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Abstract

We use a combination of experiments, numerical analysis and theory to investigate the nonlinear
dynamic response of a chain of precompressed elastic beams. Our results show that this simple system
offers a rich platform to study the propagation of large amplitude waves. Compression waves are
strongly dispersive, whereas rarefaction pulses propagate in the form of solitons. Further, we find that
the model describing our structure closely resembles those introduced to characterize the dynamics of
several molecular chains and macromolecular crystals, suggesting that our macroscopic system can
provide insights into the effect of nonlinear vibrations on molecular mechanisms.

1. Introduction

Following the seminal numerical experiment of Fermi—Pasta—Ulam-Tsingou [ 1], which was related by Zabusky
and Kruskal to the propagation of solitons [2], a variety of model equations, solution methods and experimental
platforms have been developed to investigate the dynamics of discrete and nonlinear one-dimensional
mechanical systems across many scales [3—8]. At the macroscopic scale, propagation of solitary waves has been
observed in a variety of nonlinear mechanical systems, including chains of elastic beads [9—14], tensegrity
structures [15], origami chains [16], wrinkled and creased helicoids [17] and flexible architected solids [18-21].
Moreover, it has been found that even at the molecular scale solitons affect the properties of a variety of one-
dimensional structures, including macromolecular crystals [22], polymer chains [23—26], DNA and protein
molecules [27-30]. Since detailed experimental investigation of the dynamic behavior of these microscopic
systems is limited by their scale, the identification of macroscale structures capable of describing their response is
of particular interest as those offer opportunities to visualize the underlying molecular mechanisms.

In this work, we focus on a chain of pin-joined elastic beams subjected to homogeneous static
precompression and use a combination of experiments, numerical simulations and theoretical analyses to
investigate the propagation of nonlinear pulses. We find that, while large amplitude rarefaction waves propagate
in the chain with constant velocity while conserving their spatial shape, the excited compression waves are
strongly dispersive. Further theoretical analysis via a continuum model reveals that the system supports solitary
solution only for rarefaction pulses—a behavior that roots from the softening behavior of the beams upon
compression. Remarkably, we also find that the model describing our system closely resembles those introduced
to characterize the dynamics of several molecular chains and macromolecular crystals [22, 24-26]. As such, since
the propagation of pulses in our system can be easily visualized, we envision our model to provide opportunities
to elucidate how nonlinear vibrations and pre-deformation affect the macroscopic properties of polymers and
other macro-molecular chains.

©2019 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Our system consists of a chain of pin-joined precompressed elastic beams. (b) Schematic of our system. Both top view and
side view are shown.

2. Experiments

Our sample consists of along chain of N = 40 elastic beams free to rotate at their ends, but constrained to move
only in longitudinal direction (see figure 1(a)). All beams are made of polyester plastic sheets (Artus
Corporation, NJ) and have thickness t = 0.75 mm, length I, = 50 mm, width ¥ = 60 mm and Young’s
modulus E = 4.3 GPa. Four pairs of screws and nuts are added along their middle line to increase their mass,
therefore reducing the speed of the propagating pulses and facilitating their tracking (see figures 1(a), (b)).
Moreover, both ends of the beams are connected via plastic clamps (McMaster-Carr part number 8876T11) to
LEGO axles (LEGO part number 3708) covered by sleeves (LEGO part number 62462 and 6590) that serve as
hinges. The resulting unit cell has length a = 75 mm and the beam offset by a distance e = 5.2 mm from the the
line of action of the applied axial load (see figure 1(b)). Finally, to constrain the chain to move only in
longitudinal direction, all LEGO hinges are confined to slide in a metallic rail, lubricated to minimize friction.

All our experiments consist of two steps and are conducted on the chain with the left-end connected to a
heavy and rigid body and the right-one fixed (see figure 2(c)). First, we compress the structure by slowly moving
the heavy rigid body at the left end towards the right by a distance Ax. Such applied displacement induces a
longitudinal pre-strain

Ax

Est = N a > (1)
in all beams (with only small variations of ~5% between the units along the chain) and bends them (see
figure 2(a)). In figure 2(b) we show the experimentally measured force required to apply a pre-strain &, to our
beams. We find that the response of the beams is continuous (buckling snap-through is absent due to the
eccentricity e) and that their stiffness monotonically decreases as the precompression increases. As such, our
pre-deformed elastic units exhibit a strain-softening behavior if further compressed and a strain-hardening
response under stretching.

Second, we initiate an elastic pulse at the left end of the precompressed chain. We strike the heavy rigid body
with ahammer toward the right to excite compression pulses, whereas we simply release the rigid body to
generate rarefaction pulses (see figure 2(c)). We then record the elastic wave propagation through the first 30
units of the chain with a digital camera (SONY RX100) at 480 fps (see movie S1 is available online at stacks.iop.
org/NJP/21/073008/mmedia) and use digital image correlation [31, 32] to monitor the displacement g; (see
figure 2(c)) of the ith hinge induced by the pulse. Finally, we calculate the longitudinal strain induced by the
propagating pulse in the ith beam as

_ i1~ 4

g = ——, 2
Ast

where ag, = (1 + eg)ais the unit cell length after precompression.
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Figure 2. (a) Schematic of the experimental setup used to measure F; as a function of the applied precompression. (b) Fy—¢ relation
measured in our experiments. (c) Schematic of the experimental setup used to characterize the propagation of large amplitude waves.

(d) Input signal g, (¢) and (e) strain distribution ¢; for a rarefaction pulse propagating in a chain characterized by e, = —0.1. (f) Input
signal g, (¢) and (g) strain distribution €; for a compression pulse propagating in a chain characterized by e, = —0.1. (h), (i) Strain
distribution ¢; for a (h) rarefaction and (i) compression pulse propagating in a chain characterized by e, = —0.2.

In figures 2(d)-(g) we focus on two different experiments conducted on a chain pre-compressed by applying
es = —0.1 and report both the displacement signal prescribed by the impactor to the first joint, ,(¢), and the
spatio-temporal evolution of the strain ;. We find that, when we initiate a rarefaction pulse (see figure 2(d)), the
wave propagates in a solitary fashion, maintaining both its shape (with an amplitude max(e;) ~ 0.11) and
velocity (~10.4 m s~ '_see figure 2(e)). By contrast, when the impact moves the first beam rightwards (see
figure 2(f)), the excited compression pulse disperses as it travels through the structure (see figure 2(g)). As such,
in full agreement with previous studies on mechanical chains exhibiting strain-softening [16, 33], our
experimental results suggest that large amplitude rarefaction waves are stable, whereas compression pulses
disperse. Finally, we want to point out that, while the experimental results reported in figures 2(d)—(g) are for a
chain with a pre-strain 5, = —0.1, qualitatively similar behaviors are observed in our tests for €, = —0.2 (see
figures 2(h), (i)). However, using our setup we could not test propagation of pulses in chains subjected to larger
compressive pre-strains, as these result in failure of the beams.
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Figure 3. (a) Schematic of our discrete model. In step 1, the structure is statically deformed by applying e. (b) Comparison between
the Fi—e relation predicted by equation (5) and measured in experiments. (c) Schematic of our discrete model. In step 2, we excite the
propagation of nonlinear waves in the pre-deformed chain. (d), (e) Distribution of strain for the two pulses considered in figure 2 as
predicted by our experiments (square markers), numerical analysis (triangular markers) and theory (continuous line) at three different
times. (f), (g) Phase-space plots for the pulses considered in (d) and (e), respectively.

3. Discrete model

To test the validity of our experimental observations, we establish a discrete model in which each elastic beam is
modeled as two rigid rods with length I = \/e? + a?/4 = 38 mm initially rotated by a small angle

0y = arctan(2e/a) = 0.14 to account for the eccentricity e (see figure 3(a)). Each pair of rods is connected at the
center by a rotational spring with stiffness ky = EI/l, = 0.22 Nm (I = bt’/12 being the area moment of inertia of
the beams) that captures the bending stiffness of the elastic beams, while their other two ends are free to slide and
rotate (see figure 3(a)). Moreover, we assume that the mass m of the beams is concentrated at the ends of the rigid
rods. Specifically, we place a mass "’ = am at the ends connected by the torsional spring (with & € [0, 1]) and
two masses m? = (1 — «) m/2 at the other ends (see figure 3(a)). Since in our structure the mass of the beams,
hinges and screws/nuts is 3 g, 7 gand 8 g, we find that for the considered system m = 18 gand o =0.56. It

4
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should also be noted that our discrete model is similar to the one proposed to describe solitons propagation in
polyethylene macromolecules [24-26], providing an interesting analogy between mechanical beams and
molecular units.

Identically to our experiments, all our simulations consists of two steps. In the first step we statically
compress the structure by reducing the unit cell length to a(1 + &) (see figure 3(a)). Such reduction in unit cell
length increases the angle between all rods and the horizontal line from 6, to

© = by + O 3)

where 0, is the rotation induced by the precompression, which can be expressed as a function of ¢ using

cos© = %(1 + £4). 4)

Note that the precompression of the beams requires application of a force F, that satisfies
Et lSin@ - kggst =0. (5)

In figure 3(b) we compare the Fg—¢; relation predicted by equations (3)—(5) with experimental measurements
and find that the static response of the beams is well captured by the discrete model.
In the second step, we then simulate the propagation of nonlinear waves in the pre-deformed chain (see

figure 3(¢)). To this end, we define the Lagrangian of the system

N1 1 1

L=>" —mW@i + v+ —mPq> — —kg(20 + 26,)%, (6)

~ 2 2
where u; and v; are the longitudinal and transverse displacements of the ith mass mV excited by the pulse and 6;
denotes the wave-induced rotation of the ith pair of rods (see figure 3(c)). Since in our discrete model each unit
has only one degree of freedom, u;, v;and 6; can be expressed as a function of the longitudinal displacement of the
hinges, g;, as

1
U = E(qi+1 + ql')) (7a)
o — g+ 2lcos© )
y, = \/lz (‘L+1 q12 cos ) — Isin©, (7b)
0; = arccos(u + cos @) — 6. (7¢)

By using equations (7), (6) can be written only in terms of g;and ¢;, and the discrete motion equations of the
system can then be obtained via the Euler-Lagrange equations as

i 8L(qi, 7B) _ 8L(q,», 7B _
dt| 9, 0q;

1

0, i=1, .,N. (8)

For a chain comprising N beams, equation (8) result in a system of N coupled differential equations, which
we numerically solve using the 4th order Runge—Kutta method (via the Matlab function ode45—see supporting
information for the Matlab code). To test the relevance of our discrete model, in figures 3(d) and (e) we focus on
the two tests presented in figure 2 and compare the evolution of €; along the chain as extracted from experiments
(square markers) and simulations (triangular markers) at three different times. Moreover, in figures 3(f) and (g)
we show the numerically obtained phase-space plots for the two pulses. Note that in our numerical analysis we
consider a chain comprising N = 40 units, assign £, = —0.1 to all beams (as in our experiments), apply the
experimentally extracted displacement signal g, () (see figures 2(d) and (f)) to the first beam and implement
fixed boundary conditions at the right end. Remarkably, the numerical results nicely capture the behavior
observed in our experiments. As shown in figure 3(d), the numerical analyses indicate that the excited
rarefaction pulse propagates without apparent distortion with a velocity of ~9.8 m s . This prediction is very
close to the experimentally measured value of ~10.4 m s~ '—uwith the discrepancy mostly arising because our
simple model underestimates the stiffness of the beams upon loading (see figure 3(a)). Moreover, the phase-
space plot for rarefaction shows a clear homoclinic orbit (see figure 3(f)), which is consistent with a solitary wave
solution. By contrast, the compressive pulse is not stable (see figure 3(e))—a feature that is also captured by the
chaotic trajectories emerging in the phase-space plot (see figure 3(g)).

4. Continuum model

Having verified the validity of our discrete model, we then simplify equations (8) to derive an analytical solution.
To this end, we first introduce a continuous function g that interpolates the discrete variables g; as

5
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qlx = x;) = g )

wherex; = (i — 1)ay denotes the position of the left end of the ith beam in the chain after static precompression.
Then, we assume that: (I) ¢; < 1, so that equations (7b) and (7c) can be approximated as

o A — 4 (@41 — ;)

2tan© 8/sin’ ©
P i cos© (q;,, — )’ (10)
' 21sin © 81%sin’ © ’

and (II) the width of the propagating pulse is much larger than the unit cell length 4, so that the displacement of
the (i — 1)thand (i + 1)thjoints can be expressed using Taylor expansion as

o [ S
41~ \|4 + aseq + D) 9yx + Qyexx + Qsexxx

6 24
X=X
2 3 4
st Ast st
o~ |g - aeg + g, - g + , 11
di1 (q sty 2 9xx 6 Dxx 24 qxxxx) - ( )
where g, = 0q/0x. Substitution of equations (10), (11) into equation (8) yields the continuum governing
equation
2
q, = i (1 — Oy cot©) (qxx + O qm) + al*(cot’© — 1)q,,.. /4
+ c¢(3cot® — by — 30, cot?O) cot © 9,9 (12)

where ¢y = 2a cot ©/ky/m denotes the characteristic velocity of the system. Finally, we take the derivative of
equation (12) with respect to x and then introduce the continuum strain distribution ¢ = 9q/0x to obtain

2
en = c¢(1 — Oy cot @)(exx + 11—2 sxm) + al?(cot?© — 1) ey /4

2
+ %0(3 cot® — Oy — 30y cot?©) cot O (£2) 4, (13)

which has the form of a double-dispersion Boussinesq equation [34] with the double-dispersion term &,
introduced because of the intertia coupling between m‘" and m® (if m" = 0, then o = 0 and the coefficient in
front of €4, vanishes). Note that the double-dispersion Boussinesq equation was first derived by Boussinesq in
the 19th century to account for both the horizontal and vertical flow velocity in the description of nonlinear
water waves [34] and has subsequently been used to describe nonlinear waves in a variety of systems, including
microstructured solids [35, 36] and polyethylene [24].

Remarkably, it has been shown that the Boussinesq equation admits the solitary wave solution [37, 38]

e=A sechz(x — Ct), (14)
w

where cis the velocity of the pulse and A and W are its amplitude and characteristic width, which are given by

B 3(c2 — ¢§ + ¢f Oy cot©)
cZ(3cot® — Oy — 3064 cot?0)cot®’

w l\/cs_g(l — B cot©) + a(cot?® — 1)c?

15
¢ —cg + ¢ Oy cot® 1
Finally, the displacement distribution g(x) can be obtained as
x — ct
4(x) :fs(x)dx:AWtanh( )+ C (16)

where Cis the integration constant that is found as C = —AW by imposing g(x — oo) = 0.

Using equation (15), we find that for A = 0.11 (i.e. for a pulse with the same amplitude as the one excited in
the experiment of figures 2(d) and (e)), a solitary wave with ¢ = 9.31 m s~ ' and W = 91.6 mm propagates
through the system, in good agreement with both our experimental and numerical observations (see
figure 3(d)). By contrast, for a compression pulse with A = —0.11 (i.e. for a pulse with the same amplitude as the
one excited in the experiment of figures 2(f) and (g)), equation (15) yields an imaginary W, confirming that our
solitary wave solution is not valid anymore.
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Figure 4. (a), (b) Analytically predicted evolution of (a) the width Wand (b) the velocity c as a function of the amplitude A and the
applied pre-strain €. The gray area highlights the region in which the width predicted by the continuum model is imaginary. (c)-(h)
Numerical (markers) and analytical (lines) results for a chain characterized by (¢, A) = (¢)(—0.1,0.11), (d) (0.1, —0.11), (e) (—0.2,
0.11), (f) (—0.2,—0.11), (g) (—0.3,0.11) and (h) (—0.3, —0.11). All numerical results are for a chain with N = 80 beams to which the
analytical solution given by equation (16) is applied to the first unit. Note that the results for the compression pulses are obtained by
applying the solution given by equation (16) with W = 100 mmand ¢ = 10 m s~ . Although the choice of Wand cis completely
arbitrary, qualitatively identical results are obtained for any real Wand c.

Having verified the ability of the analytical solutions to capture our experimental observations, we now use it
to investigate how the pre-strain £, affects the propagation of the pulses. In figures 4(a) and (b) we report the
evolution of Wand ¢ predicted by equation (15) as a function of A and £,. Remarkably, we find that, irrespective
of e, our structure supports solitons onlyif A > 0. For A < 0 the width Wpredicted by equation (15) is an
imaginary number and our solitary solution is not anymore valid. We also find that the width W of the supported
rarefaction solitons is mostly affected by the amplitude A, whereas the pulse velocity c monotonically decreases
with the increase in precompression (—ey)—a dependency that is consistent with the strain-softening behavior
of the unit cells under compression. Finally, we note that the predictions of our continuum model are in
excellent agreement with those obtained by directly integrating the system of ordinary differential equations
given by equation (8). As an example, in figures 4(c)—(h) we compare the results given by our continuum and
discrete models for A = 40.11 and three different levels of applied pre-strain (i.e. ¢, = —0.1, —0.2 and —0.3).

7
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Figure 5. Analytically predicted evolution of the width Wand the velocity c as a function of the amplitude A and the applied pre-strain
e for a chain characterized by (a), (b) @ = 1and 6, = 0.14 and (c), (d) & = 0.56 and 6, = 0.3. The gray area highlights the region in
which the width predicted by the continuum model is imaginary, so that the solitary wave solution is not valid.

The numerical results confirm that only for A > 0 the pulses are stable (and characterized by width and speed
very close to those predicted by equation (15)), whereas for A < 0 they are strongly dispersive.

Lastly, we use our analytical solution to investigate the influence of the structural parameters (o, m, kg and
o) on the characteristics of the supported nonlinear waves. We find that, while m and kg (which can be altered by
changing the dimensions and material properties of the beams) only affect the characteristic velocity of the
system ¢y = 2ag cot ©/kyg/m , o (which can be altered by adding or removing screws and nuts along the center
line of the beams) and 6, (which can be tuned by changing the offset distance e) alter both cand W (see figure 5).
Furthermore, an exhaustive search in all combinations of structural parameters predicts that nonlinear pulses

are stableifand onlyif A > 0 (see figure 5)—indicating that this system can support rarefaction solitons but not
compression ones.

5. Conclusions

To summarize, we use a combination of experiments, numerical analyses and theory to investigate the
propagation of solitary waves in a 1D chain of precompressed elastic beams. First, we have conducted
experiments on a centimeter-scale system to characterize the propagation of large amplitude compression and
rarefaction pulses and found that, while the compression pulses disperse, the rarefaction ones retain their shape
and propagate with constant velocity. Second, we have derived a continuum model that captures the
experimental observations and confirms that the system supports rarefaction solitons only. It is important to
emphasize that such behavior is consistent with the static behavior of the precompressed beams (see figure 3(b)),
since it has been shown that a chain of units exhibiting softening behavior only supports the propagation of
rarefaction solitary waves [33].

This study represents the first step towards the investigation of large amplitude waves in beam lattices in 2D
and 3D. While periodic lattices have recently attracted considerable interest because of their ability to tailor the
propagation of linear elastic waves through directional transmissions and band gaps (frequency ranges of strong
wave attenuation) [39—43], comparatively little is known about their nonlinear behaviors under high-amplitude
impacts [20]. The results presented in this paper provide useful guidelines for future explorations of the
propagation of nonlinear waves in lattice materials. Finally, since the derived model shares strong similarities
with those established to describe the dynamics of polymer and macromolecular crystals [22—27], we believe that
our experimental platform (which gives direct access to all parameters and variables of the system) could provide
insights into a range of nonlinear wave effects relevant at the molecular scale. In particular, the extension of the
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present system to a bistable one in which the beams could bend up and down (in our current setup the bending
direction is limited by the surface on which the system is placed) could elucidate the dynamics of topological
solitons in polyacetylene [23].
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