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tional computer vision problems based on high-level primitives (ob-
jects), instead of the traditional low-level primitives [16, 17, 22, 28].
However, it is not easy to accurately compute the camera pose
from coarse 2D BBs of objects, particularly when few objects are
detected. For example, Li et al. use detection of BBs from two
far-apart viewpoints to predict the 6-dof camera transformation be-
tween views [16]. Objects are modeled by their bounding cuboids
and detected by using Faster-RCNN [27]. However, as the perspec-
tive projection of a cuboid is not a 2D box, a brute force, discrete
optimization scheme has to be used to estimate the object poses,
from a large set of hypotheses aligning well with the associated
detection BB. A contextual model (vector describing some spatial
relationships between the cuboids) is used to select the hypotheses
that best ensure the global consistency, but this model has to be
constructed manually, which, again, does not make it easy to adapt
this system to a new environment.

Ellipsoidal abstraction of objects provides a more interesting
geometric framework. An ellipsoid projects into an ellipse, these
two primitives having a single equation to define them and well-
established properties e.g. in the dual 3D and (resp.) 2D projective
spaces. This paves the way for elegant and efficient solutions to align
reprojected ellipsoids with the associated ellipses. Thereby in [28],
Rubino et al. show how to automatically estimate an ellipsoid in 3D
given a set of ellipses fitted to the object detection BBs in multiple
calibrated views. The authors show that a closed-form solution ex-
ists from three views. In [22], Nicholson et al. describe a complete
SLAM (Simultaneous Localization And Mapping) system that is
able to reconstruct ellipsoids in 3D and simultaneously compute the
camera poses from several ellipses fitted, again, to the object detec-
tion BBs. YOLOv3 [26] is used for object detection. A geometric
error is minimized using a nonlinear iterative optimization process.
However, this optimization is initialized by, and constrained to stay
close to, some odometry measurements, which limits the scope of
this method.

In this paper, we build on the advances made by Rubino et al. [28]
and Nicholson et al. [22] to design a robust, portable and potentially
sensor-less method that estimates the pose of a camera at object level
(see Fig. 1). Our main contributions are the following.

First, we prove that a closed form estimate of the translation can
be computed from a single ellipse-ellipsoid correspondence and
known camera orientation (Section 3). This theoretical result has
a great practical interest. Indeed, if capturing a camera orientation
from external data (IMU, vanishing points, etc.) is quite easy, cap-
turing a camera position is more difficult: odometry is known to
suffer from cumulative drift, GPS is unusable indoors, and outside-in
tracking (optical, WIFI, etc.) requires special equipment together
with a tedious hand-eye calibration preprocess. Robustness of the
camera position estimate against camera orientation errors and el-
lipse detection errors is assessed using the LINEMOD dataset [11]
(Section 5.1).

Second, a robust framework able to choose the best hypotheses
in presence of erroneous matches is proposed, which is based on an
appropriate estimation of the reprojection error of ellipsoids (Sec-
tion 4). Object class detection is known to be relatively safe but, of
course, detection errors and / or misclassifications can still occur.
Most importantly, if object class detection is interesting in terms
of portability (the trained CNNs are relevant for any instance of
the object class), as a counterpart, knowing the labels of the BBs
does not allow distinguishing between several objects corresponding
to the same class, so that each hypothesis has to be considered in
the pose estimation process. Fortunately, this problem is somewhat
offset by the fact that, knowing the camera orientation, its posi-
tion can be inferred from only one ellipse-ellipsoid correspondence.
Contrary to the PnP problem, one ellipse-ellipsoid correspondence
brings information on a whole object and encompasses many local
feature correspondences. As shown in our experiments, estimation

from one correspondence is usually robust but the accuracy may
depend on the accuracy of the detected ellipse. In order to cope with
possible recognition errors and erroneous image/model association
when several occurrences of an object are present in the scene, we
propose a robust estimation framework with a low combinatorial
cost which takes into account the projections of the other ellipsoids.

Finally, we prove the effectiveness of the method for camera
relocalization in two sequences of the TUM RGB-D dataset [33]
(Section 5.2). The sets of possible correspondences are generated by
using YOLOv3, and camera orientations are provided by automatic
extraction of vanishing points or simulated IMU data.

2 MORE RELATED WORK

A strong limitation of the method described in [16], in addition to
the high dimensionality of the 3D cuboid search space is that the
scale of the selected objects is known, and the camera’s viewing
angle with respect to the ground plane is fixed. For sake of gener-
ality, these constraints are removed in [17], by inferring vanishing
points from each image, and taking a short video, 25 consecutive
frames from each viewpoint, allowing relative depth to be recovered
for keypoint pixels using Structure From Motion (SFM). However,
these additional steps make the method more cumbersome, espe-
cially since several hypotheses are still considered for each cuboid,
before reasoning about object correspondences using the Hungarian
algorithm.

Modeling object projections by virtual ellipses allowed Crocco et
al. to propose a closed-form solution for SFM reconstruction of the
scene in the form of an ellipsoid cloud [3]. However, this method
is limited to the case of an orthographic projection, as well as its
extension integrating CAD object models for higher reconstruction
accuracy [6].

The case of perspective projection is considered in [22]. However,
as we mentioned in the introduction, the SLAM resolution is con-
strained by odometry measurements. More precisely, the maximum
a posteriori configuration of camera poses X∗ and dual quadrics Q∗

is found by solving the following non linear least squares problem:

X∗,Q∗ = argminX ,Q ∑
i

|| f (xi,ui)⊖xi+1||2∑i
+∑

i j

||bi j −β(xi,q j)||
2
Λi j

. (1)

The first term reflects the attachment to odometry measurements and
the second term is a geometric error between the projected ellipsoids
and the detection BBs (see [22] for the details of the notations). The
geometric error is defined as the sum of squares of the distances
between borders of the BBs of the reprojected ellipsoids and borders
of the detection BBs. Unfortunately, we show in Section 5.2 that
removing the first term of the cost function (attachment to odome-
try), fixing the ellipsoid parameters q j (shape and pose in the world
frame of the ellipsoids) and minimizing the geometric term over
the six pose parameters xi can cause the optimization process to
diverge severely, even with ground truth as initialization parameters.
This is one reason why we argue that it is better to compute the
camera orientation separately, and only estimate the camera transla-
tion (in closed-form) by using the ellipse-ellipsoid correspondences.
Another limitation of this method, is that the associations between
individual detections and distinct physical objects are provided by a
set of manual annotations, while we propose a robust procedure to
automatically determine the correct associations.

Actually, a closed-form solution for pose computation from
ellipse-ellipsoid correspondences was first proposed in [35, 36], but
only for the special case of spheroids (ellipsoid with two equal
semi-diameters). In that case, the authors showed that, considering
perspective projection, the spheroid pose estimation problem admits
only two distinct solutions. In the more general case of ellipsoids, an
equation of the same problem was proposed by Eberly [4] (which is
the starting point of our theoretical development) without, however,
an explicit method for calculating solutions.



3 CAMERA POSE COMPUTATION FROM ONE ELLIPSE - EL-
LIPSOID CORRESPONDENCE

We focus on the problem of camera pose estimation from one ellipse
- ellipsoid correspondence. We consider the equivalent problem that
consists in calculating the ellipsoid pose in the camera frame, and
show that the ellipsoid position can be inferred from its orientation
unambiguously.

3.1 The Cone Alignment Equation

Unless otherwise stated, all the variables introduced below are
expressed in the camera coordinate frame.

Following the notations introduced in [4] and presented in Fig. 2,
we consider an ellipsoid defined by

(X−C)⊤A(X−C) = 1

where C is the center of the ellipsoid, A is a real positive definite
matrix characterizing its orientation and size, and X is any point on
it.

Given a center of projection E and a projection plane of normal
N which does not contain E, the projection of the ellipsoid is an
ellipse of center K and of semi-diameters a et b. Ellipse’s principal
directions are represented by unit-length vectors U and V, such that
{U,V,N} is an orthonormal set.

The goal of this section is to compute the ellisoid position C given
E, A and the detected ellipse on the image plane.

Figure 2: Illustrating the projection plane, projection center, ellipsoid
and ellipse projection.

3.1.1 Projection Cone

The ”projection cone” refers to the cone of vertex E tangent to the
ellipsoid. According to [4], it is defined by the matrix

B
de f
= A∆∆∆∆∆∆⊤A− (∆∆∆⊤A∆∆∆−1)A

where ∆∆∆ = E−C, so that the points X on the projection cone are

those who satisfy the equation (X−E)⊤B(X−E) = 0.

3.1.2 Backprojection Cone

The ”backprojection cone” refers to the cone generated by the lines
passing through E and any point on the ellipse. Eberly shows that
such a cone is characterized by the matrix B′ defined as follows

B′ de f
= P⊤MP−Q

where

M
de f
= UU⊤/a2 +VV⊤/b2

W
de f
= N/(N · (K−E))

P
de f
= I − (K−E)W⊤

Q
de f
= WW⊤

Here again, the points X on the backprojection cone are those who

meet (X−E)⊤B′(X−E) = 0.

3.1.3 Alignment Equation

The ellipsoid projects on the ellipse if and only if the projection and
backprojection cones are aligned [4], i.e. if and only if there is a
non-zero scalar σ such that B = σB′:

A∆∆∆∆∆∆⊤A− (∆∆∆⊤A∆∆∆−1)A = σB′ (2)

3.2 Computing position from orientation

Assuming that both size and orientation of the ellipsoid are known,
the matrix A is fully determined. In the following we explain how to
compute the remaining unknowns ∆∆∆ and σ of (2) from A and B′.

First, we will show that equation (2) implies

A∆∆∆ = σB′∆∆∆ (3)

Proof. Right-multiplying (2) by ∆∆∆, we have

(A∆∆∆∆∆∆⊤A− (∆∆∆⊤A∆∆∆−1)A)∆∆∆ = σB′∆∆∆

Since ∆∆∆ is a 3D vector, ∆∆∆⊤A∆∆∆ is a scalar, thus

(A∆∆∆∆∆∆⊤A− (∆∆∆⊤A∆∆∆−1)A)∆∆∆ = A∆∆∆(∆∆∆⊤A∆∆∆)−∆∆∆⊤A∆∆∆A∆∆∆+A∆∆∆

= (∆∆∆⊤A∆∆∆)A∆∆∆−∆∆∆⊤A∆∆∆A∆∆∆+A∆∆∆

= A∆∆∆

∆∆∆ is thus a generalized eigenvector of the couple {A,B′}.
According to the properties of ellipsoids and cones, it can be

shown that (see proof in Appendix A) :

Theorem 1.

• the couple {A,B′} has exactly two distinct real generalized
eigenvalues, one of multiplicity 1 denoted σ1 , and one of
multiplicity 2 denoted σ2.

• only σ1 is solution of (2).

As a result, σ can be uniquely determined from the ellipsoid
orientation and from the ellipse detected in the image, by consid-
ering the eigenvalue of multiplicity 1. ∆∆∆ is thus proportional to the
eigenvector ∆∆∆1with norm 1 associated with σ1.

We thus have ∆∆∆ = ~CE = k∆∆∆1. Substituting this expression in (2)
leads to

k2(A∆∆∆1∆∆∆⊤
1 A−∆∆∆⊤

1 A∆∆∆1A) = σ1B′−A

In practice, due to uncertainties in the detection, a least mean square
estimation of k2 is computed. The only possible k is the one that
allows the center of the ellipsoid to be in front of the camera (chirality
constraint).

Finally, let us note that all the computations were made in the
camera coordinate frame. Let cRw be the rotation matrix from world
coordinates to camera coordinates. In practice, this matrix is esti-
mated from sensors of from vanishing points. If Aw characterizes



Figure 3: Illustration on the RGB-D TUM dataset [33] of the situation
where a single object (the cup containing flowers in the center of the
images) receive two different labels from the generic object detection
algorithm YOLOv3 [26]: cup (left) and vase (right). These images
also illustrate the fact that different objects (cups and plants) can be
characterized by the same label: cup and pottedplant.

the size and orientation of the ellipsoid expressed in the world frame,
then A = cRwAw

wRc is the matrix expressed in the camera frame.

From what precedes, we can then compute ∆∆∆ = ~EC expressed in the
camera frame. Its expression in the world frame is thus given by
wRc∆∆∆. As the position of the ellipsoid is known in the world frame,
the camera position can be determined.

4 ROBUST POSE ESTIMATION METHOD

A list a 2D/3D object association is the input of our pose procedure.
Due to recognition errors, some of them may be wrong. In addition,
as recognition systems are mostly learned on categories of object,
there may be ambiguities in the choice of the physical object the de-
tection originates from. The frequent occurrence of repeated objects
in man-made environments is another source of false data associa-
tion. In previous works [22], association was realized manually to
avoid this problem. On the contrary, we propose a RANSAC-like
procedure dedicated to robust 2D/3D object association with the aim
to automatically discard false associations.

4.1 Model construction

Our camera relocalization system requires the knowledge of a light
3D model composed of ellipsoidal abstractions of objects of in-
terest present in the scene. To reconstruct each object, possibly
separately, a few frames with known poses (3 at minimum [28]) cov-
ering the widest possible range of viewpoints is necessary. In these
frames, objects are automatically detected (in the form of rectangular
bounding boxes) and labelled using an object detection algorithm
(e.g. [10, 18, 26]), then the association between 2D detections across
images is carried out manually. For each object, ellipses inscribed in
detected bounding boxes are considered as 2D projections of an un-
derlying 3D ellipsoid, therefore reconstructed using [28]. The labels
are automatically transferred from 2D detections to 3D ellipsoids,
sometimes leading to situations where a single object is described
by several labels, and where different objects are described by the
same label (see Figure 3).

4.2 RANSAC-like procedure for position estimation

Starting from a set of object detections and an estimate of the camera
orientation (see 4.3 for more details about orientation computation),
our method consists in jointly solving the data association and cam-
era position estimation problems.

In practice, every possible association between detected objects
and 3D ellipsoids is determined from label compatibility. As the pose
can be computed from one ellipse-ellipsoid correspondence, a pose
is computed for each individual pair of ellipse-ellipsoid hypothesis.
A consensus set is built at the level of ellipsoids: for each of these
potential poses, we reproject all the 3D ellipsoids into the image,
and consider ellipse - ellipsoid pairs as inliers when their labels are

compatible and the intersection over union (IoU) score between the
detected and reprojected bounding boxes is greater than a certain
threshold (0.5 in our experiments). Note that when a 3D object
reprojects onto several 2D detections, only the one with the greatest
IoU is considered.When two configurations lead to the same number
of inliers, the one with the greatest sum of IoU scores is selected.

4.3 Orientation estimation

Figure 4: Manhattan vanishing points are reliable features to compute
the camera orientation. This figure shows some example results in
complex industrial scenes. Those were obtained by using the method
described in [31]. Vanishing points are represented by the consistent
line segments (one color per vanishing point) and the directions of the
detected Manhattan frame are shown in red, green, blue.

In our method, we assume that the camera orientation is known.
Having said that, the goal of this section is to briefly describe how
this matrix can be obtained in practice, and how our method can
provide a mechanism to remove the ambiguity inherent in some
orientation determination methods. Inertial Measurement Units
(IMUs) are electronic devices whose orientation is measured based
on a combination of accelerometers and gyroscopes, sometimes also
magnetometers. IMUs are contained in almost all smartphones and
tablets, and can easily be used to provide the camera orientation
matrix required by our method. Futhermore, this matrix can also
be obtained purely from images thanks to image analysis methods
based on vanishing point (VP) detection [30, 31, 38]. Indeed, VP
detection now performs relatively well in various kinds of environ-
ments, including indoor and industrial ones. In the experimental
results shown in Section 5.2, we use the method described in [31],
since it has proven well suited to various man-made environments.

Using VPs, the camera orientation can be obtained with regard to
a frame aligned with three orthogonal directions of the scene that
give rise to three specific (so-called Manhattan) VPs. Images of
man-made (including industrial) environments often contain such
a triplet of orthogonal VPs (see e.g. Fig. 4). It has been many
years since the idea of calculating the orientation of the camera from
the Manhattan vanishing points was proposed [14], but we address
here some issues that are often not considered in the literature while
encountered in practice: how to calibrate the rotation between the
Manhattan frame and the frame in which the ellipsoids are expressed,
and how to deal with the problem of axes exchanges or symmetries
between these two frames.

Computing the rotation between the ellipsoids and the Man-
hattan coordinate frames Ellipsoids are expressed in the world
coordinate frame, whose orientation does not necessary fit the Man-
hattan directions of the scene. For that reason, we need to compute
the rotation mRw from the world (ellipsoids) frame to the Manhat-
tan frame, and use cRw = cRm

mRw, where cRm is the Manhattan-to-
camera rotation matrix (obtained using [31]), when computing the
position of the camera with the method described in section 3.2. To
do this, we detect the Manhattan VPs in N images where the world-

to-camera rotations cRw
(i) are known. This provides N matrices

mRw
(i) = cRm

(i)⊤cRw
(i), which should all be the same if data were

not corrupted by noise. For better accuracy, we use the orthogonal



projection of mRw = ∑
N
i=1

mRw
(i)

N onto the special orthogonal group
SO(3), given by:

mRw = mRwU

(

1√
Λ1

,
1√
Λ2

,
s√
Λ3

)

U⊤,

where Λ1 ≥ Λ2 ≥ Λ3 ≥ 0 are the eigenvalues of M = mRw
⊤mRw,

U⊤diag(Λ1,Λ2,Λ3)U is the SVD of M and s the determinant of
mRw [21].

Dealing with the problem of axes exchanges or symmetries
Depending on the position of the camera with regard to the scene,
the X and Y axes of the computed Manhattan frame may be ex-
changed or mirrored with regard to the ones attached to the scene
(and used to compute the calibration matrix mRw). To tackle this
issue, we consider in the RANSAC-like procedure described in sec-
tion 4.2, each of the four possible cases for the Manhattan-to-camera
rotation matrix cRm:

(

cRm:,1
cRm:,2

cRm:,3

)

,
(

−cRm:,1 − cRm:,2
cRm:,3

)

,
(

cRm:,2 − cRm:,1
cRm:,3

)

,
(

−cRm:,2
cRm:,1

cRm:,3

)

, and keep the one that
maximizes the consensus set as explained in Section 4.2.

5 RESULTS

5.1 Pose accuracy with one object

5.1.1 The LINEMOD dataset

We first evaluate our method for estimating the camera position
from one object detection in the image on the standard LINEMOD
dataset [11]. This dataset is designed to benchmark 6D object pose
estimation algorithms, and several accuracy metrics are commonly
used: reprojection error, IoU score, ADD metric, ... (see for instance
[34] for more details). However, our training-free method based on
ellipsoidal modelling of 3D objects and elliptic modelling of their
2D projections is designed for rough camera relocalization instead
of accurate pose estimation.

5.1.2 Technical details and results

Most state-of-the-art object detection methods give results in the
form of a rectangular bounding box aligned with image axes [10,
18, 26]. To simulate this behaviour, we first project the groundtruth
3D object point cloud into the image using the groundtruth camera
projection matrix, and then compute the bounding box of obtained
2D points. The ellipse that inscribes the bounding box is finally used
as an approximation of the projected object, as suggested in [3, 28]

We randomly pick 50 frames per object (the dataset contains 15
objects, with roughly 1200 images per each) to build their ellipsoidal
models using [28]. All the other frames are used for testing. During
the tests, we add a uniform noise lower than a given threshold (0°
(no perturbation), 1°, then 2° to the 3 Euler angles (EA) of the
groundtruth camera orientation to simulate measurements given
by inertial sensors. The overall error on the camera orientation
can reach 2° in the first case (1°/EA), and 4.5° in the second case
(2°/EA).

The first metric used to evaluate our method is the reprojection
error of model points. Usually, estimated poses are considered
as correct when the mean reprojection error is lower than a given
threshold in pixels (usually 5). Table 1 presents our results on the
15 LINEMOD objects in comparison with the state-of-the-art object
pose estimation method [34]. It is important noting that the aims
of the two methods are not identical. Indeed, the reference’s goal
is to accurately estimate the whole camera pose based on object-
specific training, whereas our generic method aims at performing
rough camera relocalization from object(s) present in the scene, and
thus relies on a sometimes rough modeling of objects in the form
of ellipsoids. Despite that, our method appears to be fairly accurate
(almost every frame presents a mean reprojection error lower than 20
pixels), and is even more accurate than the reference on 23% of the
objects (see eggbox, duck, and ape). Moreover, results show that our

Table 1: Comparison of our camera relocalization approach with the
state-of-the-art accurate object pose estimation method [34] on the
LINEMOD dataset. We report percentages of correctly estimated
poses. For our method, we report the results depending on three
different levels of perturbation applied on camera orientations, in ° per
Euler angle. The bold face numbers indicate the best method accord-
ing to the 5-pixel threshold metric. Note that even if we don’t need
any object-specific training, our method is fairly accurate, and even
outperforms the reference on three objects. Moreover, our method
appears to be robust to the perturbation on the camera orientation.

Tekin

Method et. al. Ours

[34]

Perturb. - 0° 1° 2° 0° 1° 2°

Thresh. 5 pix. 5 pixels 20 pixels

Object

ape 92.10 94.69 94.77 94.69 100 100 100

benchvise 95.06 12.07 12.16 11.56 93.1 93.1 93.0

bowl - 79.31 79.05 78.46 100 100 100

cam 93.24 49.61 49.44 49.35 100 100 100

can 97.44 58.99 58.38 57.77 100 100 100

cat 97.41 81.84 81.93 81.58 100 100 100

cup - 61.60 61.68 61.09 100 100 100

driller 79.41 8.79 8.61 8.08 98.4 98.2 98.5

duck 94.65 94.85 94.93 94.68 100 100 100

eggbox 90.33 97.26 97.18 96.59 100 100 99.9

glue 96.53 18.96 18.79 18.19 100 100 100

holepunc. 92.86 91.41 91.33 91.25 100 100 100

iron 82.94 37.11 36.66 35.30 100 100 100

lamp 76.87 13.67 12.73 12.39 100 100 99.9

phone 86.07 17.85 17.69 17.27 100 99.8 99.9

Average 90.37 54.53 54.36 53.88 99.4 99.4 99.4

method is robust to the perturbation applied on camera orientations,
since performances do not present a significant decrease when the
level of noise increases. More detailed results of our method are
provided in Figure 5 (left column), for a level of orientation noise
equal to 1°.
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Figure 5: Cumulative density functions of our mean reprojection er-
rors (in pixels) [left] and camera location errors (in cm) [right] on the
LINEMOD dataset.

The second metric used to evaluate our method is the 3D pose
error. Starting from a noisy orientation obtained by adding a noise
of magnitude 1° on each groudtruth Euler angle, the overall camera
orientation error do not exceed 2°. The accuracy in terms of posi-
tion are presented in Figure 5 (right column). Note that maximum
diameters of the objects range from 10 cm to 30 cm, and that the
average distance between cameras and objects is approximately 92
cm. Considering the top 5 of objects (bowl, duck, ape, cam, cup), the
distance between estimated camera positions and the groundtruth is
always lower than 9 cm. In the worst case (glue), that distance do
not exceed 20cm in 90% of cases. Even if our method can compute
the camera position based on a single object detection, it is designed
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