 1 | q ) < ∞, and that

(18) sup n∈N * E e qγ (n) 1 n = sup n∈N * E (ρ (n) 1 ) q n < ∞,
for some integer q ≥ 2. Then, for each p ∈ N * such that 1 ≤ p < q, we have

lim n→∞ E[(θ (n) 1 ) p ] = E[(Y 1 ) p ] = m p (1)
, for the function m p defined in Proposition 2.

Before turning to the proof of the theorem, we give an example to illustrate Condition [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace D 1 de Skorokhod[END_REF].

Example 5 (Approximation of the moments with NIG log-returns). Take ln(ρ 1 ) to be a normal inverse gaussian NIG(α, β, δ, µ) random variable with 0 ≤ |β| < α, δ > 0 and µ ∈ R (recall Example 2 for the definition). Fix q ≥ 2. We can use Taylor's formula on the function x → α 2 -(β + x) 2 around 0, to obtain

α 2 -β + q √ n 2 = λ - q √ n β λ - q 2 2n α 2 [α 2 -(β + x n ) 2 ] 3/2 ,
for some x n ∈ [0, q/ √ n], where λ = α 2β 2 and, recalling [START_REF] Cox | Option pricing: A simplified approach[END_REF],

lim n→∞ E e qγ (n) 1 n
= exp qµ ρ -qδα 2 2λ 3 . Since this limit exists and is finite for each q ≥ 2, the sequence is bounded and the convergence of the moments depends only on the highest moment of ξ 1 . Note that the NIG distribution contains the standard Gaussian as a particular case.

Proof of Theorem 5. Since by Corollary 2, we know that θ

(n) 1 d → Y 1 , we have also (θ (n) 1 ) p d → (Y 1 ) p , as n → ∞, for 1 ≤ p < q.
It is thus enough to show that the sequence ((θ (n) 1 ) p ) n∈N * is uniformly integrable, which by de la Vallée-Poussin's criterion is implied by the condition sup n∈N * E(|θ

(n) 1 | q ) < ∞. Define R(n) t = R (n) 1 -R (n) 1-t and X(n) t = X (n) 1 -X (n) 1-t the time-reversed processes of R (n) and X (n) which are defined for t ∈ [0, 1]. It is possible to check that ( R(n) t ) 0≤t≤1 d = (R (n) t ) 0≤t≤1 and ( X(n) t ) 0≤t≤1 d = (X (n) 
t ) 0≤t≤1 by checking that the characteristics of these processes are equal (since

[n]-[n(1-t)]-1 = ceil(nt)-1 = [nt],
where ceil is the ceiling function), and by applying Theorem II.4.25 p.110 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF]. (See also the example on p.97 in [START_REF] Jacod | Limit Theorems for Stochastic Processes[END_REF] for the computation of the characteristics.) Thus, we can imitate the proof of Theorem 3.1. in [START_REF] Carmona | Exponential functionals of Lévy processes[END_REF] to obtain

θ (n) 1 = e R (n) 1 y + 1 0+ e R (n) 1 -R (n) s-dX (n) s d = e R(n) 1 y + 1 0+ e R(n) u-d X(n) u d = e R (n) 1 y + 1 0+ e R (n) u-dX (n) u .
Then, using the fact that |a + b| q ≤ 2 q-1 (|a| q + |b| q ), we obtain

E |θ (n) 1 | q ≤ 2 q-1 y q E e qR (n) 1 + E 1 0+ e R (n) u-dX (n) u q .
Denote by I

(n) 1

and

I (n) 2
the expectation appearing on the r.h.s. of the above inequality. We will treat each expectation separately.

For

I (n) 1
we simply have [START_REF] Mémin | Condition UT et stabilité en loi des solutions d'équations différentielles stochastiques[END_REF] sup

n∈N * I (n) 1 = sup n∈N * n i=1 E(e qγ (n) i ) = sup n∈N * E e qγ (n) 1 n < ∞. For I (n) 2 , we start by defining M (n) t = [nt] i=1 ln(ρ i )-µρ √ n , for 0 ≤ t ≤ 1. It is possible to check that (M (n) 
t ) 0≤t≤1 is a martingale, for each n ∈ N * (for the filtration defined above Theorem 1.) In fact, the martingale property is checked in the same manner as for X (n) in the proof of Theorem 1 and the integrability is clear. Thus, (e M (n) t ) 0≤t≤1 is a submartingale, and using Doob's inequality we obtain

E sup 0≤t≤1 e R (n) t q = sup 0≤t≤1 e qµρ [nt] n E sup 0≤t≤1 e M (n) t q
≤ max(1, e µρq ) q q -1 q E(e qM (n) 1 )

= max(1, e -µρq ) q q -1 q E(e qR (n) 1 ).

And so the assumption [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace D 1 de Skorokhod[END_REF] together with [START_REF] Mémin | Condition UT et stabilité en loi des solutions d'équations différentielles stochastiques[END_REF] imply that [START_REF] Nicholls | Random coefficient autoregressive models: an introduction[END_REF] sup

n∈N * E sup 0≤t≤1 e R (n) t q < ∞. Writing X (n) t = µ ξ A (n) t + N (n)
t , with the processes defined in the proof of Theorem 1 and using the fact that |A (n) t | ≤ t, for all t ≥ 0, we have

I (n) 2 ≤ 2 q-1 E |µ ξ | 1 0+ e R (n) s-dA (n) s q + E 1 0+ e R (n) s-dN (n) s q ≤ 2 q-1 |µ ξ | q E sup 0≤t≤1 e R (n) 1 q + 2 q-1 E 1 0+ e R (n) s-dN (n) s q .
But, from the Burkholder-Davis-Gundy inequality applied twice and the independence of the sequences, we obtain

E 1 0+ e R (n) s-dN (n) s q ≤ D q E 1 0+ e 2R (n) s-d[N (n) ] s q/2 ≤ D q E sup 0≤t≤1 e qR (n) 1 E([N (n) ] q/2 1 ) ≤ d q D q E sup 0≤t≤1 e R (n) 1 q E(|N (n) 1 | q )
for some positive constants D q and d q . Thus, sup

n∈N * I (n) 2 ≤ 2 q-1 |µ ξ | sup n∈N * E sup 0≤t≤1 e R (n) t q + 2 q-1 d q D q sup n∈N * E sup 0≤t≤1 e R (n) t q sup n∈N * E |N (n) 1 | q ,
and so [START_REF] Nicholls | Random coefficient autoregressive models: an introduction[END_REF] implies that it is enough to check that sup n∈N * E(|N (n)

1 | q ) is finite. (Note that a similar argument to the one used to prove the finiteness of

I (n) 2
is used in a different context in the proof of Lemma 5.1 in [START_REF] Bankovsky | On the ruin probability of the generalised Ornstein-Uhlenbeck process in the Cramér case[END_REF].)

Using the multinomial theorem, we obtain

E(|N (n) 1 | q ) = k 1 +•••+kn=q q k 1 , . . . , k n n i=1 E ξ 1 -µ ξ √ n k i
, where the sum is taken over all non-negative integer solutions of k 1 + • • • + k n = q. Since E((ξ 1µ ξ ) k i ) = 0, when k i = 1, we can sum over the partitions with k i = 1 for all i = 1, . . . , n. Now, since k i /q ≤ 1, we have by Jensen's inequality

n i=1 E ξ 1 -µ ξ √ n k i ≤ n i=1 E ξ 1 -µ ξ √ n q k i q = n -q/2 E(|ξ 1 -µ ξ | q ).
Thus,

I (n) 3 ≤ 2 q-1 E(|ξ 1 -µ ξ | q )n -q/2 k 1 +•••+kn=q,k i =1
q k 1 , . . . , k n .

where

I (n) 3 = E(|N (n) 1 | q
) and since we need to take the supremum over n ∈ N * , we need to check that the r.h.s. of the above inequality is bounded in n. For this, note that the sum of multinomial coefficients is equal to [START_REF] Nualart | The Malliavin calculus and related topics[END_REF] [q/2]

i=1 n i l 1 +•••+l i =q-2i q l 1 + 2, . . . , l i + 2 ,
where, for each i = 1, . . . , [q/2], the second sum is taken over all nonnegative integer solutions of l 1 + • • • + l i = q -2i. This follows from the fact that if (k 1 , . . . , k n ) are non-negative integer solutions of k 1 + • • • + k n = q, we have, since k i = 1, that the number of non-zero terms in (k 1 , . . . , k n ) is at most [q/2]. Thus, letting i be the number of non-zero terms and (j 1 , . . . , j i ) their indices, we find that (k j 1 -2)+• • •+(k j i -2) = q -2i, which yields the claimed equality. Then, we have q l 1 + 2, . . . , l i + 2 ≤ C i q -2i l 1 , . . . , l i , with C i = 2 -i q!/(q -2i)! and

l 1 +•••+l i =q-2i
q -2i l 1 , . . . , l i = i q-2i .

Let C q = max i=1,...,[q/2] C i and K q = 2 q-1 C q E(|ξ 1µ ξ | q ), remark that the binomial coefficient in ( 21) is bounded by n [q/2] and that

I (n) 3 ≤ K q n -q/2
[q/2] i=1 n i i q-2i ≤ K q n -q/2+[q/2]

[q/2] i=1 i q-2i , which is bounded in n. Thus, sup n∈N * I

(n) 3 < ∞, sup n∈N * I (n) 2 < ∞ and sup n∈N * E |θ (n) 1 | q ≤ 2 q-1 y q sup n∈N * I (n) 1 + 2 q-1 sup n∈N * I (n) 2 < ∞.
So, the sequence ((θ 

(n) 1 )

 1 p ) n∈N * is uniformly integrable and we have lim n→∞ E[(θ(n) 1 ) p ] = E[(Y 1 ) p ].

  (b p m p-1 (s) + c p m p-2 (s)) ds, with a p = pµ ρ + p 2 σ 2 ρ /2, b p = pµ ξ and c p = p(p -1)σ 2 ξ /2. ) p ], for all 0 ≤ t ≤ 1 and p ∈ N * . Suppose that p ≥ 2. For r ∈ N * , define the stopping times θ r = inf {t > 0 : |Y t | > r} with inf{∅} = +∞. Then, applying Itô's lemma and using Y, Y t =

	2 and, for each p ≥ 2, m p (t) = y p e apt + t 0 e ap(t-s) Proof. The existence of the moments (15) follows, for p ≥ 2, from (17) the general existence result for the strong solutions of SDEs, see e.g. Corollary 2.2.1 p.119 in [21] and, for p = 1, from Cauchy-Schwarz's inequality. ξ t + σ 2 ρ t 0 Y 2 s ds, yields (Y t∧θr ) p = y p + pµ ξ t∧θr 0 (Y s ) p-1 ds + pσ ξ t∧θr 0 (Y s ) p-1 d Ws + pκ ρ t∧θr 0 (Y s ) p ds + pσ ρ t∧θr 0 (Y s ) p dW s + p(p -1) 2 σ 2 ξ t∧θr 0 (Y s ) p-2 ds + p(p -1) 2 σ 2 ρ t∧θr 0 (Y s ) p ds. Thus, using Fubini's theorem and the fact that the stochastic integrals are martingales, we obtain E[(Y + p(p -1) 2 σ 2 ξ t∧θr 0 E[(Y s ) p-2 ]ds Set m p (t) = E[(Y t σ 2 + t∧θr p(p -1) 2 σ 2 0 ρ E[(Y

t∧θr ) p ] = y p + pµ ξ t∧θr 0 E[(Y s ) p-1 ]ds + pκ ρ t∧θr 0 E[(Y s ) p ]ds s ) p ]ds.

Now we can take the limit as r → ∞, and use

[START_REF] Hartman | Ordinary differential equations[END_REF] 

to pass it inside the expectation of the l.h.s. of the above equation. Differentiating w.r.t. t, we then obtain the following ODE d dt E[(Y t ) p
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