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Abstract. We prove that a large class of discrete-time insur-
ance surplus processes converge weakly to a generalized Ornstein-
Uhlenbeck process, under a suitable re-normalization and when the
time-step goes to 0. Motivated by ruin theory, we use this result to
obtain approximations for the moments, the ultimate ruin prob-
ability and the discounted penalty function of the discrete-time
process.
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1. Introduction

Let (ξk)k∈N∗ and (ρk)k∈N∗ be two i.i.d. and independent sequences
of random variables, with ρk > 0 (P − a.s.) for all k ∈ N∗. The
autoregressive process of order 1 with random coefficients, abbreviated
RCA(1) or RCAR(1), see e.g. [19], is given by

(1) θk = ξk + θk−1ρk, k ∈ N∗.

and θ0 = y ∈ R. Such processes, which are also called stochastic recur-
rence or difference equations, appear frequently in applied probability.
For example, it is suggested in [1] that RCA processes could be useful
in problems related to hydrology, meteorology and biology. In ruin
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2 WEAK LIMITS OF AUTOREGRESSIVE PROCESSES

theory, the RCA(1) process is a classic model for the surplus capital of
an insurance company where (ξk)k∈N∗ represents a stream of random
payments or income and (ρk)k∈N∗ represents the random rates of re-
turn from one period to the next, see for example [21], [22], [23] and
[29].

In this paper, we prove the convergence of the process (1) when the
timestep goes to 0 and under a suitable re-normalization to the gener-
alized Ornstein-Uhlenbeck (GOU) process given by

(2) Yt = eRt

(

y +

∫ t

0+

e−Rs−dXs

)

, t ≥ 0,

where R = (Rt)t≥0 and X = (Xt)t≥0 are independent stable Lévy pro-
cesses with drift. One of the main uses of weak convergence is to prove
the convergence of certain functionals of the path of the processes to
the functional of the limiting process and to use the value of the latter
as an approximation for the former, when the steps between two pay-
ments and their absolute values are small. Motivated by ruin theory,
we will use this technique to prove the convergence of the moments, the
ultimate ruin probability and a simple form of the discounted penalty
function.

In actuarial mathematics, such approximations of functionals of surplus
processes are a well-developed line of research. In [15] it is shown that
the compound Poisson process with drift converges weakly to a Brown-
ian motion with drift and it is shown that the finite-time and ultimate
ruin probability converge to those of the limiting model. These results
are extended to more general jump times in [12] and to more general
jump sizes in [3] and [11]. Similar convergence results are proven for the
integral of a deterministc function w.r.t. a compound Poisson process
in [13], this corresponds to the assumption that the insurance company
can invest at a deterministic interest rate. Some of the previous results
are generalized in [27], where it is shown that a general model with
a jump-diffusion surplus process and stochastic jump-diffusion invest-
ment converges to a particular diffusion process.

More closely related to our result are the papers [6] and [9]. In [6],
it is shown that the AR(1) process (i.e. when the coefficients ρk are
deterministic and constant) converges weakly to a standard Ornstein-
Uhlenbeck process. In [9], it is shown that when the variables ξk are
deterministic and satisfy some regularity conditions, we have a similar
weak convergence result where the process X in (2) is replaced by a
deterministic function.
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The results in [8] are also closely related. In that paper, the au-
thors study the weak convergence of certain discrete-time models to
continuous-time models appearing in mathematical finance and prove
the convergence of the values of certain functionals such as the call
option price. They also argue that the continuous-time models used
in mathematical finance seem more relevant insofar they characterize,
in the limit, the way trade occurs in discrete-time. In a similar spirit,
we could thus argue that our convergence results provides a theoretical
justification for the continuous-time model (2) in the context of models
for surplus capital processes with both operational and market risks.
Note that, in the context of risk theory, the ruin problem for process
of the form (2) is very well studied under the heading ”ruin problem
with investment” for different choices of R and X . We refer to [26] and
the references therein for an overview of these results.

Finally, the relationship between the discrete-time model (1) and the
continuous processes of the form (2) was also studied in [7], where it
is shown that every continuous-time embedding of Equation (1) is a
GOU process. This means, in some sense, that GOU processes can be
seen as the continuous-time analogues of the RCA(1) process (see the
original paper for more details).

The rest of the paper is structured as follows: after introducing the as-
sumptions and notations, we prove the weak convergence of (1) to (2)
in Theorem 1. From this result, we deduce the convergence in distribu-
tion of the ruin times in Theorem 2. Then, we give sufficient conditions
for the convergence of a simple form of the discounted penalty function
in Theorem 3, of the ultimate ruin probability in Theorem 4 and of the
moments in Theorem 5, when ξ1 and ln(ρ1) are both square-integrable.
We illustrate these results using examples from actuarial theory and
mathematical finance.

2. Weak Limits of Autoregressive Processes and

Convergence of the Ruin Times

In this section, we show that the discrete-time process converges weakly
to the GOU process and prove the convergence in distribution of the
ruin times.

2.1. Assumptions and Convergence Results. We will use the fol-
lowing set of assumptions.
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Assumption (Hα). We say that a random variable Z satisfies (Hα) if
its distribution function FZ satisfies

FZ(−x) ∼ kZ
1 x

−α and 1− FZ(x) ∼ kZ
2 x

−α,

as x → ∞, for some 1 < α < 2 and some constants kZ
1 , k

Z
2 such that

kZ
1 + kZ

2 > 0. Note that this assumption implies that E(|Z|α) < ∞,
but that the converse is not true (see e.g. Section 2.2 p.70-81 in [10]).

Assumption (H2). We say that a random variable Z satisfies (H2) if
Z is square-integrable with Var(Z) > 0, where Var(Z) is the variance
of Z.

We now introduce some notations and recall some classical facts about
weak convergence on metric spaces, stable random variables and Lévy
processes.

Recall that the space D of càdlàg functions R+ → R can be equipped
with the Skorokhod metric which makes it a complete and separable
metric space, see e.g. Section VI.1, p.324 in [16]. Let D be the Borel
sigma-field for this topology. Given a sequence of random elements
Z(n) : (Ω(n),F (n),P(n)) 7→ (D,D), with n ≥ 1, we say that (Z(n))n≥1

converges weakly or in distribution to Z : (Ω,F ,P) 7→ (D,D), if the
laws of Z(n) converge weakly to the law of Z, when n → ∞. We denote

weak convergence by Z(n) d→ Z and we use the same notation for the
weak convergence of measures on R. We refer to Chapter VI, p.324 in
[16] for more information about these notions.

Concerning stable random variables Z of index α, the most common
way to define them is trough their characteristic functions:

E(eiuZ) = exp[iγu− c|u|α(1− iβsign(u)z(u, α))],

where γ ∈ R, c > 0, α ∈ (0, 2], β ∈ [−1, 1] and

z(u, α) =

{

tan
(

πα
2

)

if α 6= 1,

− 2
π
ln |u| if α = 1.

Stable Lévy processes (Lt)t≥0 are Lévy processes such that Lt is equal
in law to some stable random variable, for each t ≥ 0, with fixed
parameters β ∈ [−1, 1] and γ = 0 (see e.g. Definition 2.4.7 p.93 in
[10].)

Finally, note that if (Zk)k∈N∗ is a sequence of i.i.d. random variables
such that Z1 satisfies either (Hα) or (H2), then there exists a stable



WEAK LIMITS OF AUTOREGRESSIVE PROCESSES 5

random variable Kα and some constant cα > 0 such that

(3)

n
∑

k=1

Zk − µZ

cαn1/α

d→ Kα,

as n → ∞ where µZ = E(Z1). In fact, when Z1 satisfies (H2), α =
2, cα = 1 and Kα is the standard normal distribution with variance
Var(Z1). (See e.g. Section 2.2 p.70-81 in [10] for these facts.)

Assumption (H). We assume that (ξk)k∈N∗ and (ρk)k∈N∗ are two i.i.d.
and independent sequences of random variables, with ρk > 0 (P−a.s.)
for all k ∈ N∗, and that ξ1 (resp. ln(ρ1)) satisfies either (H

α) or (H2)
(resp. (Hβ) or (H2).) We denote by cα (resp. cβ) the constant and
by Kα (resp. Kβ) the limiting stable random variable appearing in

(3). In addition, we denote by (Lα
t )t≥0 (resp. (Lβ

t )t≥0) the stable Lévy

processes obtained by putting Lα
1

d
= Kα (resp. Lβ

1
d
= Kβ).

We now turn to the presentation of the main results of this section.
Fix n ∈ N∗, we want to divide the time interval into n subintervals of
length 1/n and update the discrete-time process at each time point of
the subdivision. To formalize this, we define the following process

(4) θ(n)
(

k

n

)

= ξ
(n)
k + θ(n)

(

k − 1

n

)

ρ
(n)
k , k ∈ N∗,

where (ξ
(n)
k )k∈N∗ and (ρ

(n)
k )k∈N∗ have to be defined from the initial se-

quences. Following an idea in [9], we let µξ = E(ξ1) and µρ = E(ln(ρ1))
and define:

ξ
(n)
k =

µξ

n
+

ξk − µξ

cαn1/α

and ρ
(n)
k = exp(γ

(n)
k ) where

γ
(n)
k =

µρ

n
+

ln(ρk)− µρ

cβn1/β
.

These definitions ensure that

E

(

n
∑

k=1

ln(ρ
(n)
k )

)

= µρ and E

(

n
∑

k=1

ξ
(n)
k

)

= µξ.

Moreover, when ξ1 and ln(ρ1) both satisfy (H2), we choose α = β = 2
and cα = cβ = 1, and then we have the following variance stabilizing
property:

Var

(

n
∑

k=1

ξ
(n)
k

)

= Var(ξ1) and Var

(

n
∑

k=1

ln(ρ
(n)
k )

)

= Var(ln(ρ1)).
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Finally, we define the filtrations F (n)
0 = {∅,Ω}, F (n)

k = σ((ξ
(n)
i , ρ

(n)
i ), i =

1, . . . , k), k ∈ N∗ and F (n)
t = F (n)

[nt], for t ≥ 0, where [.] is the floor

function and define θ(n) as the (continuous-time) stochastic process
given by

θ
(n)
t = θ(n)

(

[nt]

n

)

, t ≥ 0.

Theorem 1. Under (H), we have θ(n)
d→ Y , as n → ∞, where Y =

(Yt)t≥0 is the GOU process (2) with Xt = µξt+Lα
t and Rt = µρt+Lβ

t , for
all t ≥ 0. In addition, Y satisfies the following stochastic differential
equation :

(5) Yt = y +Xt +

∫ t

0+

Ys−dR̂s, t ≥ 0,

where

R̂t = Rt +
1

2
〈Rc〉t +

∑

0<s≤t

(

e∆Rs − 1−∆Rs

)

, t ≥ 0,

and Rc is the continuous martingale part of R and ∆Rt is its jump at
time t ≥ 0.

Example 1 (Pareto losses and stable log-returns). The assumption
(Hα) is quite general and simple to check. To illustrate it we take
the negative of a Pareto (type I) distribution with shape parameter
1 < α < 2 for the loss ξ1, i.e. the random variable defined by its
distribution function Fξ(x) = (−x)−α, for x ≤ −1. The condition
on α ensures that ξ1 has a finite first moment, but an infinite second
moment. Moreover, ξ1 then satisfies (Hα), with constants kξ

1 = 1 and

kξ
2 = 0. We also have that µξ = −α/(α− 1) and that

n
∑

k=1

ξk − µξ

cα,ξn1/α

d→ −Kα,ξ,

as n → ∞, with

cα,ξ =
π

2Γ(α) sin(απ/2)
,

where Γ is the Gamma function and where Kα,ξ is a stable random
variable of index α, with γ = 0, c = 1 and β = 1 (see e.g. p.62 in [30]).

For the log-returns ln(ρ1), we take a stable distribution with index

1 < α̃ < 2, and parameters γ̃ = 0, c̃ = 1 and β̃ ∈ [−1, 1]. Then, we
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have µρ = 0 and
n
∑

k=1

ln(ρk)− µρ

cα̃,ρn1/α̃

d
= Kα̃,ρ,

for all n ∈ N∗. Thus, Theorem 1 implies that θ(n)
d→ Y , as n → ∞,

where

Yt = eRt

(

y +

∫ t

0+

e−Rs−dXs

)

, t ≥ 0,

with Xt = µξt + Lα
t and Rt = µρt + Lα̃

t , where Lα and Lα̃ are stable

Lévy processes with Lα
1

d
= −Kα,ξ and Lα̃

1
d
= Kα̃,ρ.

As already mentioned, we will be interested in the application of The-
orem 1 to ruin theory and we now state the main consequence for this
line of study. Define the following stopping times, for n ≥ 1,

τn(y) = inf{t > 0 : θ
(n)
t < 0}

with the convention inf ∅ = +∞, and also

τ(y) = inf{t > 0 : Yt < 0}.
Theorem 2. Assume that (H) holds. We have, for all T ≥ 0,

lim
n→∞

P(τn(y) ≤ T ) = P(τ(y) ≤ T )

and, equivalently, τn(y)
d→ τ(y), as n → ∞.

Theorem 2 implies the convergence of E(f(τn(y)) to E(f(τ(y)), for
any continuous and bounded function f : R+ → R. For example, we
can obtain the following convergence result for a simple form of the
discounted penalty function.

Corollary 1. Assume that (H) holds. We have

lim
n→∞

E(e−ατn(y)1{τn(y)<+∞}) = E(e−ατ(y)1{τ(y)<+∞}),

for all α > 0.

When ξ1 and ln(ρ1) both satisfy (H2), the limiting stable random vari-
able is, in fact, the standard normal random variable and the lim-
iting process is defined by two independent Brownian motions with
drift.
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Corollary 2 (Pure diffusion limit). Assume that ξ1 and ln(ρ1) both

satisfy (H2), then θ(n)
d→ Y , as n → ∞, for Y = (Yt)t≥0 defined by

(2) with Rt = µρt + σρWt and Xt = µξt + σξW̃t, for all t ≥ 0, where

(Wt)t≥0 and (W̃t)t≥0 are two independent standard Brownian motions
and σ2

ξ = Var(ξ1) and σ2
ρ = Var(ln(ρ1)).

Example 2 (Pareto losses and NIG log-returns). To illustrate (H2)
we take again the negative of a Pareto (type I) distribution for the loss
ξ1 but with shape parameter α ≥ 2, so that the distribution admits
also a second moment. For the log-returns, ln(ρ1) we take the normal
inverse gaussian NIG(α, β, δ, µ) with parameters 0 ≤ |β| < α, δ > 0
and µ ∈ R, i.e. the random variable defined by the following moment
generating function

E(eu ln(ρ1)) = exp
(

µu+ δ
(

γ −
√

α2 − (β + u)2
))

,

where γ =
√

α2 − β2, for all u ∈ R.

Then, it is well known that

µξ = − α

α− 1
, σ2

ξ =
α

(α− 1)2(α− 2)

and that

µρ = µ+
βδ

γ
, σ2

ρ = δ
α2

γ3
.

Thus, in this case, Corollary 2 yields θ(n)
d→ Y , with

Yt = eµρt+σρWt

(

y +

∫ t

0+

e−µρs−σρWsd(µξs+ σξW̃s)

)

, t ≥ 0,

and where (Wt)t≥0 and (W̃t)t≥0 are two independent standard Brownian
motions.

2.2. The UT Condition and the Proofs of Theorems 1 and 2.

We now turn to the proofs of the Theorems. The strategy is to rewrite
the discrete-time process as a stochastic integral and to use the well-
known weak convergence result for stochastic integrals based on the
UT (uniform tightness) condition for semimartingales.
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To rewrite the discrete-time process, note that, by induction, the ex-
plicit solution of (4), for all n ∈ N∗ and k ∈ N∗, is given by

θ(n)
(

k

n

)

= y
k
∏

i=1

ρ
(n)
i +

k
∑

i=1

ξ
(n)
i

k
∏

j=i+1

ρ
(n)
j

=
k
∏

i=1

ρ
(n)
i

(

y +
k
∑

i=1

ξ
(n)
i

i
∏

j=1

(ρ
(n)
j )−1

)

,

where, by convention, we set
∏k

j=k+1 ρ
(n)
j = 1, for all n ∈ N∗. Thus,

(6) θ
(n)
t =

[nt]
∏

i=1

ρ
(n)
i



y +

[nt]
∑

i=1

ξ
(n)
i

i
∏

j=1

(ρ
(n)
j )−1



 .

and setting X
(n)
t =

∑[nt]
i=1 ξ

(n)
i and R

(n)
t =

∑[nt]
i=1 γ

(n)
i , we obtain

(7) θ
(n)
t = eR

(n)
t

(

y +

∫ t

0+

e−R
(n)
s− dX(n)

s

)

.

In fact, the above rewriting of the discrete-time process will prove very
useful for most proofs in this the paper.

Remark 1. An other way to prove the weak convergence would be to
remark that since [X(n), R(n)]t = 0, for all n ∈ N∗, we find that θ(n)

satisfies the following stochastic differential equation :

θ
(n)
t = y +X

(n)
t +

∫ t

0+

θ
(n)
s− dR̂(n)

s ,

where

R̂
(n)
t = R(n) +

∑

0<s≤t

(e∆R
(n)
s − 1−∆R(n)

s ) =

[nt]
∑

i=1

(eγ
(n)
i − 1),

and to use the well-known stability results for solution of stochastic
differential equations. We refer to [8] for an interesting application of
this method for different models in mathematical finance. However,

this way seems harder, in our case, since the process (R̂
(n)
t )t≥0 is less

explicit than (R
(n)
t )t≥0.

We now recall the UT condition, the weak convergence result and give
two lemmas to check the condition in our case.
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Definition 1. Consider a sequence of real-valued semimartingales Z(n)

defined on (Ω(n),F (n), (F (n)
t )t≥0,P

(n)), for each n ∈ N∗. Denote by H(n)

the set given by

H(n) = {H(n)|H(n)
t = Ln,0 +

p
∑

i=1

Ln,i1[ti,ti+1)(t), p ∈ N,

0 = t0 < t1 < · · · < tp = t,

Ln,i is F (n)
ti −measurable with |Ln,i| ≤ 1}.

The sequence (Z(n))n∈N∗ is UT (also called P-UT in [16], for ”uniformly
tight” and ”predictably uniformly tight”) if for all t > 0, for all ǫ > 0,
there exists M > 0 such that,

sup
H(n)∈H(n),n∈N∗

P(n)

(∣

∣

∣

∣

∫ t

0+

H
(n)
s− dZ(n)

s

∣

∣

∣

∣

> M

)

< ǫ.

For more information about the UT condition see Section VI.6 in [16].
One of the interesting consequences of the UT condition is given by the
following proposition which is a particular case of Theorem 6.22 p.383
of [16].

Proposition 1. Let (H(n), Z(n))n∈N∗ be a sequence of real-valued semi-

martingales defined on (Ω(n),F (n), (F (n)
t )t≥0,P

(n)). If (H(n), Z(n))
d→

(H,Z) as n → ∞ and the sequence (Z(n))n∈N∗ is UT, then Z is a
semimartingale and when n → ∞,

(

H(n), Z(n),

∫ .

0

H
(n)
s− dZ(n)

s

)

d→
(

H,Z,

∫ .

0

Hs−dZs

)

.

The following lemma is based on Remark 6.6 p.377 in [16].

Lemma 1. Let (Z(n))n∈N∗ be a sequence of real-valued semimartingales

with locally bounded variation defined on (Ω(n),F (n), (F (n)
t )t≥0,P

(n)). If
for each t > 0 and each ǫ > 0, there exists M > 0 such that

sup
n∈N∗

P(n)
(

V (Z(n))t > M
)

< ǫ,

where V (.) denotes the total first order variation of a process, then
(Z(n))n≥1 is UT.
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Proof. For each n ∈ N∗, H(n) ∈ H(n) and t > 0, we find p ∈ N and
0 = t0 < t1 < · · · < tp = t such that
∣

∣

∣

∣

∫ t

0+

H
(n)
s− dZ(n)

s

∣

∣

∣

∣

≤ |Ln,0|+
p
∑

i=1

|Ln,i||Zti+1
− Zti | ≤ 1 +

p
∑

i=1

|Zti+1
− Zti |

≤ 1 + V (Z(n))t.

Thus, the assumption implies the UT property. �

The following lemma is based on Remark 2-1 in [18].

Lemma 2. Let (Z(n))n∈N∗ be a sequence of real-valued local martingales

defined on (Ω(n),F (n), (F (n)
t )t≥0,P

(n)) and Z a real-valued semimartin-
gale on (Ω,F , (Ft)t≥0,P). Denote by ν(n) the compensator of the jump

measure of Zn. If Z(n) d→ Z as n → ∞, then the following condtions
are equivalent:

(i) (Z(n))n∈N∗ is UT,

(ii) for each t > 0 and each ǫ > 0, there exists a,M > 0 such that

sup
n≥1

P(n)

(
∫ t

0

∫

R

|x|1{|x|>a}ν
(n)(ds, dx) > M

)

< ǫ.

Proof. From Lemma 3.1. in [17] we know that, under the assumption

Z(n) d→ Z as n → ∞, (i) is equivalent to asking that for each t > 0 and
each ǫ > 0, there exists M > 0 such that

sup
n≥1

P(n)(V (Ba,n)t > M) < ǫ,

where V (.) is the total first order variation of a process and Ba,n is the
first semimartingale characteristic of Z(n) (for the truncation function
h(x) = x1{|x|>a}).

Let’s compute V (Ba,n) in this case. For a > 0 and n ∈ N∗, define Z̃n,a
t =

Z
(n)
t −∑0<s≤t∆Zs1{|∆Zs|>a} and Ba,n

t =
∫ t

0

∫

R
x1{|x|>a}ν

(n)(ds, dx). We
have,

Z̃n,a
t = Z̃n,a

t +Ba,n
t − Ba,n

t

= Z
(n)
t −

∫ t

0

∫

R

x1{|x|>a}(µ
(n)(ds, dx)− ν(n)(ds, dx))−Ba,n

t ,

where µ(n) is the jump measure of Z(n). Thus, since the two first
terms on the r.h.s. of the last line above are local martingales, their
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difference is a local martingale with bounded jumps and thus the first
semimartingale characteristic of Z(n) is Ba,n

t . So,

V (Ba,n)t =

∫ t

0

∫

R

|x|1{|x|>a}ν
(n)(ds, dx)

and this finishes the proof. �

We are now ready for the proof of Theorem 1.

Proof of Theorem 1. To be able to apply Proposition 1, we need show

that (eR
(n)
, X(n))n∈N∗ converges in law as n → ∞ and that (X(n))n∈N∗

is UT.

First, note that by definition of γ
(n)
k , we have

(8) R
(n)
t =

[nt]
∑

i=1

γ
(n)
k = µρ

[nt]

n
+

[nt]
∑

i=1

ln(ρi)− µρ

cβn1/β
.

But [nt]/n → t as n → ∞. By the stable functional convergence
theorem (see e.g. Theorem 2.4.10 p.95 in [10]), the sum in the r.h.s. of

the equation above converges weakly to a stable Lévy process (Lβ
t )t≥0

with Lβ
1

d
= Kβ. Thus, we obtain

(e−R
(n)
t )t≥0 =



exp



−
[nt]
∑

i=1

γ
(n)
k









t≥0

d→
(

e−µρt−Lβ
t

)

t≥0
.

Similarly, by the definition of ξ
(n)
i , we have

(9) X
(n)
t =

[nt]
∑

i=1

µξ

n
+

[nt]
∑

i=1

ξi − µξ

cαn1/α
= µξA

(n)
t +N

(n)
t , for all t ≥ 0.

Applying the stable functional convergence theorem again, we obtain

(N
(n)
t )t≥0

d→ (Lα
t )t≥0, as n → ∞, where Lα is a stable Lévy motion,

with Lα
1

d
= Kα, which is independent of (Lβ

t )t≥0 since the sequences
(ξk)k∈N∗ and (ρk)k∈N∗ are independent. Using the independence, we

also have the convergence of the couple (eR
(n)
, X(n)), as n → ∞.

To prove that (X(n))n∈N∗ is UT, it is enough to prove that (A(n))n∈N∗

and (N (n))n∈N∗ are both UT. Note that A(n) is a process of locally
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bounded variation for each n ≥ 1 with V (A(n)) = A(n). Since A
(n)
t ≤ t,

for all n ∈ N∗, we have

sup
n≥1

P(A
(n)
t > M) ≤ P(t > M),

for all M > 0 and thus, by Lemma 1, the sequence (A(n))n∈N∗ is UT.

Now, note that, when t > s and [nt] ≥ [ns]+1, using the i.i.d. property
of (ξk)k∈N∗ we obtain

E(N
(n)
t −N (n)

s |Fs) =

[nt]
∑

i=[ns]+1

E

(

ξi − µξ

cαn1/α

)

= 0.

When t > s and [nt] < [ns] + 1, N
(n)
t − N

(n)
s = 0, and thus E(N

(n)
t −

N
(n)
s |Fs) = 0. This shows that N (n) is a local martingale for each

n ∈ N∗. Then, denoting by ν(n) the compensator of the jump mea-
sure of N (n) (which is deterministic since N (n) is also a semimartingale
with independent increments) and applying the Hölder and Markov
inequalities, we have

∫ t

0

∫

R

|x|1{|x|>1}ν
(n)(ds, dx) = E

(

∑

0<s≤t

|∆N (n)
s |1{|∆N(n)|≥1}

)

=

[nt]
∑

i=1

E

(

∣

∣

∣

∣

ξi − µξ

cαn1/α

∣

∣

∣

∣

1{
∣

∣

∣

∣

ξi−µξ

cαn1/α

∣

∣

∣

∣

≥1

}

)

=
[nt]

cαn1/α
E
(

|ξ1 − µξ| 1{|ξ1−µξ|≥cαn1/α}

)

≤ [nt]

cαn1/α
E(|ξ1 − µξ|α)1/αP(|ξ1 − µξ|α ≥ n(cα)

α)1−1/α

≤ [nt]

(cα)αn
E(|ξ1 − µξ|α) ≤ Cα

t

(cα)α
,

with Cα = E(|ξ1 − µξ|α) < ∞. Thus, if M > Cα(cα)
−αt, we have

sup
n≥1

P

(
∫ t

0

∫

R

|x|1{|x|>1}ν
(n)(ds, dx) > M

)

= 0,

and by Lemma 2, the sequence (N (n))n∈N∗ is UT.

To conclude we obtain, using Proposition 1 and the continuous mapping

theorem with h(x1, x2, x3) = (x3 + y)/x2, (θ
(n)
t )t≥0

d→ (Yt)t≥0 where

Y = (Yt)t≥0 is given by (2) with Rt = µρt + Lβ
t , Xt = µξt + Lα

t , for all
t ≥ 0.
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In this case, we have [R,X ]t = 0, for all t ≥ 0, (see e.g. Theorem 33 and
its proof p.301-302 in [28]) and thus, using Itô’s lemma and Theorem
II.8.10 p.136 in [16], we obtain the stochastic differential equation (5).

�

Proof of Theorem 2. We start by proving that P(inf0≤t≤T Yt = 0) = 0.
First, note that

{

inf
0≤t≤T

Yt = 0

}

=

{

sup
0≤t≤T

(

−
∫ t

0+

e−Rs−dXs

)

= y

}

.

Using the independence of the processes, we then obtain

P

(

inf
0≤t≤T

Yt = 0

)

=

∫

D

P

(

sup
0≤t≤T

(

−
∫ t

0+

g(s−)dXs

)

= y

)

Pe−R(dg)

where D is the space of càdlàg functions and Pe−R is the law of the
process (e−Rt)t≥0. Denote S(g)t = −

∫ t

0+
g(s−)dXs, for all t ≥ 0.

Let (ti)i∈N∗ be an enumerating sequence of [0, T ] ∩ Q. Since S(g) =
(S(g)t)t≥0 is a process with independent increments, S(g) has, for each
fixed time ti > 0, the same law as a Lévy process L = (Lt)t≥0 defined
by the characteristic triplet (aL, σ

2
L, νL) with

aL =
µξ

ti

∫ ti

0

g(s−)ds, σ2
L =

σ2
ξ

ti

∫ ti

0

g2(s−)ds

and

νL(dx) =
νξ(dx)

ti

∫ ti

0

g(s−)ds,

where (aξ, σ
2
ξ , νξ) is the characteristic triplet of X , see Theorem 4.25

p.110 in [16]. Then, it is well known that Lti admits a density if σ2
L > 0

or νL(R) = ∞, see e.g. Proposition 3.12 p.90 in [5]. But, when ξ1
satisfies (H2), we have σ2

ξ > 0 and σ2
L > 0. When ξ1 satisfies (Hα), we

have νξ(R) = ∞ and νL(R) = ∞. Thus, in both cases, Lti admits a
density and we have P(S(g)ti = y) = P(Lti = y) = 0.

Since (S(g)t)t≥0 is càdlàg we have

sup
0≤t≤T

S(g)t = sup
t∈[0,T ]∩Q

S(g)t,
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and, since a càdlàg process reaches its supremum almost surely,

P

(

sup
0≤t≤T

S(g)t = y

)

= P

(

sup
t∈[0,T ]∩Q

S(g)t = y

)

≤ P

(

⋃

i∈N
{Sti = y}

)

= lim
N→∞

P

(

N
⋃

i=1

{Sti = y}
)

≤ lim
N→∞

N
∑

i=1

P(Sti = y)

= 0.

Thus, P(inf0≤t≤T Yt = 0) = 0.

Next, note that we have

{

inf
0≤t≤T

Yt < 0

}

⊆ {τ(y) ≤ T} ⊆
{

inf
0≤t≤T

Yt ≤ 0

}

and
{

inf
0≤t≤T

θ
(n)
t < 0

}

⊆ {τn(y) ≤ T} ⊆
{

inf
0≤t≤T

θ
(n)
t ≤ 0

}

.

Since θ(n)
d→ Y by Theorem 1, we obtain from the continuous mapping

theorem that inf0≤t≤T θ
(n)
t

d→ inf0≤t≤T Yt, for all T ≥ 0, since the supre-
mum (and also the infimum) up to a fixed time are continuous for the
Skorokhod topology (see e.g. Proposition 2.4, p.339, in [16]). So, by
the portmanteau theorem,

lim sup
n→∞

P(τn(y) ≤ T ) ≤ lim sup
n→∞

P

(

inf
0≤t≤T

θ
(n)
t ≤ 0

)

≤ P

(

inf
0≤t≤T

Yt ≤ 0

)

= P

(

inf
0≤t≤T

Yt < 0

)

≤ P(τ(y) ≤ T ),

and

lim inf
n→∞

P(τn(y) ≤ T ) ≥ lim inf
n→∞

P

(

inf
0≤t≤T

θ
(n)
t < 0

)

≥ P

(

inf
0≤t≤T

Yt < 0

)

= P

(

inf
0≤t≤T

Yt ≤ 0

)

≥ P(τ(y) ≤ T ).

�



16 WEAK LIMITS OF AUTOREGRESSIVE PROCESSES

3. Convergence and Approximation of the Ruin

Functionals in the Pure Diffusion Case

In this section, we obtain sufficient conditions for a simple form of
the discounted penalty function, the ultimate ruin probability and the
moments and give a manner to approximate these quantities. To be
able to go further (and to obtain practical expressions for the ruin
functionals of the limiting process), we now restrict ourselves to the
(H2) case.

Assumption (H′). We assume that ξ1 and ln(ρ1) both satisfy (H2).
So Y is given by (2) with Xt = µξt + σξW̃t and Rt = µρt + σρWt

or, equivalently, is given by the solution of (5) with the same X and

R̂t = κρt + σρWt and κρ = µρ + σ2
ρ/2.

3.1. Approximation of the Discounted Penalty Function. We
have seen in Corollary 1 that a simple form of the discounted penalty
function converges. In this section, we give an expression of this quan-
tity for the limiting process which will depend on the solution of a
second order ODE.

Lemma 3. Let α > 0. The equation

(10) (σ2
ξ + σ2

ρx
2)f ′′

α(x) + 2(µξ + kρx)f
′
α(x)− 2αfα(x) = 0,

admits a solution fα : R+ → R satisfying

(P) fα(x) > 0, for all x ∈ R+, and f ′
α(x) ≤ 0, for all x ∈ (0,+∞).

Moreover, every other solution f̃α of (10) satisfying (P) is given by

f̃α(x) = Kfα(x), for all x ∈ R+, for some constant K ∈ R.

Proof. Define

p(x) = exp

(

2

∫ x

0

µξ + kρz

σ2
ξ + σ2

ρz
2
dz

)

= exp

(

2µξ

σξσρ
arctan

(

σρ

σξ
x

))

(

1 +
σ2
ρ

σ2
ξ

x2

)kρ/σ2
ρ

,

and

g(x) = − 2α

σ2
ξ + σ2

ρx
2
,

for all x ∈ R+. Then, we can rewrite (10) in the Sturm-Liouville form

(p(x)f ′
α(x))

′
+ p(x)g(x)fα(x) = 0.
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The existence of a (principal) solution satisfying (P) then follows form
Corollary 6.4. p.357 in [14]. The fact that the solutions are uniquely
determined up to a constant factor follows from

∫∞
1

p(x)−1ds = ∞ and
Exercise 6.7. p.358 in [14]. �

Remark 2. Under the condition α > κρ, it is possible to obtain an
explicit solution of (10) using the method of contour integration as was
done in Theorem A.1 in [27]. Otherwise, the ODE can be solved using
numerical integration.

We now prove the approximation result.

Theorem 3. Assume that (H′) holds. Let α > 0 and let fα : R+ → R

be any solution of (10) satisfying (P). We have

lim
n→∞

E(e−ατn(y)1{τn(y)<+∞}) = E(e−ατ(y)1{τ(y)<+∞}) =
fα(y)

fα(0)
.

Proof. The convergence of the discounted penalty function is the con-
tent of Corollary 1.

We now compute the value for the limiting process using the idea
in the proof of Theorem 2.1. in [24]. First, we show that L =
(fα(Yt∧τ(y))e

−α(t∧τ(y)))t≥0 is a martingale with respect to the natural
filtration of Y . Using Itô’s lemma and the fact that 〈Y, Y 〉t = σ2

ξ t +

σ2
ρ

∫ t

0
Y 2
s ds, we obtain

fα(Yt∧τ(y))e
−α(t∧τ(y)) = fα(y) + σξN

(1)
t + σρN

(2)
t

+

∫ t∧τ(y)

0

e−αs

2
I(Ys)ds,

where

N
(1)
t =

∫ t∧τ(y)

0

e−αsf ′
α(Ys)dW̃s =

∫ t

0

1{s≤τ(y)}e
−αsf ′

α(Ys)dW̃s,

N
(2)
t =

∫ t∧τ(y)

0

e−αsf ′
α(Ys)YsdWs =

∫ t

0

1{s≤τ(y)}e
−αsf ′

α(Ys)YsdWs

and

I(Ys) = (σ2
ξ + σ2

ρY
2
s )f

′′
α(Ys) + 2(µξ + κρYs)f

′
α(Ys)− 2αfα(Ys).

Since 1{s≤τ(y)} is adapted to the natural filtration of Y , N (1) and N (2)

are local martingales and since fα solves (10) L is also a local martin-
gale.
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Note that Yt∧τ(y) ≥ 0 (P-a.s.), for all t ≥ 0, and that fα is non-
increasing by (P). Thus, we have fα(Yt∧τ(y)) ≤ fα(0) and we find that
L is a bounded local martingale, and thus a martingale. From the
property of constant expectation, we then obtain, for t ≥ 0,

fα(y) = E
(

fα(Yt∧τ(y))e
−α(t∧τ(y)))

or equivalently

fα(y) = E
(

fα(Yt∧τ(y))e
−α(t∧τ(y))1{τ(y)<+∞}

)

+ e−αtE
(

fα(Yt)1{τ(y)=∞}
)

.

Again since fα(Yt∧τ(y)) ≤ fα(0), we can pass to the limit t → ∞ in the
first expectation. Similarly, on the event {τ(y) = ∞}, we have Yt ≥ 0
(P-a.s.) and fα(Yt) ≤ fα(0), for all t ≥ 0, and the second term goes to
0 as t → ∞. Finally, we have proven that

fα(y) = E
(

fα(Yτ(y))e
−ατ(y)1{τ(y)<+∞}

)

= fα(0)E
(

e−ατ(y)1{τ(y)<+∞}
)

.

Lemma 3 also guarantees that this result does not depend on the par-
ticular choice of the solution of (10). �

3.2. Approximation of the Ultimate Ruin Probability. We have
seen that, when ξ1 and ln(ρ1) both satisfy (H2), we have

lim
n→∞

P(τn(y) ≤ T ) = P(τ(y) ≤ T ),

for all T ≥ 0. We would like to replace the finite-time ruin probability
with the ultimate ruin probability P(τ(y) < ∞) since for the latter,
an explicit expression exists for the limiting process. However, the
following classic example (see e.g. [12]) shows that the ultimate ruin
probability may fail to converge even if the finite-time ruin probability
does. In fact, take (Z(n))t≥0 to be the deterministic process defined
by

Z
(n)
t =

{

0 if t < n,

−1 if t ≥ n.

Then, we have Z(n) → Z, as n → ∞, where Zt = 0, for all t ≥ 0, and
we have also convergence of the finite-time ruin probability, since, as

n → ∞, inf0≤t≤T Z
(n)
t → 0, for all T > 0. But inf0≤t<∞ Z

(n)
t = −1, for

all n ∈ N∗, and so the ultimate ruin probability fails to converge.

In general, proving the convergence of the ultimate ruin probability
is a hard problem and depends on the particular model (see [12] for
another discussion). Still, we can give a sufficient condition for this
convergence.
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Theorem 4. Assume that (H′) holds. When µρ ≤ 0, we have

lim
n→∞

P(τn(y) < ∞) = 1.

When µρ > 0, we assume additionally that there exists C < 1 and
n0 ∈ N∗ such that

(11) sup
n≥n0

E
(

e−2γ
(n)
1

)n

= sup
n≥n0

E
(

(ρ
(n)
1 )−2

)n

≤ C.

Then,

lim
n→∞

P(τn(y) < ∞) = P(τ(y) < ∞) =
H(−y)

H(0)

where, for x ≤ 0,

H(x) =

∫ x

−∞
(σ2

ξ + σ2
ρz

2)−(1/2+µρ/σ2
ρ) exp

(

2µξ

σξσρ
arctan

(

σρ

σξ
z

))

dz.

Before turning to the proof of the theorem, we give two examples to
illustrate Condition (11).

Example 3 (Approximation of the ruin probability with normal log-re-
turns). Take ξ1 to be any random variable satisfying (H2) and ln(ρ1) ∼
N (µρ, σ

2
ρ), with µρ > 0, then

E
(

e−2γ
(n)
1

)n

= e−2(µρ−σ2
ρ),

for all n ∈ N∗, so n0 = 1 and the condition C < 1 is equivalent to
µρ > σ2

ρ.

Example 4 (Approximation of the ruin probability with NIG log-re-
turns). More generally, take ξ1 to be any random variable satisfying
(H2) and ln(ρ1) to be a normal inverse gaussian NIG(α, β, δ, µ) ran-
dom variable with 0 ≤ |β| < α, δ > 0 and µ ∈ R (recall Example 2 for
the definition). We remark that when n is large enough, we can use
Taylor’s formula, to obtain

(12)

√

α2 −
(

β − 2√
n

)2

= γ +
2√
n

β

γ
− 2

n

α2

[α2 − (β − xn)2]3/2
,

for some xn ∈ [0, 2/
√
n]. Since the mean is given by µρ = µ + δβ/γ,

we obtain using (12)

lim
n→∞

E
(

e−2γ
(n)
1

)n

= exp

(

−2µρ +
2δα2

γ3

)

= exp

(

−2

(

µ+
δβγ2 − δα2

γ3

))
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Thus, when

µ+
δβγ2 − δα2

γ3
> 0,

this limit is strictly smaller than 1 and we can find n0 ∈ N∗ and C < 1
such that (11) is satisfied. Taking β = 0 and σ2 = δ/α we retrieve the
condition for normal returns given in Example 3.

Proof of Theorem 4. We have, for all n ∈ N∗ and T > 0,

P(τn(y) < ∞) ≥ P(τn(y) ≤ T )

and, by Theorem 2,

lim inf
n→∞

P(τn(y) < ∞) ≥ P(τ(y) ≤ T ).

So, letting T → ∞,

lim inf
n→∞

P(τn(y) < ∞) ≥ P(τ(y) < ∞).

Now if P(τ(y) < ∞) = 1, which is equivalent to µξ ≤ 0 by [25], there is
nothing else to prove. So we assume that P(τ(y) < ∞) < 1, or µξ > 0,
and we will prove that

lim sup
n→∞

P(τn(y) < ∞) ≤ P(τ(y) < ∞),

under the additional condition (11).

Fix y > ǫ > 0, T > 0 and, when τn(y) > T , denote by K
(n)
ǫ,T the event

K
(n)
ǫ,T =

{∣

∣

∣

∣

∣

∫ τn(y)

T+

e−R
(n)
s− dX(n)

s

∣

∣

∣

∣

∣

< ǫ

}

.

We have,

{τn(y) < ∞} = {τn(y) ≤ T} ∪ {τn(y) ∈ (T,∞), K
(n)
ǫ,T }

∪ {τn(y) ∈ (T,∞), (K
(n)
ǫ,T )

∁}.
But, on the event {τn(y) ∈ (T,∞), K

(n)
ǫ,T },

∫ T

0+

e−R
(n)
s− dX(n)

s +

∫ τn(y)

T+

e−R
(n)
s− dX(n)

s < −y

which implies
∫ T

0+

e−R
(n)
s− dX(n)

s < −y + ǫ,

or equivalently that τn(y − ǫ) ≤ T , by (7). Thus,

{τn(y) ≤ T} ∪ {τn(y) ∈ (T,∞), K
(n)
ǫ,T } ⊆ {τn(y − ǫ) ≤ T}.
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Then, we have {τn(y) ∈ (T,∞), (K
(n)
ǫ,T )

∁} ⊆ (K
(n)
ǫ,T )

∁ and thus

lim sup
n→∞

P(τn(y) < ∞) ≤ P(τ(y − ǫ) ≤ T ) + lim sup
n→∞

P
(

(K
(n)
ǫ,T )

∁
)

.

So, we need to show that

lim
T→∞

lim sup
n→∞

P
(

(K
(n)
ǫ,T )

∁
)

= 0.

Using the decomposition (9), we obtain

(K
(n)
ǫ,T )

∁ ⊆
{∣

∣

∣

∣

∣

∫ τn(y)

T+

e−R
(n)
s− dA(n)

s

∣

∣

∣

∣

∣

≥ ǫ

2

}

∪
{∣

∣

∣

∣

∣

∫ τn(y)

T+

e−R
(n)
s− dN (n)

s

∣

∣

∣

∣

∣

≥ ǫ

2

}

Denote by E
(n)
1,T and E

(n)
2,T the sets on the r.h.s. of the above equation.

When n ≥ n0, we obtain, recalling the explicit form of the integral and
using Markov’s inequality,

P(E
(n)
1,T ) ≤

2|µξ|
nǫ

E





[nτn(y)]+1
∑

i=[nT ]+1

e−
∑i

j=1 γ
(n)
j





≤ 2|µξ|
nǫ

E





∞
∑

i=[nT ]+1

i
∏

j=1

e−γ
(n)
j



 =
2|µξ|
nǫ

∞
∑

i=[nT ]+1

E
(

e−γ
(n)
1

)i

=
2|µξ|
nǫ

E
(

e−γ
(n)
1

)[nT ]
∞
∑

j=1

E
(

e−γ
(n)
1

)j

.

But, since E(e−γ
(n)
1 ) ≤ E(e−2γ

(n)
1 )1/2 ≤ C1/(2n) < 1, we have

P(E
(n)
1,T ) ≤

2|µξ|
ǫ

C1/(2n)

n(1− C1/(2n))
CT .

Moreover it is easy to see that C−1/(2n)(n(1−C−1/(2n)))−1 → −2/ ln(C)

as n → ∞, and so limT→∞ lim supn→∞P(E
(n)
1,T ) = 0.
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On the other hand, using the Chebyshev and Burkholder-Davis-Gundy
inequalities, we obtain

P(E
(n)
2,T ) ≤

4

ǫ2
E





∣

∣

∣

∣

∣

∫ τn(y)

T+

e−R
(n)
s− dN (n)

s

∣

∣

∣

∣

∣

2




≤ 4

ǫ2
E

(

sup
T<t<∞

∣

∣

∣

∣

∫ t

T+

e−R
(n)
s− dN (n)

s

∣

∣

∣

∣

2
)

≤ 4K

ǫ2
E

(
∫ ∞

T+

e−2R
(n)
s− d[N (n), N (n)]s

)

,

where K is a constant. But,

[N (n), N (n)]t =
∑

0<s≤t

(∆N (n)
s )2 =

[nt]
∑

i=1

(

ξi − µξ√
n

)2

.

Thus, writing the stochastic integral explicitly and using the same com-
putation as before, we obtain

P(E
(n)
2,T ) ≤

4K

ǫ2
E





∞
∑

i=[nT ]+1

(

ξi − µξ√
n

)2

e−2
∑i

j=1 γ
(n)
j





=
4Kσ2

ξ

ǫ2n

∞
∑

i=[nT ]+1

E(e−2γ
(n)
1 )i ≤ 4K

ǫ2
CTσ2

ξ

C1/n

n(1− C1/n)
.

Again, using the fact that the expression on the r.h.s. above converges,
when n → ∞, we find that

lim
T→∞

lim sup
n→∞

P
(

E
(n)
2,T

)

= 0

and

lim sup
n→∞

P(τn(y) < ∞) ≤ P(τ(y − ǫ) < ∞).

So, letting ǫ → 0 and using the continuity of y 7→ P(τ(y) < ∞), we
obtain

lim sup
n→∞

P(τn(y) < ∞) ≤ P(τ(y) < ∞).

The explicit expression for the ultimate ruin probability of the limiting
process is given in [27]. �
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3.3. Approximation of the Moments. In this section, we obtain a
recursive formula for the computation of the moments of the limiting
process Y at a fixed time which, for simplicity, we choose to be T = 1

and prove the convergence of the moments of θ
(n)
1 to the moments of

Y1. This gives a way to approximate the moments of θ
(n)
1 .

Proposition 2. Assume that the limiting process Y = (Yt)t≥0 is given

by (2) with Xt = µξt + σξW̃t and Rt = µρt + σρWt, for all t ≥ 0. We
have, for all p ∈ N,

(13) E

(

sup
0≤t≤1

|Yt|p
)

< ∞.

Moreover, letting mp(t) = E[(Yt)
p], for each 0 ≤ t ≤ 1 and p ∈ N, we

have the following recursive formula: m0(t) = 1,

(14) m1(t) =

{

yekρt +
µξ

kρ
(ekρt − 1) when κρ 6= 0,

y + µξt when κρ = 0,

with κρ = µρ + σ2
ρ/2 and, for each p ≥ 2,

(15) mp(t) = ypeapt +

∫ t

0

eap(t−s) (bpmp−1(s) + cpmp−2(s)) ds,

with ap = pµρ + p2σ2
ρ/2, bp = pµξ and cp = p(p− 1)σ2

ξ/2.

Proof. The existence of the moments (13) follows, for p ≥ 2, from
the general existence result for the strong solutions of SDEs, see e.g.
Corollary 2.2.1 p.119 in [20] and, for p = 1, from Cauchy-Schwarz’s
inequality.

Set mp(t) = E[(Yt)
p], for all 0 ≤ t ≤ 1 and p ∈ N∗. Suppose that p ≥ 2.

For r ∈ N∗, define the stopping times

θr = inf {t > 0 : |Yt| > r}
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with inf ∅ = +∞. Then, applying Itô’s lemma and using 〈Y, Y 〉t =

σ2
ξ t+ σ2

ρ

∫ t

0
Y 2
s ds, yields

(Yt∧θr)
p = yp + pµξ

∫ t∧θr

0

(Ys)
p−1ds+ pσξ

∫ t∧θr

0

(Ys)
p−1dW̃s

+ pκρ

∫ t∧θr

0

(Ys)
pds+ pσρ

∫ t∧θr

0

(Ys)
pdWs

+
p(p− 1)

2
σ2
ξ

∫ t∧θr

0

(Ys)
p−2ds

+
p(p− 1)

2
σ2
ρ

∫ t∧θr

0

(Ys)
pds.

Thus, using Fubini’s theorem and the fact that the stochastic integrals
are martingales, we obtain

E[(Yt∧θr)
p] = yp + pµξ

∫ t∧θr

0

E[(Ys)
p−1]ds+ pκρ

∫ t∧θr

0

E[(Ys)
p]ds

+
p(p− 1)

2
σ2
ξ

∫ t∧θr

0

E[(Ys)
p−2]ds

+
p(p− 1)

2
σ2
ρ

∫ t∧θr

0

E[(Ys)
p]ds.

Now we can take the limit as r → ∞, and use (13) to pass it inside the
expectation of the l.h.s. of the above equation. Differentiating w.r.t.
t, we then obtain the following ODE

d

dt
E[(Yt)

p] =

(

pκρ +
p(p− 1)

2
σ2
ρ

)

E[(Yt)
p] + pµξE[(Yt)

p−1]

+
p(p− 1)

2
σ2
ξE[(Yt)

p−2],

and E[(Y0)
p] = yp. This is an inhomogeneous linear equation of the

first order which can be solved explicitly to obtain (15).

For p = 1, using the same technique as above, we obtain

E(Yt) = y + µξt+ κρ

∫ t

0

E(Ys)ds.

If κρ = 0, there is nothing to prove. If κρ 6= 0, we obtain by differenti-
ating w.r.t. t,

d

dt
E(Yt) = µξ + kρE(Yt),

with E(Y0) = y and this can be solved to obtain (14). �
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We now state the approximation result.

Theorem 5. Assume that (H′) holds. Assume that E(|ξ1|q) < ∞, and
that

(16) sup
n∈N∗

E
(

eqγ
(n)
1

)n

= sup
n∈N∗

E
(

(ρ
(n)
1 )q

)n

< ∞,

for some integer q ≥ 2. Then, for each p ∈ N∗ such that 1 ≤ p < q, we
have

lim
n→∞

E[(θ
(n)
1 )p] = E[(Y1)

p] = mp(1),

for the function mp defined in Proposition 2.

Before turning to the proof of the theorem, we give an example to
illustrate Condition (16).

Example 5 (Approximation of the moments with NIG log-returns).
Take ln(ρ1) to be a normal inverse gaussian NIG(α, β, δ, µ) random
variable with 0 ≤ |β| < α, δ > 0 and µ ∈ R (recall Example 2 for the
definition). Fix q ≥ 2. When n is large enough, we can use Taylor’s
formula, to obtain

√

α2 −
(

β +
q√
n

)2

= γ − q√
n

β

γ
− q2

2n

α2

[α2 − (β + xn)2]3/2
,

for some xn ∈ [0, q/
√
n] and thus

lim
n→∞

E
(

eqγ
(n)
1

)n

= exp

(

qµρ +
qδα2

2γ3

)

.

Since this limit exists and is finite for each q ≥ 2, the sequence is
bounded and the convergence of the moments depends only on the
highest moment of ξ1. Note that the NIG distribution contains the
standard Gaussian as a particular case.

Proof of Theorem 5. Since by Corollary 2, we know that θ
(n)
1

d→ Y1,

we have also (θ
(n)
1 )p

d→ (Y1)
p, as n → ∞, for 1 ≤ p < q. It is thus

enough to show that the sequence ((θ
(n)
1 )p)n∈N∗ is uniformly integrable,

which by de la Vallée-Poussin’s criterion is implied by the condition

supn∈N∗ E(|θ(n)1 |q) < ∞.

Define R̃
(n)
t = R

(n)
1 − R

(n)
1−t and X̃

(n)
t = X

(n)
1 − X

(n)
1−t the time-reversed

processes of R(n) and X(n) which are defined for t ∈ [0, 1]. It is possible

to check that (R̃
(n)
t )0≤t≤1

d
= (R

(n)
t )0≤t≤1 and (X̃

(n)
t )0≤t≤1

d
= (X

(n)
t )0≤t≤1

by checking that the characteristics of these processes are equal (since
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[n]−[n(1−t)]−1 = ceil(nt)−1 = [nt], where ceil is the ceiling function),
and by applying Theorem II.4.25 p.110 in [16]. (See also the example
on p.97 in [16] for the computation of the characteristics.) Thus, we
can imitate the proof of Theorem 3.1. in [4] to obtain

θ
(n)
1 = eR

(n)
1 y +

∫ 1

0+

eR
(n)
1 −R

(n)
s− dX(n)

s
d
= eR̃

(n)
1 y +

∫ 1

0+

eR̃
(n)
u−dX̃(n)

u

d
= eR

(n)
1 y +

∫ 1

0+

eR
(n)
u−dX(n)

u .

Then, using the fact that |a+ b|q ≤ 2q−1(|a|q + |b|q), we obtain

E
(

|θ(n)1 |q
)

≤ 2q−1

[

yqE
(

eqR
(n)
1

)

+ E

(∣

∣

∣

∣

∫ 1

0+

eR
(n)
u−dX(n)

u

∣

∣

∣

∣

q)]

.

Denote by I
(n)
1 and I

(n)
2 the expectation appearing on the r.h.s. of the

above inequality. We will treat each expectation separately.

For I
(n)
1 we simply have

(17) sup
n∈N∗

I
(n)
1 = sup

n∈N∗

n
∏

i=1

E(eqγ
(n)
i ) = sup

n∈N∗

E
(

eqγ
(n)
1

)n

< ∞.

For I
(n)
2 , we start by defining M

(n)
t =

∑[nt]
i=1

ln(ρi)−µρ√
n

, for 0 ≤ t ≤ 1. It is

possible to check that (M
(n)
t )0≤t≤1 is a martingale, for each n ∈ N∗ (for

the filtration defined above Theorem 1.) In fact, the martingale prop-
erty is checked in the same manner as for X(n) in the proof of Theorem

1 and the integrability is clear. Thus, (eM
(n)
t )0≤t≤1 is a submartingale,

and using Doob’s inequality we obtain

E

(∣

∣

∣

∣

sup
0≤t≤1

eR
(n)
t

∣

∣

∣

∣

q)

=

(

sup
0≤t≤1

eqµρ
[nt]
n

)

E

(∣

∣

∣

∣

sup
0≤t≤1

eM
(n)
t

∣

∣

∣

∣

q)

≤ max(1, eµρq)

(

q

q − 1

)q

E(eqM
(n)
1 )

= max(1, e−µρq)

(

q

q − 1

)q

E(eqR
(n)
1 ).

And so the assumption (16) together with (17) imply that

(18) sup
n∈N∗

E

(∣

∣

∣

∣

sup
0≤t≤1

eR
(n)
t

∣

∣

∣

∣

q)

< ∞.
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Writing X
(n)
t = A

(n)
t +N

(n)
t , with the processes defined in the proof of

Theorem 1 and using the fact that |A(n)
t | ≤ |µξ|t, for all t ≥ 0, we have

I
(n)
2 ≤ 2q−1

[

E

(∣

∣

∣

∣

∫ 1

0+

eR
(n)
s− dA(n)

s

∣

∣

∣

∣

q)

+ E

(∣

∣

∣

∣

∫ 1

0+

eR
(n)
s− dN (n)

s

∣

∣

∣

∣

q)]

≤ 2q−1|µξ|qE
(∣

∣

∣

∣

sup
0≤t≤1

eR
(n)
1

∣

∣

∣

∣

q)

+ 2q−1E

(∣

∣

∣

∣

∫ 1

0+

eR
(n)
s− dN (n)

s

∣

∣

∣

∣

q)

.

But, from the Burkholder-Davis-Gundy inequality applied twice and
the independence of the sequences, we obtain

E

(∣

∣

∣

∣

∫ 1

0+

eR
(n)
s− dN (n)

s

∣

∣

∣

∣

q)

≤ DqE

(

∣

∣

∣

∣

∫ 1

0+

e2R
(n)
s− d[N (n)]s

∣

∣

∣

∣

q/2
)

≤ DqE

(

sup
0≤t≤1

eqR
(n)
1

)

E([N (n)]
q/2
1 )

≤ dqDqE

(∣

∣

∣

∣

sup
0≤t≤1

eR
(n)
1

∣

∣

∣

∣

q)

E(|N (n)
1 |q)

for some positive constants Dq and dq. Thus,

sup
n∈N∗

I
(n)
2 ≤ 2q−1|µξ| sup

n∈N∗

E

(∣

∣

∣

∣

sup
0≤t≤1

eR
(n)
t

∣

∣

∣

∣

q)

+ 2q−1dqDq sup
n∈N∗

E

(∣

∣

∣

∣

sup
0≤t≤1

eR
(n)
t

∣

∣

∣

∣

q)

sup
n∈N∗

E
(

|N (n)
1 |q

)

,

and so (18) implies that it is enough to check that supn∈N∗ E(|N (n)
1 |q)

is finite. (Note that a similar argument to the one used to prove the

finiteness of I
(n)
2 is used in a different context in the proof of Lemma

5.1 in [2].)

Using the multinomial theorem, we obtain

E(|N (n)
1 |q) =

∑

k1+···+kn=q

(

q

k1, . . . , kn

) n
∏

i=1

E

(

(

ξ1 − µξ√
n

)ki
)

,

where the sum is taken over all non-negative integer solutions of k1 +
· · ·+ kn = q. Since E((ξ1 − µξ)

ki) = 0, when ki = 1, we can sum over
the partitions with ki 6= 1 for all i = 1, . . . , n. Now, since ki/q ≤ 1, we
have by Jensen’s inequality

n
∏

i=1

E

(

(

ξ1 − µξ√
n

)ki
)

≤
n
∏

i=1

E

(∣

∣

∣

∣

ξ1 − µξ√
n

∣

∣

∣

∣

q)
ki
q

= n−q/2E(|ξ1 − µξ|q).
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Thus,

I
(n)
3 ≤ 2q−1E(|ξ1 − µξ|q)n−q/2

∑

k1+···+kn=q,ki 6=1

(

q

k1, . . . , kn

)

.

and since we need to take the supremum over n ∈ N∗, we need to check
that the r.h.s. of the above inequality is bounded in n. For this, note
that the sum of multinomial coefficients is equal to

(19)

[q/2]
∑

i=1

(

n

i

)

∑

l1+···+li=q−2i

(

q

l1 + 2, . . . , li + 2

)

,

where, for each i = 1, . . . , [q/2], the second sum is taken over all non-
negative integer solutions of l1+ · · ·+ li = q−2i. This follows from the
fact that if (k1, . . . , kn) are non-negative integer solutions of k1 + · · ·+
kn = q, we have, since ki 6= 1, that the number of non-zero terms in
(k1, . . . , kn) is at most [q/2]. Thus, letting i be the number of non-zero
terms and (j1, . . . , ji) their indices, we find that (kj1−2)+· · ·+(kji−2) =
q − 2i, which yields the claimed equality. Then, we have

(

q

l1 + 2, . . . , li + 2

)

≤ Ci

(

q − 2i

l1, . . . , li

)

,

with Ci = 2−iq!/(q − 2i)! and

∑

l1+···+li=q−2i

(

q − 2i

l1, . . . , li

)

= iq−2i.

Let Cq = maxi=1,...,[q/2]Ci and Kq = 2q−1CqE(|ξ1 − µξ|q), remark that

the binomial coefficient in (19) is bounded by n[q/2] and that

I
(n)
3 ≤ Kqn

−q/2

[q/2]
∑

i=1

(

n

i

)

iq−2i ≤ Kqn
−q/2+[q/2]

[q/2]
∑

i=1

iq−2i,

which is bounded in n. Thus, supn∈N∗ I
(n)
3 < ∞, supn∈N∗ I

(n)
2 < ∞ and

sup
n∈N∗

E
(

|θ(n)1 |q
)

≤ 2q−1yq sup
n∈N∗

I
(n)
1 + 2q−1 sup

n∈N∗

I
(n)
2 < ∞.

So, the sequence ((θ
(n)
1 )p)n∈N∗ is uniformly integrable and we have

limn→∞E[(θ
(n)
1 )p] = E[(Y1)

p]. �
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