tional computer vision problems based on high-level primitives (objects), instead of the traditional low-level primitives [START_REF] Li | Context-coherent scenes of objects for camera pose estimation[END_REF][START_REF] Li | Semantic scene models for visual localization under large viewpoint changes[END_REF][START_REF] Nicholson | QuadricSLAM: Dual quadrics from object detections as landmarks in object-oriented slam[END_REF][START_REF] Rubino | 3d object localisation from multi-view image detections[END_REF]. However, it is not easy to accurately compute the camera pose from coarse 2D BBs of objects, particularly when few objects are detected. For example, Li et al. use detection of BBs from two far-apart viewpoints to predict the 6-dof camera transformation between views [START_REF] Li | Context-coherent scenes of objects for camera pose estimation[END_REF]. Objects are modeled by their bounding cuboids and detected by using Faster-RCNN [START_REF] Ren | Faster R-CNN: towards real-time object detection with region proposal networks[END_REF]. However, as the perspective projection of a cuboid is not a 2D box, a brute force, discrete optimization scheme has to be used to estimate the object poses, from a large set of hypotheses aligning well with the associated detection BB. A contextual model (vector describing some spatial relationships between the cuboids) is used to select the hypotheses that best ensure the global consistency, but this model has to be constructed manually, which, again, does not make it easy to adapt this system to a new environment.

Ellipsoidal abstraction of objects provides a more interesting geometric framework. An ellipsoid projects into an ellipse, these two primitives having a single equation to define them and wellestablished properties e.g. in the dual 3D and (resp.) 2D projective spaces. This paves the way for elegant and efficient solutions to align reprojected ellipsoids with the associated ellipses. Thereby in [START_REF] Rubino | 3d object localisation from multi-view image detections[END_REF], Rubino et al. show how to automatically estimate an ellipsoid in 3D given a set of ellipses fitted to the object detection BBs in multiple calibrated views. The authors show that a closed-form solution exists from three views. In [START_REF] Nicholson | QuadricSLAM: Dual quadrics from object detections as landmarks in object-oriented slam[END_REF], Nicholson et al. describe a complete SLAM (Simultaneous Localization And Mapping) system that is able to reconstruct ellipsoids in 3D and simultaneously compute the camera poses from several ellipses fitted, again, to the object detection BBs. YOLOv3 [START_REF] Redmon | Yolov3: An incremental improvement[END_REF] is used for object detection. A geometric error is minimized using a nonlinear iterative optimization process. However, this optimization is initialized by, and constrained to stay close to, some odometry measurements, which limits the scope of this method.

In this paper, we build on the advances made by Rubino et al. [START_REF] Rubino | 3d object localisation from multi-view image detections[END_REF] and Nicholson et al. [START_REF] Nicholson | QuadricSLAM: Dual quadrics from object detections as landmarks in object-oriented slam[END_REF] to design a robust, portable and potentially sensor-less method that estimates the pose of a camera at object level (see Fig. 1). Our main contributions are the following.

First, we prove that a closed form estimate of the translation can be computed from a single ellipse-ellipsoid correspondence and known camera orientation (Section 3). This theoretical result has a great practical interest. Indeed, if capturing a camera orientation from external data (IMU, vanishing points, etc.) is quite easy, capturing a camera position is more difficult: odometry is known to suffer from cumulative drift, GPS is unusable indoors, and outside-in tracking (optical, WIFI, etc.) requires special equipment together with a tedious hand-eye calibration preprocess. Robustness of the camera position estimate against camera orientation errors and ellipse detection errors is assessed using the LINEMOD dataset [START_REF] Hinterstoisser | Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes[END_REF] (Section 5.1).

Second, a robust framework able to choose the best hypotheses in presence of erroneous matches is proposed, which is based on an appropriate estimation of the reprojection error of ellipsoids (Section 4). Object class detection is known to be relatively safe but, of course, detection errors and / or misclassifications can still occur. Most importantly, if object class detection is interesting in terms of portability (the trained CNNs are relevant for any instance of the object class), as a counterpart, knowing the labels of the BBs does not allow distinguishing between several objects corresponding to the same class, so that each hypothesis has to be considered in the pose estimation process. Fortunately, this problem is somewhat offset by the fact that, knowing the camera orientation, its position can be inferred from only one ellipse-ellipsoid correspondence. Contrary to the PnP problem, one ellipse-ellipsoid correspondence brings information on a whole object and encompasses many local feature correspondences. As shown in our experiments, estimation from one correspondence is usually robust but the accuracy may depend on the accuracy of the detected ellipse. In order to cope with possible recognition errors and erroneous image/model association when several occurrences of an object are present in the scene, we propose a robust estimation framework with a low combinatorial cost which takes into account the projections of the other ellipsoids.

Finally, we prove the effectiveness of the method for camera relocalization in two sequences of the TUM RGB-D dataset [START_REF] Sturm | A Benchmark for the Evaluation of RGB-D SLAM Systems[END_REF] (Section 5.2). The sets of possible correspondences are generated by using YOLOv3, and camera orientations are provided by automatic extraction of vanishing points or simulated IMU data.

MORE RELATED WORK

A strong limitation of the method described in [START_REF] Li | Context-coherent scenes of objects for camera pose estimation[END_REF], in addition to the high dimensionality of the 3D cuboid search space is that the scale of the selected objects is known, and the camera's viewing angle with respect to the ground plane is fixed. For sake of generality, these constraints are removed in [START_REF] Li | Semantic scene models for visual localization under large viewpoint changes[END_REF], by inferring vanishing points from each image, and taking a short video, 25 consecutive frames from each viewpoint, allowing relative depth to be recovered for keypoint pixels using Structure From Motion (SFM). However, these additional steps make the method more cumbersome, especially since several hypotheses are still considered for each cuboid, before reasoning about object correspondences using the Hungarian algorithm.

Modeling object projections by virtual ellipses allowed Crocco et al. to propose a closed-form solution for SFM reconstruction of the scene in the form of an ellipsoid cloud [START_REF] Crocco | Structure from motion with objects[END_REF]. However, this method is limited to the case of an orthographic projection, as well as its extension integrating CAD object models for higher reconstruction accuracy [START_REF] Gay | Probabilistic structure from motion with objects (psfmo)[END_REF].

The case of perspective projection is considered in [START_REF] Nicholson | QuadricSLAM: Dual quadrics from object detections as landmarks in object-oriented slam[END_REF]. However, as we mentioned in the introduction, the SLAM resolution is constrained by odometry measurements. More precisely, the maximum a posteriori configuration of camera poses X * and dual quadrics Q * is found by solving the following non linear least squares problem:

X * , Q * = argmin X,Q ∑ i || f (x i , u i ) ⊖ x i+1 || 2 ∑i + ∑ i j ||b i j -β (x i ,q j ) || 2 Λ i j . (1) 
The first term reflects the attachment to odometry measurements and the second term is a geometric error between the projected ellipsoids and the detection BBs (see [START_REF] Nicholson | QuadricSLAM: Dual quadrics from object detections as landmarks in object-oriented slam[END_REF] for the details of the notations). The geometric error is defined as the sum of squares of the distances between borders of the BBs of the reprojected ellipsoids and borders of the detection BBs. Unfortunately, we show in Section 5.2 that removing the first term of the cost function (attachment to odometry), fixing the ellipsoid parameters q j (shape and pose in the world frame of the ellipsoids) and minimizing the geometric term over the six pose parameters x i can cause the optimization process to diverge severely, even with ground truth as initialization parameters. This is one reason why we argue that it is better to compute the camera orientation separately, and only estimate the camera translation (in closed-form) by using the ellipse-ellipsoid correspondences. Another limitation of this method, is that the associations between individual detections and distinct physical objects are provided by a set of manual annotations, while we propose a robust procedure to automatically determine the correct associations. Actually, a closed-form solution for pose computation from ellipse-ellipsoid correspondences was first proposed in [START_REF] Wokes | Autonomous pose determination of a passive target through spheroid modelling[END_REF][START_REF] Wokes | Perspective reconstruction of a spheroid from an image plane ellipse[END_REF], but only for the special case of spheroids (ellipsoid with two equal semi-diameters). In that case, the authors showed that, considering perspective projection, the spheroid pose estimation problem admits only two distinct solutions. In the more general case of ellipsoids, an equation of the same problem was proposed by Eberly [START_REF] Eberly | Reconstructing an ellipsoid from its perspective projection onto a plane[END_REF] (which is the starting point of our theoretical development) without, however, an explicit method for calculating solutions.

CAMERA POSE COMPUTATION FROM ONE ELLIPSE -EL-LIPSOID CORRESPONDENCE

We focus on the problem of camera pose estimation from one ellipse -ellipsoid correspondence. We consider the equivalent problem that consists in calculating the ellipsoid pose in the camera frame, and show that the ellipsoid position can be inferred from its orientation unambiguously.

The Cone Alignment Equation

Unless otherwise stated, all the variables introduced below are expressed in the camera coordinate frame.

Following the notations introduced in [START_REF] Eberly | Reconstructing an ellipsoid from its perspective projection onto a plane[END_REF] and presented in Fig. 2, we consider an ellipsoid defined by

(X -C) ⊤ A(X -C) = 1
where C is the center of the ellipsoid, A is a real positive definite matrix characterizing its orientation and size, and X is any point on it.

Given a center of projection E and a projection plane of normal N which does not contain E, the projection of the ellipsoid is an ellipse of center K and of semi-diameters a et b. Ellipse's principal directions are represented by unit-length vectors U and V, such that {U, V, N} is an orthonormal set.

The goal of this section is to compute the ellisoid position C given E, A and the detected ellipse on the image plane. 

Projection Cone

The "projection cone" refers to the cone of vertex E tangent to the ellipsoid. According to [START_REF] Eberly | Reconstructing an ellipsoid from its perspective projection onto a plane[END_REF], it is defined by the matrix

B de f = A∆ ∆ ∆∆ ∆ ∆ ⊤ A -(∆ ∆ ∆ ⊤ A∆ ∆ ∆ -1)A
where ∆ ∆ ∆ = E -C, so that the points X on the projection cone are those who satisfy the equation (X -E) ⊤ B(X -E) = 0.

Backprojection Cone

The "backprojection cone" refers to the cone generated by the lines passing through E and any point on the ellipse. Eberly shows that such a cone is characterized by the matrix B ′ defined as follows

B ′ de f = P ⊤ MP -Q where M de f = UU ⊤ /a 2 + VV ⊤ /b 2 W de f = N/(N • (K -E)) P de f = I -(K -E)W ⊤ Q de f = WW ⊤
Here again, the points X on the backprojection cone are those who meet (X -E) ⊤ B ′ (X -E) = 0.

Alignment Equation

The ellipsoid projects on the ellipse if and only if the projection and backprojection cones are aligned [START_REF] Eberly | Reconstructing an ellipsoid from its perspective projection onto a plane[END_REF], i.e. if and only if there is a non-zero scalar σ such that B = σ B ′ :

A∆ ∆ ∆∆ ∆ ∆ ⊤ A -(∆ ∆ ∆ ⊤ A∆ ∆ ∆ -1)A = σ B ′ (2)

Computing position from orientation

Assuming that both size and orientation of the ellipsoid are known, the matrix A is fully determined. In the following we explain how to compute the remaining unknowns ∆ ∆ ∆ and σ of (2) from A and B ′ . First, we will show that equation ( 2) implies

A∆ ∆ ∆ = σ B ′ ∆ ∆ ∆ (3) 
Proof. Right-multiplying (2) by ∆ ∆ ∆, we have

(A∆ ∆ ∆∆ ∆ ∆ ⊤ A -(∆ ∆ ∆ ⊤ A∆ ∆ ∆ -1)A)∆ ∆ ∆ = σ B ′ ∆ ∆ ∆ Since ∆ ∆ ∆ is a 3D vector, ∆ ∆ ∆ ⊤ A∆ ∆ ∆ is a scalar, thus (A∆ ∆ ∆∆ ∆ ∆ ⊤ A -(∆ ∆ ∆ ⊤ A∆ ∆ ∆ -1)A)∆ ∆ ∆ = A∆ ∆ ∆(∆ ∆ ∆ ⊤ A∆ ∆ ∆) -∆ ∆ ∆ ⊤ A∆ ∆ ∆A∆ ∆ ∆ + A∆ ∆ ∆ = (∆ ∆ ∆ ⊤ A∆ ∆ ∆)A∆ ∆ ∆ -∆ ∆ ∆ ⊤ A∆ ∆ ∆A∆ ∆ ∆ + A∆ ∆ ∆ = A∆ ∆ ∆ ∆ ∆ ∆ is thus a generalized eigenvector of the couple {A, B ′ }.
According to the properties of ellipsoids and cones, it can be shown that (see proof in Appendix A) : Theorem 1.

• the couple {A, B ′ } has exactly two distinct real generalized eigenvalues, one of multiplicity 1 denoted σ 1 , and one of multiplicity 2 denoted σ 2 .

• only σ 1 is solution of (2).

As a result, σ can be uniquely determined from the ellipsoid orientation and from the ellipse detected in the image, by considering the eigenvalue of multiplicity 1. ∆ ∆ ∆ is thus proportional to the eigenvector ∆ ∆ ∆ 1 with norm 1 associated with σ 1 .

We thus have ∆ ∆ ∆ = CE = k∆ ∆ ∆ 1 . Substituting this expression in (2) leads to

k 2 (A∆ ∆ ∆ 1 ∆ ∆ ∆ ⊤ 1 A -∆ ∆ ∆ ⊤ 1 A∆ ∆ ∆ 1 A) = σ 1 B ′ -A
In practice, due to uncertainties in the detection, a least mean square estimation of k 2 is computed. The only possible k is the one that allows the center of the ellipsoid to be in front of the camera (chirality constraint).

Finally, let us note that all the computations were made in the camera coordinate frame. Let c R w be the rotation matrix from world coordinates to camera coordinates. In practice, this matrix is estimated from sensors of from vanishing points. If A w characterizes the size and orientation of the ellipsoid expressed in the world frame, then A = c R w A w w R c is the matrix expressed in the camera frame. From what precedes, we can then compute ∆ ∆ ∆ = EC expressed in the camera frame. Its expression in the world frame is thus given by w R c ∆ ∆ ∆. As the position of the ellipsoid is known in the world frame, the camera position can be determined.

ROBUST POSE ESTIMATION METHOD

A list a 2D/3D object association is the input of our pose procedure. Due to recognition errors, some of them may be wrong. In addition, as recognition systems are mostly learned on categories of object, there may be ambiguities in the choice of the physical object the detection originates from. The frequent occurrence of repeated objects in man-made environments is another source of false data association. In previous works [START_REF] Nicholson | QuadricSLAM: Dual quadrics from object detections as landmarks in object-oriented slam[END_REF], association was realized manually to avoid this problem. On the contrary, we propose a RANSAC-like procedure dedicated to robust 2D/3D object association with the aim to automatically discard false associations.

Model construction

Our camera relocalization system requires the knowledge of a light 3D model composed of ellipsoidal abstractions of objects of interest present in the scene. To reconstruct each object, possibly separately, a few frames with known poses (3 at minimum [START_REF] Rubino | 3d object localisation from multi-view image detections[END_REF]) covering the widest possible range of viewpoints is necessary. In these frames, objects are automatically detected (in the form of rectangular bounding boxes) and labelled using an object detection algorithm (e.g. [START_REF] He | Mask R-CNN[END_REF][START_REF] Liu | SSD: single shot multibox detector[END_REF][START_REF] Redmon | Yolov3: An incremental improvement[END_REF]), then the association between 2D detections across images is carried out manually. For each object, ellipses inscribed in detected bounding boxes are considered as 2D projections of an underlying 3D ellipsoid, therefore reconstructed using [START_REF] Rubino | 3d object localisation from multi-view image detections[END_REF]. The labels are automatically transferred from 2D detections to 3D ellipsoids, sometimes leading to situations where a single object is described by several labels, and where different objects are described by the same label (see Figure 3).

RANSAC-like procedure for position estimation

Starting from a set of object detections and an estimate of the camera orientation (see 4.3 for more details about orientation computation), our method consists in jointly solving the data association and camera position estimation problems.

In practice, every possible association between detected objects and 3D ellipsoids is determined from label compatibility. As the pose can be computed from one ellipse-ellipsoid correspondence, a pose is computed for each individual pair of ellipse-ellipsoid hypothesis. A consensus set is built at the level of ellipsoids: for each of these potential poses, we reproject all the 3D ellipsoids into the image, and consider ellipse -ellipsoid pairs as inliers when their labels are compatible and the intersection over union (IoU) score between the detected and reprojected bounding boxes is greater than a certain threshold (0.5 in our experiments). Note that when a 3D object reprojects onto several 2D detections, only the one with the greatest IoU is considered.When two configurations lead to the same number of inliers, the one with the greatest sum of IoU scores is selected.

Orientation estimation

Figure 4: Manhattan vanishing points are reliable features to compute the camera orientation. This figure shows some example results in complex industrial scenes. Those were obtained by using the method described in [START_REF] Simon | A-Contrario Horizon-First Vanishing Point Detection Using Second-Order Grouping Laws[END_REF]. Vanishing points are represented by the consistent line segments (one color per vanishing point) and the directions of the detected Manhattan frame are shown in red, green, blue.

In our method, we assume that the camera orientation is known. Having said that, the goal of this section is to briefly describe how this matrix can be obtained in practice, and how our method can provide a mechanism to remove the ambiguity inherent in some orientation determination methods. Inertial Measurement Units (IMUs) are electronic devices whose orientation is measured based on a combination of accelerometers and gyroscopes, sometimes also magnetometers. IMUs are contained in almost all smartphones and tablets, and can easily be used to provide the camera orientation matrix required by our method. Futhermore, this matrix can also be obtained purely from images thanks to image analysis methods based on vanishing point (VP) detection [START_REF] Simon | A Simple and Effective Method to Detect Orthogonal Vanishing Points in Uncalibrated Images of Man-Made Environments[END_REF][START_REF] Simon | A-Contrario Horizon-First Vanishing Point Detection Using Second-Order Grouping Laws[END_REF][START_REF] Zhai | Detecting vanishing points using global image context in a non-manhattan world[END_REF]. Indeed, VP detection now performs relatively well in various kinds of environments, including indoor and industrial ones. In the experimental results shown in Section 5.2, we use the method described in [START_REF] Simon | A-Contrario Horizon-First Vanishing Point Detection Using Second-Order Grouping Laws[END_REF], since it has proven well suited to various man-made environments.

Using VPs, the camera orientation can be obtained with regard to a frame aligned with three orthogonal directions of the scene that give rise to three specific (so-called Manhattan) VPs. Images of man-made (including industrial) environments often contain such a triplet of orthogonal VPs (see e.g. Fig. 4). It has been many years since the idea of calculating the orientation of the camera from the Manhattan vanishing points was proposed [START_REF] Kosecka | Video compass[END_REF], but we address here some issues that are often not considered in the literature while encountered in practice: how to calibrate the rotation between the Manhattan frame and the frame in which the ellipsoids are expressed, and how to deal with the problem of axes exchanges or symmetries between these two frames.

Computing the rotation between the ellipsoids and the Manhattan coordinate frames Ellipsoids are expressed in the world coordinate frame, whose orientation does not necessary fit the Manhattan directions of the scene. For that reason, we need to compute the rotation m R w from the world (ellipsoids) frame to the Manhattan frame, and use c R w = c R m m R w , where c R m is the Manhattan-tocamera rotation matrix (obtained using [START_REF] Simon | A-Contrario Horizon-First Vanishing Point Detection Using Second-Order Grouping Laws[END_REF]), when computing the position of the camera with the method described in section 3.2. To do this, we detect the Manhattan VPs in N images where the worldto-camera rotations c R w (i) are known. This provides N matrices m R w i) , which should all be the same if data were not corrupted by noise. For better accuracy, we use the orthogonal

(i) = c R m (i) ⊤ c R w ( 
projection of m R w = ∑ N i=1 m R w (i)
N onto the special orthogonal group SO(3), given by:

m R w = m R w U 1 √ Λ 1 , 1 √ Λ 2 , s √ Λ 3 U ⊤ ,
where

Λ 1 ≥ Λ 2 ≥ Λ 3 ≥ 0 are the eigenvalues of M = m R w ⊤ m R w , U⊤diag(Λ 1 , Λ 2 , Λ 3 )
U is the SVD of M and s the determinant of m R w [START_REF] Moakher | Means and averaging in the group of rotations[END_REF].

Dealing with the problem of axes exchanges or symmetries Depending on the position of the camera with regard to the scene, the X and Y axes of the computed Manhattan frame may be exchanged or mirrored with regard to the ones attached to the scene (and used to compute the calibration matrix m R w ). To tackle this issue, we consider in the RANSAC-like procedure described in section 4.2, each of the four possible cases for the Manhattan-to-camera

rotation matrix c R m : c R m:,1 c R m:,2 c R m:,3 , -c R m:,1 -c R m:,2 c R m:,3 , c R m:,2 -c R m:,1 c R m:,3 , -c R m:,2 c R m:,1 c R m:,3
, and keep the one that maximizes the consensus set as explained in Section 4.2.

RESULTS

Pose accuracy with one object

The LINEMOD dataset

We first evaluate our method for estimating the camera position from one object detection in the image on the standard LINEMOD dataset [START_REF] Hinterstoisser | Model based training, detection and pose estimation of texture-less 3d objects in heavily cluttered scenes[END_REF]. This dataset is designed to benchmark 6D object pose estimation algorithms, and several accuracy metrics are commonly used: reprojection error, IoU score, ADD metric, ... (see for instance [START_REF] Tekin | Real-time seamless single shot 6d object pose prediction[END_REF] for more details). However, our training-free method based on ellipsoidal modelling of 3D objects and elliptic modelling of their 2D projections is designed for rough camera relocalization instead of accurate pose estimation.

Technical details and results

Most state-of-the-art object detection methods give results in the form of a rectangular bounding box aligned with image axes [START_REF] He | Mask R-CNN[END_REF][START_REF] Liu | SSD: single shot multibox detector[END_REF][START_REF] Redmon | Yolov3: An incremental improvement[END_REF]. To simulate this behaviour, we first project the groundtruth 3D object point cloud into the image using the groundtruth camera projection matrix, and then compute the bounding box of obtained 2D points. The ellipse that inscribes the bounding box is finally used as an approximation of the projected object, as suggested in [START_REF] Crocco | Structure from motion with objects[END_REF][START_REF] Rubino | 3d object localisation from multi-view image detections[END_REF] We randomly pick 50 frames per object (the dataset contains 15 objects, with roughly 1200 images per each) to build their ellipsoidal models using [START_REF] Rubino | 3d object localisation from multi-view image detections[END_REF]. All the other frames are used for testing. During the tests, we add a uniform noise lower than a given threshold (0°( no perturbation), 1°, then 2°to the 3 Euler angles (EA) of the groundtruth camera orientation to simulate measurements given by inertial sensors. The overall error on the camera orientation can reach 2°in the first case (1°/EA), and 4.5°in the second case (2°/EA).

The first metric used to evaluate our method is the reprojection error of model points. Usually, estimated poses are considered as correct when the mean reprojection error is lower than a given threshold in pixels (usually 5). Table 1 presents our results on the 15 LINEMOD objects in comparison with the state-of-the-art object pose estimation method [START_REF] Tekin | Real-time seamless single shot 6d object pose prediction[END_REF]. It is important noting that the aims of the two methods are not identical. Indeed, the reference's goal is to accurately estimate the whole camera pose based on objectspecific training, whereas our generic method aims at performing rough camera relocalization from object(s) present in the scene, and thus relies on a sometimes rough modeling of objects in the form of ellipsoids. Despite that, our method appears to be fairly accurate (almost every frame presents a mean reprojection error lower than 20 pixels), and is even more accurate than the reference on 23% of the objects (see eggbox, duck, and ape). Moreover, results show that our Table 1: Comparison of our camera relocalization approach with the state-of-the-art accurate object pose estimation method [START_REF] Tekin | Real-time seamless single shot 6d object pose prediction[END_REF] on the LINEMOD dataset. We report percentages of correctly estimated poses. For our method, we report the results depending on three different levels of perturbation applied on camera orientations, in °per Euler angle. The bold face numbers indicate the best method according to the 5-pixel threshold metric. Note that even if we don't need any object-specific training, our method is fairly accurate, and even outperforms the reference on three objects. Moreover, our method appears to be robust to the perturbation on the camera orientation. method is robust to the perturbation applied on camera orientations, since performances do not present a significant decrease when the level of noise increases. More detailed results of our method are provided in Figure 5 (left column), for a level of orientation noise equal to 1°. The second metric used to evaluate our method is the 3D pose error. Starting from a noisy orientation obtained by adding a noise of magnitude 1°on each groudtruth Euler angle, the overall camera orientation error do not exceed 2°. The accuracy in terms of position are presented in Figure 5 (right column). Note that maximum diameters of the objects range from 10 cm to 30 cm, and that the average distance between cameras and objects is approximately 92 cm. Considering the top 5 of objects (bowl, duck, ape, cam, cup), the distance between estimated camera positions and the groundtruth is always lower than 9 cm. In the worst case (glue), that distance do not exceed 20cm in 90% of cases. Even if our method can compute the camera position based on a single object detection, it is designed
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 2 Figure 2: Illustrating the projection plane, projection center, ellipsoid and ellipse projection.
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 3 Figure 3: Illustration on the RGB-D TUM dataset[START_REF] Sturm | A Benchmark for the Evaluation of RGB-D SLAM Systems[END_REF] of the situation where a single object (the cup containing flowers in the center of the images) receive two different labels from the generic object detection algorithm YOLOv3[START_REF] Redmon | Yolov3: An incremental improvement[END_REF]: cup (left) and vase (right). These images also illustrate the fact that different objects (cups and plants) can be characterized by the same label: cup and pottedplant.
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 5 Figure 5: Cumulative density functions of our mean reprojection errors (in pixels) [left] and camera location errors (in cm) [right] on the LINEMOD dataset.