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Abstract
The typical RNN (Recurrent Neural Network) pipeline in

SLU (Spoken Language Understanding), and specifically in the
slot-filling task, consists of three stages: word embedding, con-
text window representation, and label prediction. Label predic-
tion, as a classification task, is the one that creates a sensible
context window representation during learning through back-
propagation. However, due to natural variations of the data,
differences in two same-labeled samples can lead to dissimilar
representations, whereas similarities in two differently-labeled
samples can lead to them having close representations. In com-
puter vision applications, specifically in face recognition and
person re-identification, this problem has recently been success-
fully tackled by introducing data triplets and a triplet loss func-
tion.

In SLU, each word can be mapped to one or multiple labels
depending on small variations of its context. We exploit this fact
to construct data triplets consisting of the same words with dif-
ferent contexts that form a pair of datapoints with matching tar-
get labels and an another pair with non-matching labels. By us-
ing these triplets and an additional loss function, we update the
context window representation in order to improve it, make dis-
similar samples more distant and similar samples closer, leading
to better classification results and an improved rate of conver-
gence.
Index Terms: spoken language understanding, recurrent neu-
ral networks, RNN, triplets, triplet loss, triplet mining, hard
triplets, long short-term memory, LSTM, gated recurrent units,
GRU, ATIS, SNIPS, MEDIA, deep learning

1. Introduction
In all generality, in typical deep learning applications, samples
are often represented in a high-dimensional latent space, where
drawing a decision boundary is easier. There, similar sam-
ples are often clustered and dissimilar ones reside further apart.
However, sometimes samples from different target classes that
resemble each-other in the input space may end up being sim-
ilar in the latent space and samples from the same target class
may end up being dissimilar in the latent space due to natu-
ral variations in the input space [1]. This is especially true for
cases where not many samples are at disposal and there is a
high variability in the input space. To address this issue, in the
task of face recognition and person re-identification, an archi-
tecture consisting of 3 instances of a siamese network [2] (a
network containing two or more identical subnetwork compo-
nents sharing the same weights) was used to perform learning
by minimizing a, at the time unusual, triplet loss function [3, 4].

Similarly, introducing a triplet loss function was later
shown to be successful for computing text similarity [5] with
a character-based bidirectional LSTM network, for learning a

metric in speaker diarization [6, 7, 8] with an end-to-end to
end architecture, and for recognizing speech emotion [9] by
adding it to an LSTM network. In speaker verification, a triplet
loss [10, 11] was proven successful on short inputs both with an
end-to-end CNN architecture [12, 13] and when used with an
Euclidean mining metric on a bidirectional LSTM-based archi-
tecture. A triplet loss was also successfully deployed in speaker
recogntion [14], spoken language identification [15] and even
in multispeaker spech synthesis [16].

In the task of slot filling a similar, but less performing, ap-
proach introduced a ranking loss [17] in order to achieve a sim-
ilar effect. We propose to exploit the polysemy present in the
dataset by introducing a triplet loss and a mining strategy to
a bidirectional RNN architecture, in order to generate a more
discriminative latent representation such that there is a more ef-
fective separation of dissimilar samples.

2. Datasets
In the experimental part of this work, three datasets are used:
ATIS (Air Travel Information Services), SNIPS and MEDIA
(Méthodologie d’Evaluation automatique de la compréhension
hors et en contexte du DIAlogue - evaluation of man-machine
dialogue systems). These three datasets vary in their language,
complexity, size and degree of exploitability of the polysemous
nature of the words found therein. In ATIS and MEDIA, the
inputs that we use consists of three values: a word, a class to
which the word belongs — if feasible, and a target label. Words
are the original words, as transcribed from the source. Word
classes are database entries of known words that belong to the
same cluster. (To illustrate words that are undoubtedly a city
name, e.g. “London”, “Paris” and so on, can form a cluster
named “CITY” that replaces them). Finally, target labels are the
labels to which the words belong to, given their current context.
SNIPS, however, consists solely of words and labels.

2.1. ATIS

The ATIS [18] datasets is dedicated to systems providing
flight information. It consists of a training set of 4978 ut-
terances, a testing set of 893 utterances and contains a to-
tal of 1117 possible words. Polysemy-wise, ATIS is not
very complex. Its average number of possible labels per
word is only 1.41, with 860 words having the median value
of only one possible label. Words having the highest num-
ber of possible labels are cities, typically with 5 possible
labels (“null”, “city name’’, and “toloc.city name”, “from-
loc.city name”, “stoploc.city name”), with the only exception
of “Washington” that has 6 possible labels, since it can also be
a state (“toloc.state name”).

Figure 1 illustrates the histogram of possible labels per
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Figure 1: Histograms illustrating the distribution of the number
of possible labels for each word (on a logarithmic scale) for the
ATIS, SNIPS and MEDIA datasets.

word. For ATIS, it also indicates the simplicity of the dataset
and the low amount of polysemy found therein. This is a poten-
tially compelling observation reinforcing the arguments regard-
ing the excessive simplicity of the dataset, already postulated by
the authors of [19] and [20].

2.2. SNIPS

SNIPS [21] is a new dataset developed as part of the Snips Voice
Platform, a framework focusing on SLU on IoT devices. It con-
sist of a training and a testing set with a total of 12582 different
words and 72 possible target labels, distributed within 13784
sentences present in the training set and 700 sentences of the
testing set. Regarding polysemy, words have from 1 to 22 pos-
sible labels, with the average number of 1.48 possible labels per
word. 9853 words have the median value of only one possible
label and 9 words (“in”, “my”, “of”, “the”, etc.) have more than
15 labels.

2.3. MEDIA

The MEDIA [22] dataset was created by ELDA following a
Wizard of Oz Protocol where a total of 250 speakers went
through 5 different hotel reservation scenarios each. It consists
of a training set with 720 dialogues (12K messages), a devel-
opment / cross-validation set of 200 dialogues (3K messages)
and a testing set with 79 dialogues (3K messages). The dataset
consists of a total of 2428 possible words and a total of 138
possible labels. Polysemy-wise, words in MEDIA have an av-
erage of 2.55 possible labels, varying from the median of only
one label up to a total of 72 possible labels per word, and a
vast portion of available words have up to 20 possible labels, as
nicely illustrated by the histogram in Figure 1. The words with
an unusually high number of possible labels (more than 50) are:
“la”, “de”, “à”, “pour”, “le”, “un”, and “les”, while 1418
words have the median value of only one possible label.

3. Polysemous Triplets and Mining
In the context of spoken language understanding and specif-
ically slot tagging, we define polysemy as the coexistence
of many possible target labels for a given word within the
dataset. We do not analyze the general coexistence of many
possible meanings of each world and we are only interested
in the possible labels occurring within the dataset. More
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Figure 2: The triplet loss aims at altering the representation
space to make the representation of same-labeled samples more
similar and the representation of different-labeled samples more
dissimilar.

specifically, only the labels occurring for a given word (or
word class) within the training set of the dataset are taken
into consideration. Given any word wi occurring within a
phrase in the dataset, we define its target label yi and its con-
text window (of size c), that forms an input sample xi ={
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A triplet is then defined as a set of 3 input samples xorig ,
xpos and xneg (a random original sample that is treated as
anchor, a positive sample, and a negative sample) such as
that all three of them have the same central word (wn

orig =
wn

pos = wn
neg) but only two of them have the same target la-

bel (yorig = ypos) while the third one has a different target
label (yorig 6= ypos and, by transitivity, ypos 6= yneg).

In practice, it is only possible to form triplets for words
that have at least two possible target labels occurring within the
dataset and at least two different sentences (context windows)
per label. (Although it would be possible to use labels with
only one sentence as negative samples, we keep the dataset bal-
anced and impose a minimum requirement of at least two sam-
ple sentences per label.) This makes the number of available
sentences / context windows smaller but, given the number of
combinations of possible target labels per word and the num-
ber of combination of sentences / possible context windows per
target label, it does not have a negative impact.

3.1. Triplet Loss

The seminal idea of a triplet loss is to make the representations
of inputs that lead to the same target label similar (even if they
are initially dissimilar due to very different context windows
surrounding the same central word) and representations of in-
puts that lead to different target labels dissimilar (even if they
are originally similar do to very similar context windows sur-
rounding the same central word), as illustrated in Figure 2.

When training a classification network, the neural architec-
ture consists of a word embedding layer that takes one input
consisting of a context window with c words. The output of the
embedding layer is then given to a bidirectional GRU (Gated
Recurrent Unit) layer [23] (or any other RNN network for that
matter). This is then followed by a fully-connected dense layer
and an activation layer to predict the classes of the given cen-
tral word of the context window, as illustrated in the top part of
Figure 3. Learning is performed by minimizing a classification
loss such as categorical cross-entropy.

Training the network with a triplet loss reuses the first part
of the classification architecture, namely the embedding and
bidirectional GRU layers that form a siamese network sharing
the architecture and weights across all its instances. Three in-
stances are used, one for each element of the input triplet. This
time, a loss is attached directly to the output of the bidirectional
GRU networks that represent the context windows representa-
tion space. Here, the loss will alter directly the representation
space by making the representations of xorig and xpos more



Embedding

Dense

Activation

Bidirectional
GRU

xorig

Embedding

Bidirectional
GRU

xpos

Embedding

Bidirectional
GRU

xneg

Triplet Loss

Si
am

es
e 

N
et

w
or

ks

Embedding

Bidirectional
GRU

x

Classification Loss
Si

am
es

e 
N

et
w

or
k

Figure 3: Siamese networks consisting of an embedding and a
bidirectional GRU layer shared across the architecture. One
instance is used to perform and learn classification (top image)
and three instances, with no additional layers, are used when
training with a triplet loss.

similar and the representations of xorig and xneg more dissim-
ilar. Formally, the triplet loss function is defined as follows:

L(xo, xp, xn) =

N∑
i

max
{
‖f(xoi)− f(xpi)‖

2 − ‖f(xoi)− f(xni)‖
2 + α, 0

}

Let f(x) indicate the output of a siamese network for a
given input x. The equation minimizes the distance between
the representations of xorig and xpos (f(xorig) and f(xpos)
respectively) and maximizes the distance between the represen-
tations of xorig and xneg (f(xorig) and f(xneg) respectively).
A scalar, α is introduced to enforce a minimal margin between
the two representations and, to prevent accidental negative val-
ues for the loss function, all the values below zero are removed.
The loss is then aggregated over all theN samples of the current
input batch.

Although the target labels are not directly presented during
training, they are implicitly given to the network through the
selection of input triplets, thus making learning with a triplet
loss fall still under the supervised learning category. It is also
important to note that both losses have to be minimized dur-
ing training (both architectures have to be trained) since the fi-
nal fully-connected dense layer of the classifier would remain
uninitialized if only the triplet loss is minimized. Additionally,
the dense layer of the classifier needs to be updated and fine-
tuned as the representation outputted by the siamese networks
changes over time.

3.2. Mining Strategies

When forming a batch of triplets for training, it is possible to use
different strategies to select the labels and their corresponding
input context windows for each of the selected labels. The sim-
plest approach would be to simply randomly select two labels
(out of all the possible labels) for each word and then select two
inputs that support the chosen labels for the given word. We
denote this as a random mining strategy, although it does not
really perform any mining and it consists solely of a random se-
lection of appropriate datapoints to form triplets. This makes it
the fastest selection method.

Instead of selecting samples randomly to create triplets, it
is possible to first compute a similarity between all the possible
labels for a given word and select the most similar samples (that
given that they support different labels should instead be dissim-
ilar). We refer to this method as hard triplet mining. Given that
computing the similarity of all the pairs of possible target labels
for each word can be quite expensive, this can be performed
once every epoch or less frequently. After the similarities be-
tween all the possible label pairs for each word are computed,
only the top most difficult can be kept. Additionally different
similarity measures can be used for mining hard triplets. In this
work we evaluate both Euclidean and cosine distances as pos-
sible similarity measures for hard triplet selection, as they are
both compatible with the previously stated triplet loss function.

4. Experimental Evaluation
All the experiments, regardless of the loss function used, were
performed with a context window of 11 words (5 words be-
fore and 5 words after the current word), a word embedding
space with a dimensionality of 200, a batch size of 32 and a
dropout following the siamese networks of 50%. Different con-
text window sizes and embedding sizes either decreased the per-
formance or did not further improve it [24]. Implementation-
wise, the described architectures were implemented with the
Keras [25] API of the TensorFlow framework and each experi-
ment was run 4 times in order to compute averaged results and
their respective standard deviations, as illustrated in Table 1.
When mining hard triplets, after computing the similarity scores
of all the possible different label combinations for the given
words, only the top 2% “hardest” (most similar ones that should
be dissimilar) were kept and made available for selection during
the formations of the batches.

4.1. Overall Performance

Table 1 illustrates the averaged results obtained over multi-
ple runs of each experimental setup and their respective stan-
dard deviations. When comparing the different setups we use a
single-sided t-test to determine the intervals of significance of
our hypotheses.

4.1.1. ATIS

Introducing a triplet loss and hard mining during training out-
performs training performed solely with a classification loss
with 95.66% (Euclidean distance) and 95.58% (cosine dis-
tance), compared to 95.53% in F1. This can be stated with
a significance of 90% and 80% respectively, according to a
single-sided t-test. Although hard mining with an Euclidean
distance appears to outperform hard mining with a cosine dis-
tance, which then outperforms random mining — on ATIS, this
can be stated only with 70% significance.



Strategy Mining Sim. Measure Accuracy Precision Recall F1
ATIS

classification only - 98.00 (0.06) 94.86 (0.15) 96.21 (0.19) 95.53 (0.17)
class. & triplet - random mining - 98.02 (0.08) 94.99 (0.24) 96.19 (0.21) 95.58 (0.19)
class. & triplet - hard mining Euclidean 98.07 (0.04) 94.99 (0.15) 96.34 (0.12) 95.66 (0.13)
class. & triplet - hard mining cosine 98.06 (0.04) 94.99 (0.10) 96.25 (0.14) 95.61 (0.10)

SNIPS
classification only - 94.22 (0.19) 84.54 (0.60) 89.62 (0.52) 87.00 (0.41)

class. & triplet - random mining - 94.63 (0.18) 85.16 (0.31) 90.18 (0.37) 87.59 (0.31)
class. & triplet - hard mining Euclidean 94.59 (0.41) 85.60 (0.65) 90.57 (0.57) 88.01 (0.56)
class. & triplet - hard mining cosine 94.68 (0.23) 85.36 (0.47) 90.55 (0.47) 87.88 (0.25)

MEDIA
classification only - 88.81 (0.09) 82.93 (0.42) 84.34 (0.33) 83.63 (0.16)

class. & triplet - random mining - 89.19 (0.11) 82.76 (0.34) 85.16 (0.26) 83.94 (0.06)
class. & triplet - hard mining Euclidean 89.08 (0.18) 82.83 (0.55) 85.39 (0.52) 84.08 (0.32)
class. & triplet - hard mining cosine 89.00 (0.06) 83.36 (1.43) 85.26 (0.26) 84.01 (0.19)

Table 1: Performances of the various recurrent architectures on ATIS, SNIPS and MEDIA: averaged (over 4 runs) accuracy, precision,
recall, F1 measure (%) and their respective standard deviations (in parenthesis) as computed by the conlleval evaluation tool. The
levels of significance, for each pair compared, are discussed within the text.

4.1.2. SNIPS

A simple classification loss based training achieves 87.00% in
terms of F1, which is comparable to the performance of Snips
NLU [21]. All triplet loss based evaluations outperform that
with 87.59% (for random triplet selection), 87.88% (for hard
mining with a cosine distance) and finally, with 88.01% (for
hard triplet mining with an Euclidean distance). The signifi-
cances of those statements are 95%, 98% and 99% respectively,
according to a single-sided t-test.

4.1.3. MEDIA

The empirical results show that introducing a triplet loss is ben-
eficial and outperforms (regardless of the mining method used)
training that is performed only with a classification loss with
a p = 98% interval of significance. Strictly speaking, the
best performing method appears to be the variant with a triplet
loss and hard mining with an Euclidean similarity measure that
achieves 84.08% in F1, compared to the 83.63% of a classifi-
cation only architecture. When comparing solely the hard min-
ing similarity measures, no significant hypothesis can be ac-
cepted and all the method perform equally well from a realistic
standpoint. Nevertheless, with an slightly less-acceptable sig-
nificance of p = 86%, we can state that hard mining methods
outperform random mining in terms of F1 score.

4.2. Rate of Convergence

The rate of convergence (cross-validation on the development
set of the MEDIA dataset) during training is illustrated on Fig-
ure 4. Clearly, introducing a triplet loss increases the speed of
convergence significantly (75.97% in F1 after only one epoch
of training when a triplet loss and hard mining are introduced,
compared to 20.78% after one epoch when using exclusively
a classification loss). However, it is worth noting that the dif-
ference in final performance is small and not very significant
(75.08% in F1 for hard mining vs 73.08% for random mining
after one epoch compared to 84.08% vs 83.94% for the final
F1 score) thus making the choice of the mining strategy a cost-
benefit based one. The same boost in convergence speed was
present in ATIS (82.50% vs. 66.40% after the first epoch) and
SNIPS (82.88% vs. 5.42% after the first epoch).
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Figure 4: Rate of convergence on MEDIA (validation set). In-
troducing a triplet loss improves the speed of convergence and
the overall performance in comparison to using only a classifi-
cation loss. However, there is only a small difference in the final
F1 score between the different mining methods thus making the
choice of a mining strategy a cost-benefit based one.

5. Conclusions
We proposed the introduction of a triplet loss, in addition to the
classification loss, in recurrent neural network approaches to
solving the SLU task of slot filling, and we evaluated different
triplet mining techniques on three datasets: ATIS, SNIPS and
MEDIA. The experimental evaluation clearly demonstrated that
introducing a triplet loss significantly (p = 98% according to
a single-sided t-test of significance) improves the classification
performance of recurrent neural networks and increases their
convergence speed consistently on all datasets. Moreover, we
showed that hard triplet mining additionally improves the per-
formance (with an Euclidean distance based hard triplet mining
as the best performing strategy), although the improvement sig-
nificance is slightly smaller so the choice of its use can thus
be formulated through a cost-benefit analysis between the im-
proved performance and slightly increased overhead of select-
ing hard triplets as compared to the random mining strategy.
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nature verification using a” siamese” time delay neural network,”
in Advances in neural information processing systems, 1994, pp.
737–744.

[3] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of
the IEEE conference on computer vision and pattern recognition,
2015, pp. 815–823.

[4] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss
for person re-identification,” arXiv preprint arXiv:1703.07737,
2017.

[5] P. Neculoiu, M. Versteegh, and M. Rotaru, “Learning text simi-
larity with siamese recurrent networks,” in Proceedings of the 1st
Workshop on Representation Learning for NLP, 2016, pp. 148–
157.

[6] H. Song, M. Willi, J. J. Thiagarajan, V. Berisha, and A. Spanias,
“Triplet network with attention for speaker diarization,” arXiv
preprint arXiv:1808.01535, 2018.

[7] R. Yin, H. Bredin, and C. Barras, “Neural speech turn segmenta-
tion and affinity propagation for speaker diarization,” in Annual
Conference of the International Speech Communication Associa-
tion, 2018.

[8] G. Le Lan, D. Charlet, A. Larcher, and S. Meignier, “A triplet
ranking-based neural network for speaker diarization and linking.”
in INTERSPEECH, 2017, pp. 3572–3576.

[9] J. Huang, Y. Li, J. Tao, and Z. Lian, “Speech emotion recognition
from variable-length inputs with triplet loss function,” in Proc.
Interspeech 2018, 2018, pp. 3673–3677. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2018-1432

[10] L. Wan, Q. Wang, A. Papir, and I. L. Moreno, “Generalized
end-to-end loss for speaker verification,” in 2018 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2018, pp. 4879–4883.

[11] W. Ding and L. He, “Mtgan: Speaker verification through mul-
titasking triplet generative adversarial networks,” arXiv preprint
arXiv:1803.09059, 2018.

[12] C. Zhang and K. Koishida, “End-to-end text-independent speaker
verification with triplet loss on short utterances,” in Proc.
Interspeech 2017, 2017, pp. 1487–1491. [Online]. Available:
http://dx.doi.org/10.21437/Interspeech.2017-1608

[13] C. Zhang, K. Koishida, and J. H. Hansen, “Text-independent
speaker verification based on triplet convolutional neural net-
work embeddings,” IEEE/ACM Transactions on Audio, Speech
and Language Processing (TASLP), vol. 26, no. 9, pp. 1633–1644,
2018.

[14] S. Novoselov, V. Shchemelinin, A. Shulipa, A. Kozlov, and
I. Kremnev, “Triplet loss based cosine similarity metric learn-
ing for text-independent speaker recognition,” Proc. Interspeech
2018, pp. 2242–2246, 2018.

[15] G. Gelly and J.-L. Gauvain, “Spoken language identification us-
ing lstm-based angular proximity.” in INTERSPEECH, 2017, pp.
2566–2570.

[16] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, P. Nguyen,
R. Pang, I. L. Moreno, Y. Wu et al., “Transfer learning from
speaker verification to multispeaker text-to-speech synthesis,” in
Advances in Neural Information Processing Systems, 2018, pp.
4480–4490.

[17] N. T. Vu, P. Gupta, H. Adel, and H. Schütze, “Bi-directional recur-
rent neural network with ranking loss for spoken language under-
standing,” in 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Ieee, 2016, pp. 6060–
6064.

[18] D. A. Dahl, M. Bates, M. Brown, W. Fisher, K. Hunicke-Smith,
D. Pallett, C. Pao, A. Rudnicky, and E. Shriberg, “Expanding the
scope of the ATIS task: the ATIS-3 corpus,” in HLT, 1994, pp.
43–48.
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