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ABSTRACT

We are interested in AR applications which take place in man-made
GPS-denied environments, as industrial or indoor scenes!. In such
environments, relocalization may fail due to repeated patterns and
large changes in appearance which occur even for small changes in
viewpoint. We investigate in this paper a new method for relocaliza-
tion which operates at the level of objects and takes advantage of
the impressive progress realized in object detection. Recent works
have opened the way towards object oriented reconstruction from
elliptic approximation of objects detected in images. We go one
step further and propose a new method for pose computation based
on ellipse/ellipsoid correspondences. We consider in this paper the
practical common case where an initial guess of the rotation matrix
of the pose is known, for instance with an inertial sensor or from
the estimation of orthogonal vanishing points. Our contributions
are twofold: we prove that a closed form estimate of the translation
can be computed from one ellipse-ellipsoid correspondence. The
accuracy of the method is assessed on the LINEMOD database using
only one correspondence. Second, we prove the effectiveness of the
method on real scenes from a set of object detections generated by
YOLO. A robust framework that is able to choose the best set of
hypotheses is proposed and is based on an appropriate estimation
of the reprojection error of ellipsoids. Globally, considering pose
at the level of object allows us to avoid common failures due to re-
peated structures. In addition, due to the small combinatory induced
by object correspondences, our method is well suited to fast rough
localization even in large environments.

Index Terms: 1.4.8 [Scene Analysis]: Tracking—; 1.4.0 [General]:
Image Processing Software; Computing methodologies—Computer
graphics—Graphics systems and interfaces —Mixed / augmented
reality ;

1 INTRODUCTION

Pose computation is one if not the most important problem of aug-
mented reality. We are interested in AR applications which take
place in man-made GPS-denied environments, as industrial or in-
door scenes. In these environments, computer vision is often used
to estimate the 6-DOF camera pose, rather than physical position or
motion sensors, because it does not require any special equipment
other than a camera. Moreover, vision-based techniques are likely
to provide more accurate alignments of the virtual world with the
real one, the latter being directly observed in the processed images.

Traditional approaches are based on matching of features, most
often points, between images acquired in a pre-processing phase and
images acquired during the use phase. When the 3D counterpart of
these features is known, the pose can be inferred from the obtained
2D-3D correspondences by solving the classical PnP problem [9,15].
Unfortunately, the matching step generally relies on local image
descriptors that, whether hand-crafted [19] or learned [37], are not
robust to strong viewpoint or illumination changes [29]. Above
all, different physical points of the scene may have a close local
appearance. Adding these two problems sometimes leads to a situ-
ation where the ratio between the number of correct and incorrect
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Figure 1: Our system is able to perform camera relocalization from
objects detected in the image. Object detections (top) are modeled
by ellipses, considered as projections of a known 3D scene model
composed of 3D ellipsoids. The ellipsoids, once matched to 2D
ellipses by our method, are reprojected in the image (bottom) using
our estimated camera pose (green: inliers).

matches is too low to compute the pose reliably, even using a robust
procedure such as RANSAC [5].

Recent works have shown that better performance can be achieved
by training a convolutional neural network (CNN) to recognize
either specific points (so-called control points) defined on an object
model [2] or the vertices of a 3D bounding box (BB) of the object
[13,23,34]. These methods take into account the overall appearance
of the object and are even able, under certain conditions, to detect
points occluded by another object. Unfortunately, a specific training
of the CNN must be performed for each control point or vertex,
using many images showing its appearance under various viewpoints,
illumination, occlusion and background conditions. Moreover, the
resulting network is only relevant for a specific instance of an object
category, which makes this kind of methods not very portable e.g.
to a new working environment.

By contrast, impressive progress have been made over the last few
years in object class detection, thanks to methods based on CNNs
such as R-CNN [7,10,27], SSD [18], or YOLO [24-26]. This qualita-
tive leap has led to the emergence of new approaches to solving tradi-



tional computer vision problems based on high-level primitives (ob-
jects), instead of the traditional low-level primitives [16,17,22,28].
However, it is not easy to accurately compute the camera pose
from coarse 2D BBs of objects, particularly when few objects are
detected. For example, Li et al. use detection of BBs from two
far-apart viewpoints to predict the 6-dof camera transformation be-
tween views [16]. Objects are modeled by their bounding cuboids
and detected by using Faster-RCNN [27]. However, as the perspec-
tive projection of a cuboid is not a 2D box, a brute force, discrete
optimization scheme has to be used to estimate the object poses,
from a large set of hypotheses aligning well with the associated
detection BB. A contextual model (vector describing some spatial
relationships between the cuboids) is used to select the hypotheses
that best ensure the global consistency, but this model has to be
constructed manually, which, again, does not make it easy to adapt
this system to a new environment.

Ellipsoidal abstraction of objects provides a more interesting
geometric framework. An ellipsoid projects into an ellipse, these
two primitives having a single equation to define them and well-
established properties e.g. in the dual 3D and (resp.) 2D projective
spaces. This paves the way for elegant and efficient solutions to align
reprojected ellipsoids with the associated ellipses. Thereby in [28],
Rubino et al. show how to automatically estimate an ellipsoid in 3D
given a set of ellipses fitted to the object detection BBs in multiple
calibrated views. The authors show that a closed-form solution ex-
ists from three views. In [22], Nicholson et al. describe a complete
SLAM (Simultaneous Localization And Mapping) system that is
able to reconstruct ellipsoids in 3D and simultaneously compute the
camera poses from several ellipses fitted, again, to the object detec-
tion BBs. YOLOvV3 [26] is used for object detection. A geometric
error is minimized using a nonlinear iterative optimization process.
However, this optimization is initialized by, and constrained to stay
close to, some odometry measurements, which limits the scope of
this method.

In this paper, we build on the advances made by Rubino et al. [28]
and Nicholson et al. [22] to design a robust, portable and potentially
sensor-less method that estimates the pose of a camera at object level
(see Fig. 1). Our main contributions are the following.

First, we prove that a closed form estimate of the translation can
be computed from a single ellipse-ellipsoid correspondence and
known camera orientation (Section 3). This theoretical result has
a great practical interest. Indeed, if capturing a camera orientation
from external data (IMU, vanishing points, etc.) is quite easy, cap-
turing a camera position is more difficult: odometry is known to
suffer from cumulative drift, GPS is unusable indoors, and outside-in
tracking (optical, WIFI, etc.) requires special equipment together
with a tedious hand-eye calibration preprocess. Robustness of the
camera position estimate against camera orientation errors and el-
lipse detection errors is assessed using the LINEMOD dataset [11]
(Section 5.1).

Second, a robust framework able to choose the best hypotheses
in presence of erroneous matches is proposed, which is based on an
appropriate estimation of the reprojection error of ellipsoids (Sec-
tion 4). Object class detection is known to be relatively safe but, of
course, detection errors and / or misclassifications can still occur.
Most importantly, if object class detection is interesting in terms
of portability (the trained CNNs are relevant for any instance of
the object class), as a counterpart, knowing the labels of the BBs
does not allow distinguishing between several objects corresponding
to the same class, so that each hypothesis has to be considered in
the pose estimation process. Fortunately, this problem is somewhat
offset by the fact that, knowing the camera orientation, its posi-
tion can be inferred from only one ellipse-ellipsoid correspondence.
Contrary to the PnP problem, one ellipse-ellipsoid correspondence
brings information on a whole object and encompasses many local
feature correspondences. As shown in our experiments, estimation

from one correspondence is usually robust but the accuracy may
depend on the accuracy of the detected ellipse. In order to cope with
possible recognition errors and erroneous image/model association
when several occurrences of an object are present in the scene, we
propose a robust estimation framework with a low combinatorial
cost which takes into account the projections of the other ellipsoids.

Finally, we prove the effectiveness of the method for camera
relocalization in two sequences of the TUM RGB-D dataset [33]
(Section 5.2). The sets of possible correspondences are generated by
using YOLOv3, and camera orientations are provided by automatic
extraction of vanishing points or simulated IMU data.

2 MORE RELATED WORK

A strong limitation of the method described in [16], in addition to
the high dimensionality of the 3D cuboid search space is that the
scale of the selected objects is known, and the camera’s viewing
angle with respect to the ground plane is fixed. For sake of gener-
ality, these constraints are removed in [17], by inferring vanishing
points from each image, and taking a short video, 25 consecutive
frames from each viewpoint, allowing relative depth to be recovered
for keypoint pixels using Structure From Motion (SFM). However,
these additional steps make the method more cumbersome, espe-
cially since several hypotheses are still considered for each cuboid,
before reasoning about object correspondences using the Hungarian
algorithm.

Modeling object projections by virtual ellipses allowed Crocco et
al. to propose a closed-form solution for SFM reconstruction of the
scene in the form of an ellipsoid cloud [3]. However, this method
is limited to the case of an orthographic projection, as well as its
extension integrating CAD object models for higher reconstruction
accuracy [6].

The case of perspective projection is considered in [22]. However,
as we mentioned in the introduction, the SLAM resolution is con-
strained by odometry measurements. More precisely, the maximum
a posteriori configuration of camera poses X* and dual quadrics Q*
is found by solving the following non linear least squares problem:

. 2 2
X*, 0% =argminy o ) ||f (xi,w:) ©xi1lg, + ) [1bij — Brx.q) I,
i ij

The first term reflects the attachment to odometry measurements and
the second term is a geometric error between the projected ellipsoids
and the detection BBs (see [22] for the details of the notations). The
geometric error is defined as the sum of squares of the distances
between borders of the BBs of the reprojected ellipsoids and borders
of the detection BBs. Unfortunately, we show in Section 5.2 that
removing the first term of the cost function (attachment to odome-
try), fixing the ellipsoid parameters q; (shape and pose in the world
frame of the ellipsoids) and minimizing the geometric term over
the six pose parameters X; can cause the optimization process to
diverge severely, even with ground truth as initialization parameters.
This is one reason why we argue that it is better to compute the
camera orientation separately, and only estimate the camera transla-
tion (in closed-form) by using the ellipse-ellipsoid correspondences.
Another limitation of this method, is that the associations between
individual detections and distinct physical objects are provided by a
set of manual annotations, while we propose a robust procedure to
automatically determine the correct associations.

Actually, a closed-form solution for pose computation from
ellipse-ellipsoid correspondences was first proposed in [35,36], but
only for the special case of spheroids (ellipsoid with two equal
semi-diameters). In that case, the authors showed that, considering
perspective projection, the spheroid pose estimation problem admits
only two distinct solutions. In the more general case of ellipsoids, an
equation of the same problem was proposed by Eberly [4] (which is
the starting point of our theoretical development) without, however,
an explicit method for calculating solutions.

ey



3 CAMERA POSE COMPUTATION FROM ONE ELLIPSE - EL-
LIPSOID CORRESPONDENCE

We focus on the problem of camera pose estimation from one ellipse
- ellipsoid correspondence. We consider the equivalent problem that
consists in calculating the ellipsoid pose in the camera frame, and
show that the ellipsoid position can be inferred from its orientation
unambiguously.

3.1 The Cone Alignment Equation

Unless otherwise stated, all the variables introduced below are
expressed in the camera coordinate frame.

Following the notations introduced in [4] and presented in Fig. 2,
we consider an ellipsoid defined by

(X-C)TAX-C)=1

where C is the center of the ellipsoid, A is a real positive definite
matrix characterizing its orientation and size, and X is any point on
1t.

Given a center of projection E and a projection plane of normal
N which does not contain E, the projection of the ellipsoid is an
ellipse of center K and of semi-diameters a et b. Ellipse’s principal
directions are represented by unit-length vectors U and V, such that
{U,V,N} is an orthonormal set.

The goal of this section is to compute the ellisoid position C given
E, A and the detected ellipse on the image plane.

B=0cB;

A=E-C

Figure 2: lllustrating the projection plane, projection center, ellipsoid
and ellipse projection.

3.1.1 Projection Cone

The projection cone” refers to the cone of vertex E tangent to the
ellipsoid. According to [4], it is defined by the matrix

d

B AMATA — (ATAA - 1)A
where A = E — C, so that the points X on the projection cone are
those who satisfy the equation (X —E)"B(X —E) = 0.
3.1.2 Backprojection Cone
The “’backprojection cone” refers to the cone generated by the lines
passing through E and any point on the ellipse. Eberly shows that
such a cone is characterized by the matrix B’ defined as follows

d
B pTmP—0

where
M uuT 2+ VT

W N/(N- (K~ E))
PY I (K-E)WT
o™ wwT

Here again, the points X on the backprojection cone are those who
meet (X —E)"B'(X—E)=0.

3.1.3 Alignment Equation

The ellipsoid projects on the ellipse if and only if the projection and
backprojection cones are aligned [4], i.e. if and only if there is a
non-zero scalar ¢ such that B = cB’:

AAATA— (ATAA—1)A = 0B )

3.2 Computing position from orientation

Assuming that both size and orientation of the ellipsoid are known,

the matrix A is fully determined. In the following we explain how to

compute the remaining unknowns A and o of (2) from A and B'.
First, we will show that equation (2) implies

AA = oB'A 3)
Proof. Right-multiplying (2) by A, we have
(AAATA — (ATAA—1)A)A = GB'A
Since A is a 3D vector, AT AA is a scalar, thus
(AAMATA — (ATAA—1)A)A = AA(ATAA) — AT AAAA + AA

= (ATAA)AA —ATAAAA + AA
—AA

O

A is thus a generalized eigenvector of the couple {A,B'}.
According to the properties of ellipsoids and cones, it can be
shown that (see proof in Appendix A) :

Theorem 1.

* the couple {A,B'} has exactly two distinct real generalized
eigenvalues, one of multiplicity 1 denoted o) , and one of
multiplicity 2 denoted ©».

* only oy is solution of (2).

As a result, o can be uniquely determined from the ellipsoid
orientation and from the ellipse detected in the image, by consid-
ering the eigenvalue of multiplicity 1. A is thus proportional to the
eigenvector Ay with norm 1 associated with oy.

We thus have A = CE = kA;. Substituting this expression in (2)
leads to

K*(AMA[A—A] AAJA) = 61B' — A

In practice, due to uncertainties in the detection, a least mean square
estimation of k2 is computed. The only possible k is the one that
allows the center of the ellipsoid to be in front of the camera (chirality
constraint).

Finally, let us note that all the computations were made in the
camera coordinate frame. Let °R,, be the rotation matrix from world
coordinates to camera coordinates. In practice, this matrix is esti-
mated from sensors of from vanishing points. If A,, characterizes



Figure 3: lllustration on the RGB-D TUM dataset [33] of the situation
where a single object (the cup containing flowers in the center of the
images) receive two different labels from the generic object detection
algorithm YOLOV3 [26]: cup (left) and vase (right). These images
also illustrate the fact that different objects (cups and plants) can be
characterized by the same label: cup and pottedplant.

the size and orientation of the ellipsoid expressed in the world frame,
then A = “R,,A,,"’R. is the matrix expressed in the camera frame.

From what precedes, we can then compute A = EC expressed in the
camera frame. Its expression in the world frame is thus given by
YR A. As the position of the ellipsoid is known in the world frame,
the camera position can be determined.

4 ROBUST POSE ESTIMATION METHOD

A list a 2D/3D object association is the input of our pose procedure.
Due to recognition errors, some of them may be wrong. In addition,
as recognition systems are mostly learned on categories of object,
there may be ambiguities in the choice of the physical object the de-
tection originates from. The frequent occurrence of repeated objects
in man-made environments is another source of false data associa-
tion. In previous works [22], association was realized manually to
avoid this problem. On the contrary, we propose a RANSAC-like
procedure dedicated to robust 2D/3D object association with the aim
to automatically discard false associations.

4.1 Model construction

Our camera relocalization system requires the knowledge of a light
3D model composed of ellipsoidal abstractions of objects of in-
terest present in the scene. To reconstruct each object, possibly
separately, a few frames with known poses (3 at minimum [28]) cov-
ering the widest possible range of viewpoints is necessary. In these
frames, objects are automatically detected (in the form of rectangular
bounding boxes) and labelled using an object detection algorithm
(e.g. [10,18,26]), then the association between 2D detections across
images is carried out manually. For each object, ellipses inscribed in
detected bounding boxes are considered as 2D projections of an un-
derlying 3D ellipsoid, therefore reconstructed using [28]. The labels
are automatically transferred from 2D detections to 3D ellipsoids,
sometimes leading to situations where a single object is described
by several labels, and where different objects are described by the
same label (see Figure 3).

4.2 RANSAC-like procedure for position estimation

Starting from a set of object detections and an estimate of the camera
orientation (see 4.3 for more details about orientation computation),
our method consists in jointly solving the data association and cam-
era position estimation problems.

In practice, every possible association between detected objects
and 3D ellipsoids is determined from label compatibility. As the pose
can be computed from one ellipse-ellipsoid correspondence, a pose
is computed for each individual pair of ellipse-ellipsoid hypothesis.
A consensus set is built at the level of ellipsoids: for each of these
potential poses, we reproject all the 3D ellipsoids into the image,
and consider ellipse - ellipsoid pairs as inliers when their labels are

compatible and the intersection over union (IoU) score between the
detected and reprojected bounding boxes is greater than a certain
threshold (0.5 in our experiments). Note that when a 3D object
reprojects onto several 2D detections, only the one with the greatest
IoU is considered.When two configurations lead to the same number
of inliers, the one with the greatest sum of IoU scores is selected.

4.3 Orientation estimation

Figure 4: Manhattan vanishing points are reliable features to compute
the camera orientation. This figure shows some example results in
complex industrial scenes. Those were obtained by using the method
described in [31]. Vanishing points are represented by the consistent
line segments (one color per vanishing point) and the directions of the
detected Manhattan frame are shown in red, green, blue.

In our method, we assume that the camera orientation is known.
Having said that, the goal of this section is to briefly describe how
this matrix can be obtained in practice, and how our method can
provide a mechanism to remove the ambiguity inherent in some
orientation determination methods. Inertial Measurement Units
(IMUs) are electronic devices whose orientation is measured based
on a combination of accelerometers and gyroscopes, sometimes also
magnetometers. IMUs are contained in almost all smartphones and
tablets, and can easily be used to provide the camera orientation
matrix required by our method. Futhermore, this matrix can also
be obtained purely from images thanks to image analysis methods
based on vanishing point (VP) detection [30,31,38]. Indeed, VP
detection now performs relatively well in various kinds of environ-
ments, including indoor and industrial ones. In the experimental
results shown in Section 5.2, we use the method described in [31],
since it has proven well suited to various man-made environments.

Using VPs, the camera orientation can be obtained with regard to
a frame aligned with three orthogonal directions of the scene that
give rise to three specific (so-called Manhattan) VPs. Images of
man-made (including industrial) environments often contain such
a triplet of orthogonal VPs (see e.g. Fig. 4). It has been many
years since the idea of calculating the orientation of the camera from
the Manhattan vanishing points was proposed [14], but we address
here some issues that are often not considered in the literature while
encountered in practice: how to calibrate the rotation between the
Manbhattan frame and the frame in which the ellipsoids are expressed,
and how to deal with the problem of axes exchanges or symmetries
between these two frames.

Computing the rotation between the ellipsoids and the Man-
hattan coordinate frames Ellipsoids are expressed in the world
coordinate frame, whose orientation does not necessary fit the Man-
hattan directions of the scene. For that reason, we need to compute
the rotation "R, from the world (ellipsoids) frame to the Manhat-
tan frame, and use ‘R,, = ‘R,,,”"R,,, where °R,, is the Manhattan-to-
camera rotation matrix (obtained using [31]), when computing the
position of the camera with the method described in section 3.2. To
do this, we detect the Manhattan VPs in N images where the world-

to-camera rotations CRW@ are known. This provides N matrices

, ~T .
mRW(’) = CRm(’) CRW<’), which should all be the same if data were
not corrupted by noise. For better accuracy, we use the orthogonal



s S mp (i) .
projection of "R,, = Zﬁ\’: | R#“( onto the special orthogonal group
SO(3), given by:

’"RW:WU(—l s )UT.
VAL VA VAS ’

where A; > Ay > Az > 0 are the eigenvalues of M = ’"RWT’"RW,
UTdiag(Ay,Az,A3)U is the SVD of M and s the determinant of
MR, [21].

Dealing with the problem of axes exchanges or symmetries
Depending on the position of the camera with regard to the scene,
the X and Y axes of the computed Manhattan frame may be ex-
changed or mirrored with regard to the ones attached to the scene
(and used to compute the calibration matrix "R,,). To tackle this
issue, we consider in the RANSAC-like procedure described in sec-
tion 4.2, each of the four possible cases for the Manhattan-to-camera
rotation matrix °R: (CRm:,l Rin: 2 rRm;.S)y (_CRm:J — R cRm:A,S)s
(Rm:2 —Rm:1 Rm-3)s (—Rm:2 Rm:1 Rin:3), and keep the one that
maximizes the consensus set as explained in Section 4.2.

5 RESULTS
5.1 Pose accuracy with one object
5.1.1 The LINEMOD dataset

We first evaluate our method for estimating the camera position
from one object detection in the image on the standard LINEMOD
dataset [11]. This dataset is designed to benchmark 6D object pose
estimation algorithms, and several accuracy metrics are commonly
used: reprojection error, IoU score, ADD metric, ... (see for instance
[34] for more details). However, our training-free method based on
ellipsoidal modelling of 3D objects and elliptic modelling of their
2D projections is designed for rough camera relocalization instead
of accurate pose estimation.

5.1.2 Technical details and results

Most state-of-the-art object detection methods give results in the
form of a rectangular bounding box aligned with image axes [10,
18,26]. To simulate this behaviour, we first project the groundtruth
3D object point cloud into the image using the groundtruth camera
projection matrix, and then compute the bounding box of obtained
2D points. The ellipse that inscribes the bounding box is finally used
as an approximation of the projected object, as suggested in [3,28]

We randomly pick 50 frames per object (the dataset contains 15
objects, with roughly 1200 images per each) to build their ellipsoidal
models using [28]. All the other frames are used for testing. During
the tests, we add a uniform noise lower than a given threshold (0°
(no perturbation), 1°, then 2° to the 3 Euler angles (EA) of the
groundtruth camera orientation to simulate measurements given
by inertial sensors. The overall error on the camera orientation
can reach 2° in the first case (1°/EA), and 4.5° in the second case
(2°/EA).

The first metric used to evaluate our method is the reprojection
error of model points. Usually, estimated poses are considered
as correct when the mean reprojection error is lower than a given
threshold in pixels (usually 5). Table 1 presents our results on the
15 LINEMOD objects in comparison with the state-of-the-art object
pose estimation method [34]. It is important noting that the aims
of the two methods are not identical. Indeed, the reference’s goal
is to accurately estimate the whole camera pose based on object-
specific training, whereas our generic method aims at performing
rough camera relocalization from object(s) present in the scene, and
thus relies on a sometimes rough modeling of objects in the form
of ellipsoids. Despite that, our method appears to be fairly accurate
(almost every frame presents a mean reprojection error lower than 20
pixels), and is even more accurate than the reference on 23% of the
objects (see eggbox, duck, and ape). Moreover, results show that our

Table 1: Comparison of our camera relocalization approach with the
state-of-the-art accurate object pose estimation method [34] on the
LINEMOD dataset. We report percentages of correctly estimated
poses. For our method, we report the results depending on three
different levels of perturbation applied on camera orientations, in ° per
Euler angle. The bold face numbers indicate the best method accord-
ing to the 5-pixel threshold metric. Note that even if we don’t need
any object-specific training, our method is fairly accurate, and even
outperforms the reference on three objects. Moreover, our method
appears to be robust to the perturbation on the camera orientation.

Tekin
Method et. al. Ours
[34]
Perturb. - 0° 1° 2° 0° 1° 2°
Thresh. 5 pix. 5 pixels 20 pixels
Object
ape 92.10 | 94.69 94.77 94.69 | 100 100 100

benchvise | 95.06 | 12.07 12.16 11.56 | 93.1 93.1 93.0

bowl - 79.31 79.05 78.46 | 100 100 100
cam 9324 | 49.61 4944 4935 | 100 100 100
can 97.44 | 5899 5838 57.77 | 100 100 100
cat 9741 | 81.84 8193 81.58 | 100 100 100

cup - 61.60 61.68 61.09 | 100 100 100
driller 79.41 8.79 8.61 8.08 | 984 982 985
duck 94.65 | 9485 9493 94.68 | 100 100 100
eggbox 90.33 | 97.26 97.18 96.59 | 100 100 99.9
glue 96.53 | 1896 1879 18.19 | 100 100 100
holepunc. | 92.86 | 91.41 9133 91.25 100 100 100
iron 82.94 | 37.11 36.66 3530 | 100 100 100
lamp 76.87 | 13.67 12773 12.39 | 100 100 99.9
phone 86.07 | 17.85 17.69 17.27 | 100 99.8 999

Average 90.37 | 54.53 5436 53.88 | 994 994 994

method is robust to the perturbation applied on camera orientations,
since performances do not present a significant decrease when the
level of noise increases. More detailed results of our method are
provided in Figure 5 (left column), for a level of orientation noise
equal to 1°.

0 5 10 15 20 25 0 5 10 15 20 25
Mean reprojection error (pixels) Location error (cm)

Figure 5: Cumulative density functions of our mean reprojection er-
rors (in pixels) [left] and camera location errors (in cm) [right] on the
LINEMOD dataset.

The second metric used to evaluate our method is the 3D pose
error. Starting from a noisy orientation obtained by adding a noise
of magnitude 1° on each groudtruth Euler angle, the overall camera
orientation error do not exceed 2°. The accuracy in terms of posi-
tion are presented in Figure 5 (right column). Note that maximum
diameters of the objects range from 10 cm to 30 cm, and that the
average distance between cameras and objects is approximately 92
cm. Considering the top 5 of objects (bowl, duck, ape, cam, cup), the
distance between estimated camera positions and the groundtruth is
always lower than 9 cm. In the worst case (glue), that distance do
not exceed 20cm in 90% of cases. Even if our method can compute
the camera position based on a single object detection, it is designed



to take benefit of every object present in the image. That worst-
case level of accuracy would thus be reached only in very difficult
configurations.

5.1.3 Results interpretation

To provide an in-depth analysis of the previous results, we investigate
the effect of the generic ellipsoidal modelling of diverse objects on
final camera relocalization performances. Indeed, results presented
in 5.1.2 show major differences depending on the object considered
for testing. Our method relies on the detection of a virtual ellipse
considered as projection of the 3D object model (ellipsoid). As
a consequence, it highly depends on our ability to detect ellipses
similar to the groundtruth projection of the model. To quantify the
gap between effective and expected detections, we define a detection
error as the average distance between the 4 vertices (endpoints of
principal axes) of the detected ellipse and their closest points on
the ellipse projected with groundtruth camera. Figure 6 shows
the correlation between the mean reprojection error on the whole
LINEMOD dataset (illustrating our relocalization performance) and
the original detection error. Figure 7 illustrates more concretely
that phenomenon on the best-case (eggbox) and worst-case (driller)
objects.

30

Mean reprojection error (pixels)

Detection error (pixels)

Figure 6: Mean reprojection errors (in pixels) of our method on the
whole LINEMOD dataset, with respect to ellipse detection errors (in
pixels). That figure shows the correlation between our relocalization
performance and the original error on ellipse detection.

5.2 Real-life scenarios
5.2.1 The RGB-D TUM dataset

‘We now evaluate the robustness of the full camera relocalization
method on the standard RGB-D TUM dataset [33]. Even if this
dataset was originately created to benchmark SLAM algorithms,
its sequences containing repeated common objects and occlusions
make it of interest to assess our algorithm performances.

We use two sequences for testing: fr2/desk and fr3/long_office.
Both of them represent office environments with repeated objects
such as computers, books, cups, or bottles. They are composed of
approximately 2700 images taken by a standing person performing a
closed loop around a central desk. The scenes and operator trajecto-
ries are roughly contained in a square with 4-meter side in fr2/desk,
and 5-meter side in fr3/long office.

The first scene fr2/desk is composed of 16 objects grouped in
11 categories (up to 3 objects per category). In total, 104 images

were used to build the model, and the remaining 2861 for testing.
The second scene (fr3/long_office) is composed of 28 objects with
9 different labels (up to 10 objects with the same label). Among the
2559 images of the sequence, 71 were necessary to reconstruct the
ellipsoids.

In our experiments, only RGB images are used (no depth in-
formation). The ground truth data was obtained by motion cap-
ture, but some cameras are provided without ground truth (705 in
fr2/desk and 2 in fr3/long_office). The camera intrinsic parameters
are known.

5.2.2 Orientation estimation

Our method is assessed using IMU-simulated orientations as well as
orientations obtained from vanishing point detection.

IMU orientations are simulated by adding an uniform noise be-
tween —1° and +-1° to each Euler angle of the groundtruth camera
orientation, leading to an overall error of at most 2°.

Manbhattan vanishing points were obtained using the procedure de-
scribed in Section 4.3. In order to compute the world-to-Manhattan
calibration rotation "R, we considered the same images as those
used to reconstruct the ellipsoids, and kept the ones that allowed
us to detect the Manhattan frame (see Section 4.3). Finally, two
images were usable with fr2/desk and four with fr3/long_office.
We obtained, respectively:

&0062)
-0.0126 | .
0.9998

mp [ 09994 00212\ o 10000
Ry, = | oo 00202 |, Ry = | 00034
0.9993 -0.0060

-0.0202

These matrices are very close to the identity matrix, which means
that the world frame was already aligned with the Manhattan frame
(defined by the borders of the desks) when using the ground truth
poses to reconstruct the ellipsoids.

fr2/desk and fr3/long_office are actually hard sequences in terms
of VP detection. Figure 10, last column shows the ground truth
paths followed by the camera (projection of the camera positions
onto the ground plane, plotted in black) in these two sequences. Parts
of the paths where the Manhattan VPs could not be obtained are
indicated by purple curves, and typical sources of failures are shown
in Fig. 8, using the same numbers as for the path parts. In part 1,
failures or inaccuracies are often due to the fact that the screen, that
is slightly tilted, occupies a large part of the image, which misleads
the detection of the zenith. In part 2, a plant occludes a large part
of the scene, which misleads the detection of the horizontal VPs.
In part 3, the vertical book generates several lines segments that
correspond to near-vertical, parallel lines in the scene that, again,
mislead the detection of the zenith. Moreover, the legs of the chairs
have a star shape, leading to several line segments that meet at the
center of the legs, which produces spurious vanishing points. In
part 4, the Teddy bear occupies a large part of the image. Outside
of these difficult cases, the Manhattan frame is regularly found all
along the paths.

-0.0141
0.9996
0.0208

-0.0033
0.9999
0.0125

5.2.3 Detection and matching

In our experiments, object detection is performed by using YOLOv3
[26]. Globally, the procedure described in section 4.2 has enough
inliers to robustly compute the pose, and one inlier can even be
sufficient. Some parts of the sequences, however, present particular
difficulties that we now describe. These parts are indicated by orange
curves in Figure 10 (first column) and illustrated by typical images
in Figure 9, using the same indices in both figures.

On fr2/desk, some parts of the sequence exhibit a very few (or
even none) fully visible objects. In practice, images that do not
contain detections, or whose detected labels are not present in the
model, are ignored. In other cases, the very few correct detections
can suffer from severe occlusions and/or truncature (see indices 1,2
and 5), and/or be coupled with false detections (see indices 3 and 4),
leading to failure in camera relocalization.



Figure 7: lllustration of the error on ellipses inscribed in detected bounding boxes (red), with respect to ellipse projected with groundtruth camera
(green). That error is much more important on the LINEMOD driller object (row 2) which cannot be accurately modelled by an ellipsoid, than on
the eggbox object (row 1) which is closely fitted by the reconstructed ellipsoid. The first column shows groundtruth 3D point clouds (black) and

corresponding reconstructed ellipsoids (red).

Figure 8: Failure cases of Manhattan vanishing point detection. The
computed Manhattan frame is shown in red, green, blue solid lines,
the ground true one in dashed lines.

On fr3 /long_office, the most problematic part is referred as (6).
It consists in images in which a single chair is detected, whereas
three different chair instances are present in the model. Considering
a single detection with label ambiguity, and without any precise
geometric information about reconstructed objects (only rough ellip-
soids), our method sometimes fails to associate the detection to the
object it originates from.

5.2.4 Quantitative results

Pose relocalization is assessed on fr2/desk and fr3/long_office us-
ing both IMU simulated orientations and orientations from VPs. For
comparison purpose, we also tried to compute the full six parame-
ters of the pose by iteratively minimizing the geometric projection
error of [22] defined in equation (1) (second term, with q; fixed and
no attachment to odometry). In that case, we used the Levenberg
Marquardt algorithm to perform the optimization and the ground
truth data to initialize the pose parameters. For the sake of equity,
we used the inlier correspondences provided by our method.

Table 2 shows the mean and median location and orientation
errors obtained by the three procedures on both sequences. All

Figure 9: Failure cases of our method. (1, 2, 5): only one truncated
object is detected, leading to badly estimated size of the projection.
(3,4): only two detections and one is false (cup), misleading our
algorithm. (6): only one detection with ambiguous label (chair). In this
last case, our algorithm associates the detection to the model chair
#2 instead of #1.

computed locations are shown projected onto the ground plane in
Figure 10. In these figures, the procedure with simulated orientations
is referred to as IMU, the procedure based on VPs as VPs and the
procedure minimizing the geometric error as geomQS.

IMU-simulated orientations Camera poses obtained with sim-
ulated orientations are relatively close to the ground truth path in
both sequences (Figure 10, first column), though the camera point
cloud is slighlty more chaotic in fr2/desk. This is due to the fact
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Figure 10: Results of camera relocalization with our method and IMU orientations (column 1), 6-DOF optimization (column 2) and our method with
orientations from VPs (column 3). The ground truth path is shown in black solid line, the camera positions (projected onto the ground plane) with

colored dots. First row: fr2/desk Second row: fr3/long_office.

Table 2: Errors on the RGB-D TUM dataset in terms of camera
location (/oc., in m) and orientation (ori., in °). In the table, italic
numbers denote synthetic data (noise added to the ground truth).

Dataset [fr2/desk fr3/long_office
Method IMU | geomQS | VPs | IMU | geomQS | VPs
avg | 033 0.33 042 | 0.16 0.28 0.93
loc. | std 0.51 0.48 0.79 | 0.29 0.35 1.42
med | 0.11 0.12 0.13 | 0.08 0.14 0.14
avg | 0.95 1.3 16.7 | 0.93 3.8 35
ori. | std 0.32 35 47.0 0.3 7.7 65
med | 0.94 0.03 2.5 0.92 0.04 1.7

that this sequence contains more challenging images in terms of
detection, as explained in previous section. In fr3/long_office, only
one part of the sequence is particularly difficult to manage, due to the
fact that only one chair is detected while several are contained in the
model. Despite these diffculties, our method with IMU simulated
data presents excellent relocalization performances: the median er-
ror on the camera location is 8cm on f73/long_office and 11cm on
fr2/desk.

Orientations from VPs When using the Manhattan VPs to
compute the camera orientation, it can be seen that the camera point
cloud is much sparser than when using the IMU simulated data
(Figure 10, last column). Of course, this approach can only succeed
if both object detection and the Manhattan VP detection succeed,
and therefore inherits all types of problems that may occur for each
procedure. For that reason, the mean errors shown in Table 2 are
high, and especially for fr3/long_office. However, the median errors
(13cm/2.5° for fr2 /desk, 14cm/1.7° for fr3 /long office) are relevant
to relocalization.

6-DOF optimization of the geometric error  The camera point
cloud obtained by 6-DOF optimization of the geometric error is

relatively unstable (Figure 10, middle column): half of the time,
the computed pose is very close to the ground truth, but half of the
time it diverges from it. This can also be deduced from the mean
errors on position and orientation in Table 2, that are large, while the
median errors are very small. We analyse this result as follows. First,
6-DOF optimization can more easily compensate for accuracy errors
obtained on ellipses (fitted to the BBs) than when the orientation
is constrained. Second, the geometric error tends to favour larger
ellipses, to the detriment of small objects as illustrated, for example,
in Figure 11, fr2 /desk-f1. This confirms that this method requires
an attachment to odometry (first term in equation (1)). It must also
be noticed that, for that reason, we prefer not to follow our closed-
form computation with a non-linear optimization of the pose as is
commonly done in classical pose computation.

Finally, Figure 11 qualitatively illustrates the robustness of our
method on both suitable (fr2/desk-f1, fr3/long_office-f1) and chal-
lenging configurations : repeated patterns (fr3/long_office-f1,f4,£5),
single object detection (fr2/desk-f2, fr3 /long office-f2), occlusions
(fr2/desk-f1,£2,f3) motion blur (fr3/long_office-f3) and various
camera-scene distances and relative orientations.

5.3 Discussion and potential applications

In this section, we discuss the advantages and disadvantages of our
object-based relocalization method in comparison with low-level
methods based on local features. By nature, our method focuses on
semantically relevant features in the images of the scene, which leads
us to deal with light 3D models encoding only the semantics of the
scene and leaving out unnecessary information. Moreover, it oper-
ates at the level of objects, which are inherently more discriminative
than local features in scene understanding and localization tasks,
and are also more robust to viewpoint or illumination changes [20].

At the opposite, low-level methods have the advantage to be
context-independent, in the sense that they can be applied on images
of any environments, as soon as images are sufficiently textured.



Figure 11: lllustration of the robustness of our method on several images from the RGB-D TUM dataset (rows 1-2: sequence fr2/desk, rows
3-4: sequence fr3/long_office). Detected bounding boxes and inscribed ellipses are displayed in yellow, with automatically generated label.
Reprojections of inlier ellipsoids are displayed in green, whereas the other ones are displayed in white. Note that objects cannot be classified as
inliers if there projections are not detected in the image. In rows 1-3, ellipses reprojected using the pose estimated by geomQS are displayed in

blue.

On the contrary, our method is dependent on the object detection
algorithm, thus can deal only with object classes learned by the
detector. Applying our method on a new environment thus requires
to train the detector on objects mainly encountered in this kind of
environment.

Finally, the feature-based and object-based models each have their
own limitations. In the context of indoor or industrial applications,
large parts of the scene are untextured. With Structure from Motion
techniques, features can be clustered in small regions of the images,
leading to unstable pose estimation. In addition repeated local fea-
tures are most often simply discarded because of their ambiguity
and do not appear in the final scene model [12,32]. Considering
object-based models allow to consider wider and untextured areas of
the scene for pose computation, allowing greater robustness, albeit
at the expense of accuracy due to the approximation of objects as
ellipsoids.

A typical use of our method is illustrated in Fig. 12 : an operator
moves freely in a factory, equipped with AR glasses. The pose of
the glasses is calculated using our system (Fig. 12-bottom) and
information such as the ones shown in Fig. 12-top are displayed in
AR to help him follow a planned route and perform maintenance
or training tasks. Industrial environments generally contain many
objects from small (e.g. a valve) to large (e.g. an equipment) that
can be used as object landmarks with our system. When a CAD
model of an object is available, more accurate 3D overlays can be

obtained if necessary, using any 3D-2D registration method (e.g. [1]
for industrial objects). Such methods require an initial estimate
of the pose that our method can provide. Many other scenarios
can be considered in various fields such as sales (AR in shops),
entertainment or museography, as long as enough objects are present
in the environment, on which our system can rely.

6 CONCLUSION

In this paper, we explored means to perform relocalization at the
level of object. We took advantage of progress realized in object
detection which allows us to generate 2d/3d correspondences be-
tween object detected in images and approximated by an ellipse, and
3D objects represented by ellipsoids. Assuming that an estimate of
the camera rotation is available, we proposed a closed form method
to compute the camera localization from one ellipse-ellipsoid cor-
respondence. A RANSAC-like algorithm operating at the level of
object is proposed to cope with wrong data associations either due
to erroneous object detection or to the presence of repeated objects
in the scene. The conducted experiments proved the effectiveness of
the method even when a small number of objects are detected. As
shown in the experiments, rotation information provided by IMU or
vanishing point detection turns out to be sufficient for relocalization.
Accurate iterative model-based methods can then be used from this
first estimate to refine the estimate of the pose.

The method has many advantages. By considering pose com-



Figure 12: lllustration of a typical use-case of our system. The oper-
ator is automatically localized with respect to the devices of interest,
and information for maintenance tasks are added in AR.

putation at the level of objects, we avoid common problems due
to repeated patterns encountered with feature-based methods in
man made environments. In addition , the combinatory of ellipse-
ellipsoid correspondences is relatively small, which opens the way
towards efficient relocalization in large environments, where only
the prominent objects are integrated in the model. Future works
will be dedicated to experiments of the method for maintenance in
industrial scenes.

APPENDIX A: PROOF OF THEOREM 1

Let B’ be the backprojection cone. B’ is thus a real, symmetric and
invertible matrix of signature (1,2) or (2,1). As shown in eq (3), if
the ellipsoid projects onto the ellipse, then

AA = 6B'A

The possible solutions for ¢ are generalized eigenvalues of
{A,B'} and are thus roots of the generalized characteristic poly-
nomial Py gry(x) = det(A —xB').

Since A is positive definite and B’ is symmetric, the couple {A, B’}
has the following properties [8]:

1. the generalized eigenvalues are real,

2. the reducing subspaces are of the same dimension as the multi-
plicity of the associated eigenvalues,

3. the generalized eigenvectors form a basis of R3, and those with
distinct eigenvalues are A-orthogonal.

Moreover, since B’ is invertible, we can easily notice that the gen-
eralized eigen elements of {A, B’} are the same as the eigen elements
of B'~1A. We can then observe that Q(x) = ux? — (4 + 1)ox+ o2,
where it = 1 —ATAA, is an annihilator polynomial of B'~!A (see
Appendix B). Since Q is of degree 2, we can infer that B'~!A, and
thus {A, B'}, have at most two distinct eigenvalues.

However, the case of one eigenvalue of multiplicity 3 denoted oy
is impossible. Indeed, according to property 2) above, this will
imply dim(Ker(A— 6pB')) = 3, i.e. A= 0pB’, which is impossible
because A represents an ellipsoid while B’ represents a cone. So
the couple has exactly two distinct generalized eigenvalues.This

concludes the proof of the first item of Theorem 1.

Let us now denote 07,0, these eigenvalues and Aj, A, two as-
sociated eigenvectors, such that o; is the eigenvalue of multiplicity
i and ||A;|| = 1. Let’s suppose now that there is k € R* such that
(A,07,kAy) is solution of (1). We therefore have :

A—oyB =MA

where M = k*(A) AAyT — AAyA, ) and I is the identity matrix. Ac-
cording to the property 2 (above), dim(Ker(A — 0,B’)) = 2. Since
A is invertible, dim(Ker(M)) = dim(Ker(AM)) = 2. However, we
observe that
VX L Ay, MX = K*AJ AA X — P AAA] X

= K*A) AMX — IPAA; (A, - X)

= I°AJ AAX
Since A is positive definite, A; AA; > 0. This implies that MX # 0

when X € Ay and that Ay N Ker(M) = {0}. This is a contradiction

since A3~ and Ker(M) are two subspaces of R? of dimension 2. As a
result, the only possible value o is the eigenvalue of multiplicity 1.

APPENDIX B: 9(B~'4)=0
Replacing (3) into (2), we obtain:
0’B'AA"B — (6A"BA—1)A=cB
‘We can then deduce the following expression for A:
A=—% (B 6BAAB)
1—-ocATBA
Thus, denoting / the identity matrix and defining f = ﬁ,
then left-multiplying by B'~!, we obtain
B~ 'A=f(I—cAATB)
Squaring that expression leads to
f2(17 O'AATBI)Z
2(I-206AATB +6?A(ATB'A)ATB)
2(I-20AATB +6*(ATB'A)AATB)
2(I—o6(2—cA"BA)AATB)

(B/—IA)2

[ | I |
=

Defining u = 1 —cATB'A=1—ATAA:

(B~'A)? = f2(I—o(u+1)AATB))
= f2((u+1)(I — cAATB') — uI)
=f(u+ 1B 'A—fur

2

c —1 c

=—(u+DB1A-—1
u(“ ) i

Finally, we have
p(B A =o(u+1)B'A- %1
Thus, denoting Q(x) = ux* — (14 4 1)ox + o2,

0(B~'4)=0
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