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Abstract. In this article, we present an original use of Redescription
Mining (RM) for discovering definitions of classes and incompatibility
(disjointness) axioms between classes of individuals in the web of data.
RM is aimed at mining alternate descriptions from two datasets related
to the same set of individuals. We reuse this process for providing def-
initions in terms of necessary and sufficient conditions to categories in
DBpedia. Firstly, we recall the basics of redescription mining and make
precise the principles of our definitional process. Then we detail exper-
iments carried out on datasets extracted from DBpedia. Based on the
output of the experiments, we discuss the strengths and the possible
extensions of our approach.

Keywords: Redescription Mining - Linked Open Data - Definition of
categories - Disjointness axioms - Formal Concept Analysis

1 Introduction

The Linked Open Data (LOD) cloud has become a very large reservoir of data
over the last fifteen years. This data cloud is based on elementary triples (subject,
predicate, object), denoted by 〈s, p, o〉, where s, p and o denote resources. These
triples can be related to form a (huge) directed graph G = (V,E) where vertices
in V correspond to resources –or individuals–, and edges in E correspond to
relations or predicate linking resources. Besides the graph structure, individuals
can be grouped using the Resource Description Framework (RDF) thanks to the
special predicate rdf:type in a class, and then individuals are “instances” of this
class. In turn, using RDF Schema (RDFS), the set of classes can be organized
within a poset thanks to the partial ordering rdfs:subClassOf.

A class can be defined through an extension by enumeration of all individ-
uals composing this extension. For example, the extension of the Smartphone
class would include the set of all “known” smartphones in a given universe. Du-
ally, a class may also be defined through an intension by enumeration of all
characteristics common to individuals in the class. For example, the intension of
the Smartphone class could be described as “a small computer equipped with a
cellular antenna”.
? Supported by “Région Lorraine” and “Délégation Générale de l’Armement”
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A standard classification problem is to provide a suitable definition to a
class of individuals, i.e. a description based on a set of characteristics which
are common to all individuals. This problem arises whenever there is a need
for building classes for an ontology or a knowledge base related to a particular
domain. Actually, such a classification process is related to clustering and to
concept lattices in Formal Concept Analysis (FCA [8]).

Going back to the LOD cloud, there are classes defined by an extension but
usually without any corresponding intension. More concretely, we may consider
individuals as subjects s whose description is composed of the set of available
pairs (p, o). A direct application of this classification problem is the mining
of definitions of DBpedia categories, in the line of the work in [1]. Actually,
DBpedia categories are automatically extracted from Wikipedia. In Wikipedia,
a category is a specific page which lists all the pages related to itself, as is the
case for example for the page Category:Smartphones1. In DBpedia, a category
is a resource appearing in the range of the predicate dct:subject, thanks to
the Dublin Core Metadata terms (DCT). Moreover, categories are widespread as
there are more than one million of categories but, most of the time, a category
does not have any “processable” description and there does not exist any ordering
or structure among categories.

Accordingly, we can formulate our classification problem as follows: given a
class defined by a set of instances, is it possible to find a corresponding definition
in terms of a description made of set of characteristics or properties related
to all these instances. Then, the class could be defined in terms of necessary
and sufficient conditions for an individual to be a member of the class. The
necessary condition means that all instances share the characteristics of the
description while the sufficient condition means that any individual having those
characteristics should be an instance of the class. In this work, we aim at defining
the classes in two complementary ways: (i) by building a description shared by
all the instances of a given class, (ii) by finding potential incompatible classes,
i.e. classes which do not share any instance.

Actually, the present work is a continuation of a work initiated in [1] and in
[12]. In [1], authors rely on FCA [8] and implication between concepts for discov-
ering definitions in LOD. These definitions are based on pairs of implications,
i.e. C =⇒ D and D =⇒ C, which stand for necessary and sufficient conditions.
A double implication is considered as a definition C ≡ D, but most of the time
C =⇒ D is an implication (i.e. the confidence is 1) while D −→ C is an as-
sociation rule whose confidence is less than 1, meaning that the data at hand
are incomplete but that the definition is plausible. In [12], we ran a preliminary
comparison between several approaches for mining definitions in LOD, based on
FCA, redescription mining and translation rule mining.

In the present paper, we focus on Redescription Mining (RM) [5,6]. RM aims
at discovering alternate characterizations of a set of individuals from two sets
of characteristics. The characterizations can be expressed thanks to Boolean
connectors within propositional logic formulas. Thus, it appears that RM is a
1 https://en.wikipedia.org/wiki/Category:SmartPhones
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valuable and challenging candidate approach for discovering definitions in LOD.
This research work is original and one of the first attempts to reuse redescription
mining for mining definitions in LOD. Moreover, the fact that negation can be
taken into account allows us to extend the FCA-based approach and to mine not
only definitions but also disjointness axioms, as we have in a notation borrowed
from Description Logics2 [2]: C ≡ D ⇐⇒ C v D andD v C and C u D ≡
⊥ ⇐⇒ C v ¬D orD v ¬C. This approach was applied on various datasets from
DBpedia [10] running the so-called ReReMi algorithm [5], and has shown a very
good practical behavior.

The paper is organized as follows. Section 2 presents the problem statement
while Redescription Mining is introduced in Section 3. Section 4 is related to
experiments which are conducted to evaluate the approach, and a discussion
on the quality of the results and the possible improvements. Finally, Section 5
includes related work preceding Section 6 with future work and conclusions.

2 Problem Statement in FCA

2.1 Basics of FCA and implications

Formal Concept Analysis (FCA) is a mathematical framework mainly used for
classification and knowledge discovery [8]. FCA starts with a formal context
(G,M, I) where G is a set of objects, M a set of attributes, and I ⊆ G ×M
a binary relation, with gIm meaning that object g has attribute m. Two dual
derivation operators, denoted by ′, are defined as follows:

A′ ={m ∈M/∀g ∈ A, gIm} forA ⊆ G and
B′ ={g ∈ G/∀m ∈ B, gIm} forB ⊆M

The two compositions of the both derivation operators, denoted by ′′, are closure
operators. In particular, for A ⊆ G and B ⊆ M , we have A ⊆ A′′ and B ⊆ B′′.
Then A and B are closed sets when A = A′′ and B = B′′ respectively. Moreover,
a pair (A,B) is a “concept” whenever A′ = B and B′ = A, where A is closed and
called the “extent” of (A,B), and B is closed and is called the intent of (A,B).
The set of concepts is organized within a “concept lattice” thanks to the partial
ordering defined by (A1, B1) ≤ (A2, B2) when A1 ⊆ A2 or dually B2 ⊆ B1.

Two types of rules can be extracted from concepts, namely “association rules”
and “implications”. An implication B1 =⇒ B2 states that all objects having
all attributes in B1 have all attributes in B2, i.e. B

′

1 ⊆ B
′

2. The implication
B1 =⇒ B2 has a support defined as the cardinality of the set B′

1 ∩B
′

2/G, and a
confidence defined as the cardinality of the set B′

1 ∩B
′

2/B
′

1. The confidence can
be interpreted as a conditional probability:

support(B1 =⇒ B2) = |B
′
1 ∩B′2|
|G|

and conf(B1 =⇒ B2) = |B
′
1 ∩B′2|
|B′2|

.

2 We adopt this formalism for the readers of this paper. Finding the good represen-
tation of the rules for domain experts is out of the scope of this paper.
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The confidence is used for measuring the quality of a rule. The confidence of
an implication is always 1, and which is not the case for an “association rule”
B1 −→ B2. Then, an association rule is “valid” if its confidence is above a given
threshold θ.

Finally, if both B1 =⇒ B2 and B2 =⇒ B1, then the definition B1 ≡ B2 or
B′1 = B′2 can be inferred.

2.2 Defining Categories in DBpedia

The content of DBpedia is built with information extracted from Wikipedia,
an online encyclopedia. In Wikipedia, a category say X is a specific kind of
Wikipedia page listing all pages related to X (see page Category:Smartphones3

for example). In DBpedia, a category appears in RDF triples in the range of the
relation dct:subject. For example, the triple 〈x, dct : subject, Smartphones〉
states that the x subject belongs to the Smartphones “category”.

Moreover, speaking in terms of knowledge representation and reasoning, the
name of a category is a purely syntactic expression, and thus a category does
not have any formal definition as one could expect (see discussion in [1] on
this aspect). Then it is impossible to perform any classification within the set
of categories as the latter are not defined in terms of necessary and sufficient
conditions. This is precisely what we want to deal with, i.e. providing a definition
to a category. This amounts to finding pairs of the form (C, {d1, . . . , dn}) where
C denotes a category, such as Nokia_Mobile_Phone for example, and di denotes
a pair (p, o), such as (manufacturer,Nokia) for example. Then the whole set
of di will stand for a possible description of C. A parallel can be drawn with
concept definitions in Description Logics [2], where a form of definition is given
by C ≡ d1 u · · · u dn, such as:

Nokia_Mobile_Phone ≡ Phone u ∃manufacturer.Nokia

Following the same line, we aim also at finding “incompatible categories”, i.e.
pairs of categories (Ci, Cj) such as there does not exist any subject s verifying
both 〈s, dct : subject, Ci〉 and 〈s, dct : subject, Cj〉. In terms of Description
Logics, this is written as Ci u Cj ≡ ⊥.

For example, Nokia_Mobile_Phone u Turing_Award_laureate ≡ ⊥ states
that two categories are disjoint or incompatible, which is a particular type of
definition, meaning in terms of sets of instances that Nokia_Mobile_Phone is
in the complementary of Turing_Award_laureate.

Both types of definitions are useful for a practitioner aiming at contributing
to DBpedia. Indeed, providing descriptions and then definitions to categories
allows to be in agreement with knowledge representation principles, i.e. build-
ing sound and complete definitions of individual classes, as categories should
be. In particular, this would help to find missing triples. For example, suppose
that the definition Nokia_Mobile_Phone ≡ Phone u ∃manufacturer.Nokia is
3 https://en.wikipedia.org/wiki/Category:Smartphones

https://en.wikipedia.org/wiki/Category:Smartphones
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lying in DBpedia. Then, if an element x belongs to Nokia_Mobile_Phone, then
this element should be a phone with manufacturer Nokia, i.e. x is an instance
of Phone u ∃manufacturer.Nokia (“necessary condition”). Conversely, if an el-
ement is an instance of Phone u ∃manufacturer.Nokia, then x should be an
instance of Nokia_Mobile_Phone (“sufficient condition”). This allows to com-
plete incomplete triples if required.

In addition, specifying incompatible categories enables to track inconsisten-
cies. Indeed, suppose there exits a triple in DBpedia asserting that Smartphones
and Sports_cars are incompatible. Whenever a practitioner tries to associate
the category Sports_cars to a resource related to the category Smartphones,
she/he could be warned that both categories are incompatible. This will guide
practitioners and help them having better practices.

2.3 A Practical Approach in FCA

Following the lines of [1] in the FCA framework, the discovery of category def-
initions relies on the construction of a context (G,M, I) from a set of triples
denoted by ST . Given ST , G is the set of subjects, i.e. G = {s/〈s, p, o〉 ∈ ST})
and M is a set of pairs predicate-objects, i.e. M = {(p, o)/〈s, p, o〉 ∈ ST}). The
incidence relation is defined as sI(p, o)⇐⇒ 〈s, p, o〉 ∈ ST .

Then the discovery process is based on a search for implications of the form
B1 =⇒ B2 where B1, B2 ⊆ M . Whenever an implication B1 =⇒ B2 is discov-
ered, the converse rule is checked. If B2 =⇒ B1 is also an implication, then we
have the definition B1 ≡ B2. If this is not the case, the set of triples involved in
the context should be checked for potential incompleteness.

In the following, we present an alternative search for category definition
based on “Redescription Mining”, where the name of the category appears on
the left hand side of the ≡ symbol and a set of characteristics (composed of
∃predicate.object expressions) appears on the right hand side.

3 Redescription Mining

3.1 Definitions

Redescription mining aims at searching for data subsets with multiple descrip-
tions, as different views on the same set of objects [5,6]. Redescription mining
takes as input a set of objects G and a set of attributes M partitioned into
views Vi such as M = V1 ∪ · · · ∪ Vn and Vi ∩ Vj = ∅ if i 6= j. For example, the
attributes can be partitioned w.r.t. the sources of the data or w.r.t. some criteria
defined by a user. A value is associated to each pair (object, attribute), which
can be Boolean, numerical or nominal, and which depends on the domain of the
attribute. An example of such a dataset is provided in Figure 1.

Given a set of objects G, a partition of a set of attributes M , redescription
mining aims at finding a pair of “queries” (q1, q2), where q1 and q2 correspond
to logical statements involving attributes and their values. These statements are
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Views V1 V2
Attributes a1 a2 a3 a4

f1 2 3 Triangle
f2 3 3 Triangle
f3 × 0 3 Triangle
f4 × 2 3 Triangle
f5 × 2 4 Rectangle

a1: Has a right angle (Boolean)
a2: Max number of equal sides (numerical)
a3: Total number of sides (numerical)
a4: Type (nominal)

Fig. 1: An example of dataset for redescription mining, with objects {f1, . . . , f5}
and attributes {a1, a2, a3, a4}.

expressed in propositional logic with the conjunction, disjunction and negation
connectors. Below, a redescription say RD based on the pair (q1, q2) is denoted
by RD = q1 ←→ q2 or RD = (q1, q2).

Given a redescription RD = q1 ←→ q2, the set of objects G can be parti-
tioned w.r.t. the queries which are satisfied by a subset of objects. There are
four possible partitions, denoted by Eij with i, j ∈ {0, 1}, depending on the par-
tition q1 or q2 which is satisfied. For example, E10(R) denotes the set of objects
satisfying q1 but not q2.

Redescriptions are mined w.r.t. a support, the Jaccard coefficient, and a p-
value. The support of a redescription RD = (q1, q2) is the proportion of objects
in the dataset satisfying both queries q1 and q2, i.e. support(R) = |E11(R)|

|G| .
The similarity between two datasets corresponding to two queries q1 and q2

is measured thanks to the Jaccard coefficient:

jacc(q1 ↔ q2) = |E11(R)|
|E11(R)|+ |E10(R)|+ |E01(R)|

Let us consider for example the redescription RD = (a2 = 2) ←→ (a4 =
Triangle) which is based on q1 = (a2 = 2) and q2 = (a4 = Triangle) w.r.t. the
dataset in Figure 1. We have that: |E11(R)| = |{f1, f4}| = 2, |E10(R)| =
|{f5}| = 3, |E01(R)| = |{f2, f3}| = 4 and |E00(R)| = 0. Then it comes that
support(RD) = 2

5 and jacc(RD) = 2
2+3+4 = 2

9 . This means that the redescrip-
tion RD is not of very good quality.

By contrast, the redescription (a3 = 3) ←→ ¬(a4 = Rectangle) returns a
Jaccard coefficient of 1 which is maximal, meaning this time that we have a very
good redescription.

3.2 A Redescription Mining Algorithm

In this paper, we reuse the ReReMi algorithm to mine redescriptions [5]. ReReMi
takes two files D1 and D2 as input, which correspond to two subsets of attributes
or “views” V1 and V2 in the dataset, and returns a set of redescriptions.

Firstly, a “candidate redescription” based on a given set of pairs (q1, q2),
where q1 contains only one attribute {a1} ⊆ V1 and q2 only one attribute {a2} ⊆
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V2, is checked. The checking is not necessarily systematic for all possible pairs or
combinations of pairs of attributes, as a set of initial pairs can be specified by an
analyst. Doing so, the set of candidate redescriptions is progressively extended,
i.e. one attribute is added at a time to one of the queries of the candidate
redescription.

A query q can be extended with a new attribute a in four possible ways:
q1 ∧ a, q1 ∨ a, q1 ∧ ¬a or q1 ∨ ¬a. The redescription with the best Jaccard
coefficient is added to the candidate redescriptions. However, this extension can
be customized using for example only one of the possibilities, e.g. q1 ∧ a. The
algorithm continues until there is no more candidate available, i.e. until there is
no way to increase the Jaccard coefficient of the current candidate redescription.
Finally, the set of the candidate redescriptions is returned to the analyst.

3.3 Redescription mining in Linked Open Data

For applying redescription mining to a set of linked data, i.e. a set of related
RDF triples, we need first to transform this set of triples into a format that can
be processed by the ReReMi algorithm. This operation is similar to the building
of a context in the FCA framework. The attributes correspond to the predicates
of the triples and they are separated into views.

Given a set of triples ST , we build an input “context” (G,M, I) where objects
correspond to subjects of the RDF triples, i.e. G = {s/〈s, p, o〉 ∈ ST}) and
attributes to the set of pairs “(predicate, object)”, i.e. M = {(p, o)/〈s, p, o〉 ∈
ST}). The relation I ⊆ G×M is Boolean and we have sI(p, o) is true whenever
〈s, p, o〉 ∈ ST .

Next, the set of attributes is partitioned into two views as follows. M =
Msubj ∪Mdesc and Msubj ∩Mdesc = ∅. Msubj is the set of attributes (p, o) such
that p = dct:subject and the set Mdesc is the complementary set in M (i.e.
pairs (p, o) where p 6= dct:subject. Based on that, searching for a category
definition car be achieved in two complementary ways:

(i) by providing a description to the category: in this case, there is a search for
redescriptions (q1, q2) where q1 = a with a ∈Msubj and q2 is a query based
on a set of one or more attributes from Mdesc. Actually, this search should
output a definition based on characteristics shared by all the resources of
the category, actually a set of necessary and sufficient conditions for being a
member of the category.

(ii) by determining which categories are incompatible: in this case, there is a
search for categories which do not share any common resources, i.e. Ci u
Cj ≡ ⊥. Then the redescriptions are only based on Msubj and the Jaccard
coefficient of the categories in the output should be close to 0 instead of 1.
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Table 1: Statistics on the datasets extracted.

D Triples Objects |Msubj | |Mdesc| Density
Turing_Award 2 642 65 503 857 3.9e−2
Smartphones 8 418 598 359 1 730 6.7e−3
Sports_cars 9 047 604 435 2 295 5.5e−3
French_films 121 496 6 039 6 028 19 459 7.9e−4

4 Experiments

4.1 Datasets

We extracted four different subsets of triples4, corresponding to the domains
Turing_Award_laureates, Smartphones, Sports_cars, and French_films in
DBpedia, whose statistics are given in Table 1. The Turing_Award_laureates
dataset is small with only 65 objects and less than 1500 attributes, meaning
that there are less than 1500 unique pairs (predicate, object) in the extracted
triples. The dataset French_films is the largest, with more than 6000 objects
and 25000 attributes. This dataset is rather sparse and the attributes have a
weak support, and the density is very low as well. The datasets Smartphones
and Sports_cars are similar in size, with roughly 600 objects and between 2000
and 2800 attributes.

For each dataset, the partition of the attributes is built as follows: Msubj is
constructed from the subset of triples whose predicate is dct:subject whereas
Mdesc is the complementary set. Here, there are only Boolean attributes and only
conjunction is used in RM. From Msubj and Mdesc, two tabular files compliant
with ReReMi input are created, namely Dsubj which contains attributes of the
view Msubj , Ddesc which contains attributes of the view Mdesc. The thresholds
used are 0.5 for Jaccard similarity (jacc > 0.5) and 3 for support (support > 3).

The discovery of incompatible categories relies only on the use of Msubj ,
and Dsubj is provided for both views. The thresholds used are 0.3 for Jaccard
similarity with this time jacc 6 0.3 and 5 for support (support > 5).

4.2 Extraction of Definitions

The ReReMi algorithm returns a set of redescriptions with their respective Jac-
card coefficients. For measuring the precision of the algorithm, each redescription
is manually evaluated by a domain expert. Hereafter, a redescription which is
considered as “valid” by the expert is called a definition. This allows us to com-
pute the precision as the ratio of definitions to redescriptions (see in section 4.4).
Table 2 presents the redescriptions extracted along with their Jaccard coefficient.

In the Turing_Award_laureates dataset, most of the discovered definitions
are about universities (redescriptions R1 and R2), whereas definitions discovered
4 The datasets and the results of the experiments are available online, see https://
gitlab.inria.fr/jreynaud/iccs19-redescriptions.

https://gitlab.inria.fr/jreynaud/iccs19-redescriptions
https://gitlab.inria.fr/jreynaud/iccs19-redescriptions
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Table 2: Definitions extracted by ReReMi for each dataset, along with their cor-
responding Jaccard coefficient, written in a Description Logics-like formalism. If
the evaluator answered true to the question, the symbol ≡ is used. Otherwise,
the symbol 6≡ is used.

N. Redescription jacc
Turing_Award_laureates

R1 Harvard_University_alumni ≡ ∃almaMater.Harvard_University .89
R2 Stanford_University_alumni ≡ ∃almaMater.Stanford_University .56
R3 British_computer_scientists 6≡ ∃award.Fellow_of_the_Royal_Society .63

Sports_cars
R4 McLaren_vehicles ≡ ∃manufacturer.McLaren_Automotive .86
R5 McLaren_vehicles ≡ ∃assembly.Surrey .75
R6 2010_automobiles u Audi_Vehicles 6≡ ∃manufacturer.Audi .55

Smartphones
R7 Nokia_mobile_phones ≡ ∃manufacturer.Nokia .82
R8 Samsung_Galaxy ≡ ∃manufacturer.Samsung_Electronics u ∃operatingSystem.Android_OS .66
R9 MeeGo_Devices 6≡ ∃operatingSystem.Sailfish_OS .73

French_films
R10 Films_directed_by_Georges_Méliès ≡ ∃director.Georges_Méliès .98
R11 Film_scores_by_Georges_Delerue ≡ ∃musicComposer.Georges_Delerue .82
R12 Films_directed_by_Georges_Méliès 6≡ ∃director.Georges_Méliès u ∃language.Silent_Film .50

in the two datasets Sports_cars and Smartphones are mostly about manufac-
turers. In the dataset French_films, all the redescriptions except one are related
to “Georges Méliès”. This means that such attributes have a support high enough
to supporting redescriptions.

Most of the “invalid” mined redescriptions are based on a description which
is too “approximate”, i.e. there are possibly too many exceptions to the rule.
For example, a large proportion of British computer scientists are also fellows
of the Royal Society, but not all are award winners (see rule R3). In some other
cases, there are not enough counter-examples in the dataset. For example, in
redescription R9, there are too few Meego smartphones which are not running
Sailfish in the dataset.

4.3 Extraction of the Incompatible Categories

The results about the extraction of incompatible categories are a bit disappoint-
ing for the dataset Turing_Award_laureates. Indeed, most of the categories
discovered by ReReMi are not incompatible. This is maybe due to the fact that
this dataset is about persons. Then the categories are characterizations of these
persons w.r.t. a part of their life (e.g. where they studied and when they were
born). Thus, most of the categories in this dataset cannot be incompatible, and
there are too few objects to provide counter-examples.
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Table 3: Incompatibilities discovered by ReReMi for each dataset. In all reported
cases jacc = 0. The axioms are written in a Description Logics-like formalism.

N. Incompatible categories
Turing_Award_laureates

R13 Harvard_University_alumni u Scientist_from_California ≡ ⊥
R14 Fellows_of_the_British_Computer_Society u Jewish_American_scientists ≡ ⊥
R15 Massachusetts_Institute_of_Technology_faculty u IBM_Fellows ≡ ⊥

Sports_cars
R16 1970s_automobiles u Cars_introduced_in_1998 ≡ ⊥
R17 Kit_cars u Coupes ≡ ⊥
R18 1960s_automobiles u Lotus_racing_cars ≡ ⊥

Smartphones
R19 Blackberry u Nokia_mobile_phones ≡ ⊥
R20 Mobile_phones_introduced_in_2013 u Mobile_phones_introduced_in_2014 ≡ ⊥
R21 Touchscreen_mobile_phone u Nokia_platforms ≡ ⊥

French_films
R22 1980s_drama_films u 1970s_comedy_films ≡ ⊥

The other datasets provide better results. In the Sports_cars dataset, a
lot of categories are incompatible because they denote cars from different time
span, such as redescription R16 in Table 3. In the Smartphones dataset, a lot of
categories are incompatible because they denote phones from different brands,
such as redescription R19. For these two datasets, the ReReMi algorithm discovers
a lot of incompatible categories. Finally, only one redescription is returned for
the French_films dataset.

4.4 Discussion

Table 4: Results of the two experiments for each dataset. In the definition discov-
ery settings, the number of extracted redescriptions (|R|) and evaluated as true
(|D|) are reported, along with the precision ( |R||D| ). In the settings of incompatible
categories, the number of disjunctions axioms extracted (|N |) is reported.

Nb triples |R| |D| Prec. |N |
Turing_Award_laureates 2642 12 9 .75 30
Smartphones 8418 36 12 .67 121
Sports_cars 9047 98 57 .58 63
French_films 121496 52 30 .58 1

The number of extracted category definitions along with the number of in-
compatible categories are reported in Table 4. These results are specific and
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depends on the data domain, and thus cannot be generalized to the whole DB-
pedia. For discovering more general definitions, we probably need to process
larger datasets, e.g. instead of Turing_Award_laureates, considering a dataset
about Person . This would bring at the same time scalability issues that may
be overcome with sampling or by using a pre-processing to select only a sub-
set of predicates or by optimising the criteria used by the algorithm. Further
experimentation in this direction could be considered in the future.

Discovered rules may look trivial, because DBpedia uses “explicit” labels
for categories. However, in LOD, all categories are not labelled by an explicit
name. In Wikidata, for example, the category corresponding to the French films
is Q393063. Our approach do not use the semantics of the labels and can be
generalised to other knowledge bases which do not use explicit labels.

The experiments also demonstrate the difficulty of data selection. Here, we
use datasets of various sizes and domains. Finding a set of categories allowing
to extract a good set of triples w.r.t. the constraints of the experiments is not
straightforward. This calls for complex SPARQL queries and this underlines the
interest of having better information about categories.

Most of the time, there is only one attribute in the right side of a redescrip-
tion, meaning that such an attribute is very discriminant and that redescriptions
do not have any attribute in common. Then, it can be difficult to build a par-
tial ordering between the defined categories. By contrast, in the Smartphones
dataset, we have the redescription R8 and

Samsung_Mobile_Phone ≡ ∃manufacturer.Samsung_Electronics

In this case, from these two redescriptions, we can infer that
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Fig. 2: Number of redescriptions extracted w.r.t. the Jaccard coefficient.
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Fig. 3: Precision of the redescriptions w.r.t. the Jaccard coefficient.

Figure 2 shows the number of redescriptions found w.r.t. the Jaccard coef-
ficient. Compared to association rules, the number of redescriptions is 2 to 10
times less [12]. The number of extracted redescriptions seems to be correlated
with the density of the dataset, i.e. “the more dense the dataset is, the more
redescriptions are extracted”. This graduality becomes less important when the
Jaccard coefficient increases.

Figure 3 shows the precision w.r.t. the Jaccard coefficient. The precision
increases w.r.t. the threshold of the Jaccard coefficient, meaning that the Jac-
card coefficient is a suitable measure for redescription mining in LOD. The pre-
cision depends on the datasets. It seems to be correlated to the size of the
dataset and/or to the number of extracted redescriptions. However, further ex-
periments should be performed to test this hypothesis. The low score of the
Turing_Award_laureates dataset can be explained in two ways. Either the
dataset is too small to mine definitions, or this is due to the nature of the dataset.
Again, the fact that Turing_Award_laureates dataset is about persons could
also explain the difference with the other datasets.

Finally, the results are interesting regarding both incompatible categories
and definitions; Even with a low precision, the definitions which are obtained
make sense and are quite easy to interpret for an analyst. However, the results
obtained for the incompatible categories are a bit different. There are only a
few incompatible categories and this fact is not due to the approximation of the
Jaccard coefficient, since jacc = 0 for every pair of incompatible categories. This
could mean that discovering category definitions and discovering incompatibles
categories are not dual problems, although the main difference between the two
tasks is based on the value of the Jaccard coefficient.

On a more semantic level, given a set S, it cannot be straightforwardly stated
that any element which is not in S is necessarily incompatible with elements in
S, especially if we work in terms of open world assumption. This last point is
also matter to future work.
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5 Related Work

In [14], authors rely on evidential terminological decision trees (EDTD) to clas-
sify instances w.r.t. assertions in which they are involved. An EDTD is a decision
tree where nodes are labeled with a logical formula and a value in [0, 1] which
can be interpreted as the probability of the logical formula to be true. This al-
lows the authors to match a class with an assertion. The lower is the assertion
in the tree, the more specific it is. To complete, the same authors in [13] search
for a set of pairwise disjoint clusters in building a decision tree where each node
corresponds to a concept description. Then, two concept descriptions at different
leaf nodes are necessary disjoint.

By contrast, in [9], authors rely on rule mining and search for obligatory class
attributes. Given a class, an obligatory attribute denotes a relation that every in-
dividual of the class should be involved in, e.g. every person has a birthdate, and
then hasBirthdate is an obligatory attribute of class Person. While in [9], au-
thors are not interested in the range of relations, authors in [1] take into account
both relations and their range. They rely on FCA [8] and extracted association
rules to define classes. Attributes are based on pairs Ai = (predicatei, objecti)
and implications Ai ⇒ Aj are searched. Only implications whose converse has a
high support w.r.t. are kept as candidate definitions.

FCA and association rules are also used in [16], where authors build differ-
ent formal contexts in order to discover specific relations, such as subsumption
between two classes or transitivity of a relation for example.

In [11], authors aim to classify resources from RDF data, focusing on the
relations existing between resources. For a resource s and a class C, they compute
the probability of s to belong to C w.r.t. the relations in s. For example, resources
with the relation hasBirthdate are instances of the class Person.

Contrasting other approaches, authors in [3,4] consider the RDF graph and
propose the algorithm AMIE+, which mainly focuses on relations, without con-
sidering domain and range. AMIE+ searches for implications between relations.
For example, people married to a person who lives in some place P also live in
P is the kind of rule that can be extracted by AMIE+.

We position ourselves in the continuity of these works. However, while most of
the approaches search for implications, we search for definition and disjunctions
using redescription mining. Regarding disjunction, authors in [15] propose a gold
standard for class disjointness in DBpedia and compare a supervised approach
based on machine learning and a statistical approach based on schema induction
for learning disjointness. Their approach shows some similarities with our own
approach as detailed in [12].

6 Conclusion and Future Work

In this paper, we present an original use of redescription mining for discovering
definitions and disjunctions of categories in DBpedia. The approach involves
RM in a very original task; The experimental results show that the approach is
well-founded and comparable to related work approaches.
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In future work, we would like to make more usage of the expressiveness of RM,
i.e. using ¬ and ∨ Boolean connectors, for discovering more complex redescrip-
tions. However, one problem could be the scalability when processing large sparse
datasets. Moreover, another improvement would be to consider datatype prop-
erties such as dates or distances. Since ReReMi handles numerical data, we could
discover redescriptions including literals such as “cars manufactured in 1997”.
Finally, another research direction is related to attributes which are partially
ordered. This is possible in FCA thanks to pattern structures [7]. However,
this is not yet integrated in RM. Such an extension would allow to discover
SongWriter ≡ ∃isCreating.Song from the triples 〈x, a, dbo : SongWriter〉,
〈x, isCreating, y〉, and 〈y, a, dbo : Song〉.
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