Vedran Vukotić

Christian Raymond

Mining Polysemous Triplets with Recurrent Neural Networks for Spoken Language Understanding

Keywords: spoken language understanding, recurrent neural networks, RNN, triplets, triplet loss, triplet mining, hard triplets, long short-term memory, LSTM, gated recurrent units, GRU, ATIS, SNIPS, MEDIA, deep learning

The typical RNN (Recurrent Neural Network) pipeline in SLU (Spoken Language Understanding), and specifically in the slot-filling task, consists of three stages: word embedding, context window representation, and label prediction. Label prediction, as a classification task, is the one that creates a sensible context window representation during learning through backpropagation. However, due to natural variations of the data, differences in two same-labeled samples can lead to dissimilar representations, whereas similarities in two differently-labeled samples can lead to them having close representations. In computer vision applications, specifically in face recognition and person re-identification, this problem has recently been successfully tackled by introducing data triplets and a triplet loss function.

In SLU, each word can be mapped to one or multiple labels depending on small variations of its context. We exploit this fact to construct data triplets consisting of the same words with different contexts that form a pair of datapoints with matching target labels and an another pair with non-matching labels. By using these triplets and an additional loss function, we update the context window representation in order to improve it, make dissimilar samples more distant and similar samples closer, leading to better classification results and an improved rate of convergence.

Introduction

In all generality, in typical deep learning applications, samples are often represented in a high-dimensional latent space, where drawing a decision boundary is easier. There, similar samples are often clustered and dissimilar ones reside further apart. However, sometimes samples from different target classes that resemble each-other in the input space may end up being similar in the latent space and samples from the same target class may end up being dissimilar in the latent space due to natural variations in the input space [START_REF] Dinarelli | Label-dependency coding in simple recurrent networks for spoken language understanding[END_REF]. This is especially true for cases where not many samples are at disposal and there is a high variability in the input space. To address this issue, in the task of face recognition and person re-identification, an architecture consisting of 3 instances of a siamese network [START_REF] Bromley | Signature verification using a" siamese" time delay neural network[END_REF] (a network containing two or more identical subnetwork components sharing the same weights) was used to perform learning by minimizing a, at the time unusual, triplet loss function [START_REF] Schroff | Facenet: A unified embedding for face recognition and clustering[END_REF][START_REF] Hermans | In defense of the triplet loss for person re-identification[END_REF].

Similarly, introducing a triplet loss function was later shown to be successful for computing text similarity [START_REF] Neculoiu | Learning text similarity with siamese recurrent networks[END_REF] with a character-based bidirectional LSTM network, for learning a metric in speaker diarization [START_REF] Song | Triplet network with attention for speaker diarization[END_REF][START_REF] Yin | Neural speech turn segmentation and affinity propagation for speaker diarization[END_REF][START_REF] Le Lan | A triplet ranking-based neural network for speaker diarization and linking[END_REF] with an end-to-end to end architecture, and for recognizing speech emotion [START_REF] Huang | Speech emotion recognition from variable-length inputs with triplet loss function[END_REF] by adding it to an LSTM network. In speaker verification, a triplet loss [START_REF] Wan | Generalized end-to-end loss for speaker verification[END_REF][START_REF] Ding | Mtgan: Speaker verification through multitasking triplet generative adversarial networks[END_REF] was proven successful on short inputs both with an end-to-end CNN architecture [START_REF] Zhang | End-to-end text-independent speaker verification with triplet loss on short utterances[END_REF][START_REF] Zhang | Text-independent speaker verification based on triplet convolutional neural network embeddings[END_REF] and when used with an Euclidean mining metric on a bidirectional LSTM-based architecture. A triplet loss was also successfully deployed in speaker recogntion [START_REF] Novoselov | Triplet loss based cosine similarity metric learning for text-independent speaker recognition[END_REF], spoken language identification [START_REF] Gelly | Spoken language identification using lstm-based angular proximity[END_REF] and even in multispeaker spech synthesis [START_REF] Jia | Transfer learning from speaker verification to multispeaker text-to-speech synthesis[END_REF].

In the task of slot filling a similar, but less performing, approach introduced a ranking loss [START_REF] Vu | Bi-directional recurrent neural network with ranking loss for spoken language understanding[END_REF] in order to achieve a similar effect. We propose to exploit the polysemy present in the dataset by introducing a triplet loss and a mining strategy to a bidirectional RNN architecture, in order to generate a more discriminative latent representation such that there is a more effective separation of dissimilar samples.

Datasets

In the experimental part of this work, three datasets are used: ATIS (Air Travel Information Services), SNIPS and MEDIA (Méthodologie d'Evaluation automatique de la compréhension hors et en contexte du DIAlogue -evaluation of man-machine dialogue systems). These three datasets vary in their language, complexity, size and degree of exploitability of the polysemous nature of the words found therein. In ATIS and MEDIA, the inputs that we use consists of three values: a word, a class to which the word belongs -if feasible, and a target label. Words are the original words, as transcribed from the source. Word classes are database entries of known words that belong to the same cluster. (To illustrate words that are undoubtedly a city name, e.g. "London", "Paris" and so on, can form a cluster named "CITY" that replaces them). Finally, target labels are the labels to which the words belong to, given their current context. SNIPS, however, consists solely of words and labels.

ATIS

The ATIS [START_REF] Dahl | Expanding the scope of the ATIS task: the ATIS-3 corpus[END_REF] datasets is dedicated to systems providing flight information. It consists of a training set of 4978 utterances, a testing set of 893 utterances and contains a total of 1117 possible words. Polysemy-wise, ATIS is not very complex. Its average number of possible labels per word is only 1.41, with 860 words having the median value of only one possible label. Words having the highest number of possible labels are cities, typically with 5 possible labels ("null", "city name'', and "toloc.city name", "fromloc.city name", "stoploc.city name"), with the only exception of "Washington" that has 6 possible labels, since it can also be a state ("toloc.state name").

Figure 1 illustrates the histogram of possible labels per word. For ATIS, it also indicates the simplicity of the dataset and the low amount of polysemy found therein. This is a potentially compelling observation reinforcing the arguments regarding the excessive simplicity of the dataset, already postulated by the authors of [START_REF] Béchet | Is ATIS too shallow to go deeper for benchmarking Spoken Language Understanding models?[END_REF] and [START_REF] Vukotić | Is it time to switch to Word Embedding and Recurrent Neural Networks for Spoken Language Understanding?[END_REF].

SNIPS

SNIPS [START_REF] Coucke | Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces[END_REF] is a new dataset developed as part of the Snips Voice Platform, a framework focusing on SLU on IoT devices. It consist of a training and a testing set with a total of 12582 different words and 72 possible target labels, distributed within 13784 sentences present in the training set and 700 sentences of the testing set. Regarding polysemy, words have from 1 to 22 possible labels, with the average number of 1.48 possible labels per word. 9853 words have the median value of only one possible label and 9 words ("in", "my", "of", "the", etc.) have more than 15 labels.

MEDIA

The MEDIA [START_REF] Bonneau-Maynard | Semantic Annotation of the French Media Dialog Corpus[END_REF] dataset was created by ELDA following a Wizard of Oz Protocol where a total of 250 speakers went through 5 different hotel reservation scenarios each. It consists of a training set with 720 dialogues (12K messages), a development / cross-validation set of 200 dialogues (3K messages) and a testing set with 79 dialogues (3K messages). The dataset consists of a total of 2428 possible words and a total of 138 possible labels. Polysemy-wise, words in MEDIA have an average of 2.55 possible labels, varying from the median of only one label up to a total of 72 possible labels per word, and a vast portion of available words have up to 20 possible labels, as nicely illustrated by the histogram in Figure 1. The words with an unusually high number of possible labels (more than 50) are: "la", "de", "à", "pour", "le", "un", and "les", while 1418 words have the median value of only one possible label.

Polysemous Triplets and Mining

In the context of spoken language understanding and specifically slot tagging, we define polysemy as the coexistence of many possible target labels for a given word within the dataset. We do not analyze the general coexistence of many possible meanings of each world and we are only interested in the possible labels occurring within the dataset. More specifically, only the labels occurring for a given word (or word class) within the training set of the dataset are taken into consideration. Given any word wi occurring within a phrase in the dataset, we define its target label yi and its context window (of size c), that forms an input sample xi = w

n-c 2 i , • • • , w n-1 i , w n i , w n+1 i , • • • , w n+ c 2 i
. A triplet is then defined as a set of 3 input samples xorig, xpos and xneg (a random original sample that is treated as anchor, a positive sample, and a negative sample) such as that all three of them have the same central word (w n orig = w n pos = w n neg) but only two of them have the same target label (yorig = ypos) while the third one has a different target label (yorig = ypos and, by transitivity, ypos = yneg).

In practice, it is only possible to form triplets for words that have at least two possible target labels occurring within the dataset and at least two different sentences (context windows) per label. (Although it would be possible to use labels with only one sentence as negative samples, we keep the dataset balanced and impose a minimum requirement of at least two sample sentences per label.) This makes the number of available sentences / context windows smaller but, given the number of combinations of possible target labels per word and the number of combination of sentences / possible context windows per target label, it does not have a negative impact.

Triplet Loss

The seminal idea of a triplet loss is to make the representations of inputs that lead to the same target label similar (even if they are initially dissimilar due to very different context windows surrounding the same central word) and representations of inputs that lead to different target labels dissimilar (even if they are originally similar do to very similar context windows surrounding the same central word), as illustrated in Figure 2.

When training a classification network, the neural architecture consists of a word embedding layer that takes one input consisting of a context window with c words. The output of the embedding layer is then given to a bidirectional GRU (Gated Recurrent Unit) layer [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF] (or any other RNN network for that matter). This is then followed by a fully-connected dense layer and an activation layer to predict the classes of the given central word of the context window, as illustrated in the top part of Figure 3. Learning is performed by minimizing a classification loss such as categorical cross-entropy.

Training the network with a triplet loss reuses the first part of the classification architecture, namely the embedding and bidirectional GRU layers that form a siamese network sharing the architecture and weights across all its instances. Three instances are used, one for each element of the input triplet. This time, a loss is attached directly to the output of the bidirectional GRU networks that represent the context windows representation space. Here, the loss will alter directly the representation space by making the representations of xorig and xpos more similar and the representations of xorig and xneg more dissimilar. Formally, the triplet loss function is defined as follows:

L(xo, xp, xn) = N i max f (xo i) -f (xp i) 2 -f (xo i) -f (xn i) 2 + α, 0 Let f (x)
indicate the output of a siamese network for a given input x. The equation minimizes the distance between the representations of xorig and xpos (f (xorig) and f (xpos) respectively) and maximizes the distance between the representations of xorig and xneg (f (xorig) and f (xneg) respectively). A scalar, α is introduced to enforce a minimal margin between the two representations and, to prevent accidental negative values for the loss function, all the values below zero are removed. The loss is then aggregated over all the N samples of the current input batch.

Although the target labels are not directly presented during training, they are implicitly given to the network through the selection of input triplets, thus making learning with a triplet loss fall still under the supervised learning category. It is also important to note that both losses have to be minimized during training (both architectures have to be trained) since the final fully-connected dense layer of the classifier would remain uninitialized if only the triplet loss is minimized. Additionally, the dense layer of the classifier needs to be updated and finetuned as the representation outputted by the siamese networks changes over time.

Mining Strategies

When forming a batch of triplets for training, it is possible to use different strategies to select the labels and their corresponding input context windows for each of the selected labels. The simplest approach would be to simply randomly select two labels (out of all the possible labels) for each word and then select two inputs that support the chosen labels for the given word. We denote this as a random mining strategy, although it does not really perform any mining and it consists solely of a random selection of appropriate datapoints to form triplets. This makes it the fastest selection method.

Instead of selecting samples randomly to create triplets, it is possible to first compute a similarity between all the possible labels for a given word and select the most similar samples (that given that they support different labels should instead be dissimilar). We refer to this method as hard triplet mining. Given that computing the similarity of all the pairs of possible target labels for each word can be quite expensive, this can be performed once every epoch or less frequently. After the similarities between all the possible label pairs for each word are computed, only the top most difficult can be kept. Additionally different similarity measures can be used for mining hard triplets. In this work we evaluate both Euclidean and cosine distances as possible similarity measures for hard triplet selection, as they are both compatible with the previously stated triplet loss function.

Experimental Evaluation

All the experiments, regardless of the loss function used, were performed with a context window of 11 words (5 words before and 5 words after the current word), a word embedding space with a dimensionality of 200, a batch size of 32 and a dropout following the siamese networks of 50%. Different context window sizes and embedding sizes either decreased the performance or did not further improve it [START_REF] Vukotić | A step beyond local observations with a dialog aware bidirectional gru network for spoken language understanding[END_REF]. Implementationwise, the described architectures were implemented with the Keras [25] API of the TensorFlow framework and each experiment was run 4 times in order to compute averaged results and their respective standard deviations, as illustrated in Table 1. When mining hard triplets, after computing the similarity scores of all the possible different label combinations for the given words, only the top 2% "hardest" (most similar ones that should be dissimilar) were kept and made available for selection during the formations of the batches.

Overall Performance

Table 1 illustrates the averaged results obtained over multiple runs of each experimental setup and their respective standard deviations. When comparing the different setups we use a single-sided t-test to determine the intervals of significance of our hypotheses.

ATIS

Introducing a triplet loss and hard mining during training outperforms training performed solely with a classification loss with 95.66% (Euclidean distance) and 95.58% (cosine distance), compared to 95.53% in F1. This can be stated with a significance of 90% and 80% respectively, according to a single-sided t-test. Although hard mining with an Euclidean distance appears to outperform hard mining with a cosine distance, which then outperforms random mining -on ATIS, this can be stated only with 70% significance. 1: Performances of the various recurrent architectures on ATIS, SNIPS and MEDIA: averaged (over 4 runs) accuracy, precision, recall, F1 measure (%) and their respective standard deviations (in parenthesis) as computed by the conlleval evaluation tool. The levels of significance, for each pair compared, are discussed within the text.

Strategy

SNIPS

A simple classification loss based training achieves 87.00% in terms of F1, which is comparable to the performance of Snips NLU [START_REF] Coucke | Snips voice platform: an embedded spoken language understanding system for private-by-design voice interfaces[END_REF]. All triplet loss based evaluations outperform that with 87.59% (for random triplet selection), 87.88% (for hard mining with a cosine distance) and finally, with 88.01% (for hard triplet mining with an Euclidean distance). The significances of those statements are 95%, 98% and 99% respectively, according to a single-sided t-test.

MEDIA

The empirical results show that introducing a triplet loss is beneficial and outperforms (regardless of the mining method used) training that is performed only with a classification loss with a p = 98% interval of significance. Strictly speaking, the best performing method appears to be the variant with a triplet loss and hard mining with an Euclidean similarity measure that achieves 84.08% in F1, compared to the 83.63% of a classification only architecture. When comparing solely the hard mining similarity measures, no significant hypothesis can be accepted and all the method perform equally well from a realistic standpoint. Nevertheless, with an slightly less-acceptable significance of p = 86%, we can state that hard mining methods outperform random mining in terms of F1 score.

Rate of Convergence

The rate of convergence (cross-validation on the development set of the MEDIA dataset) during training is illustrated on Figure 4. Clearly, introducing a triplet loss increases the speed of convergence significantly (75.97% in F1 after only one epoch of training when a triplet loss and hard mining are introduced, compared to 20.78% after one epoch when using exclusively a classification loss). However, it is worth noting that the difference in final performance is small and not very significant (75.08% in F1 for hard mining vs 73.08% for random mining after one epoch compared to 84.08% vs 83.94% for the final F1 score) thus making the choice of the mining strategy a costbenefit based one. The same boost in convergence speed was present in ATIS (82.50% vs. 66.40% after the first epoch) and SNIPS (82.88% vs. 5.42% after the first epoch). Introducing a triplet loss improves the speed of convergence and the overall performance in comparison to using only a classification loss. However, there is only a small difference in the final F1 score between the different mining methods thus making the choice of a mining strategy a cost-benefit based one.

Conclusions

We proposed the introduction of a triplet loss, in addition to the classification loss, in recurrent neural network approaches to solving the SLU task of slot filling, and we evaluated different triplet mining techniques on three datasets: ATIS, SNIPS and MEDIA. The experimental evaluation clearly demonstrated that introducing a triplet loss significantly (p = 98% according to a single-sided t-test of significance) improves the classification performance of recurrent neural networks and increases their convergence speed consistently on all datasets. Moreover, we showed that hard triplet mining additionally improves the performance (with an Euclidean distance based hard triplet mining as the best performing strategy), although the improvement significance is slightly smaller so the choice of its use can thus be formulated through a cost-benefit analysis between the improved performance and slightly increased overhead of selecting hard triplets as compared to the random mining strategy.

Figure 1 :

 1 Figure 1: Histograms illustrating the distribution of the number of possible labels for each word (on a logarithmic scale) for the ATIS, SNIPS and MEDIA datasets.

Figure 2 :

 2 Figure 2: The triplet loss aims at altering the representation space to make the representation of same-labeled samples more similar and the representation of different-labeled samples more dissimilar.

Figure 3 :

 3 Figure 3: Siamese networks consisting of an embedding and a bidirectional GRU layer shared across the architecture. One instance is used to perform and learn classification (top image) and three instances, with no additional layers, are used when training with a triplet loss.

 Class. & triplet -random mining Class. & triplet -hard mining (Eucl.) Class. & triplet -hard mining (cos)

Figure 4 :

 4 Figure4: Rate of convergence on MEDIA (validation set). Introducing a triplet loss improves the speed of convergence and the overall performance in comparison to using only a classification loss. However, there is only a small difference in the final F1 score between the different mining methods thus making the choice of a mining strategy a cost-benefit based one.