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Abstract

In this paper, we present the first differen-
tially private clustering method for arbitrary-
shaped node clusters in a graph. This algo-
rithm takes as input only an approximate Min-
imum Spanning Tree (MST) T released under
weight differential privacy constraints from the
graph. Then, the underlying nonconvex clus-
tering partition is successfully recovered from
cutting optimal cuts on T . As opposed to ex-
isting methods, our algorithm is theoretically
well-motivated. Experiments support our the-
oretical findings.

1 INTRODUCTION

Weighted graph data is known to be a useful representa-
tion data type in many fields, such as bioinformatics or
analysis of social, computer and information networks.
More generally, a graph can always be built based on
the data dissimilarity where points of the dataset are the
vertices and weighted edges express “distances” between
those objects. For both cases, graph clustering is one of
the key tools for understanding the underlying structure
in the graph (Schaeffer, 2007). These clusters can be seen
as groups of nodes close in terms of some specific simi-
larity.

Nevertheless, it is critical that the data representation
used in machine learning applications protects the pri-
vate characteristics contained into it. Let us consider an
application where one wants to identify groups of similar
web pages in the sense of traffic volume i.e. web pages
with similar audience. In that case, the nodes stand for
the websites. The link between two vertices represents
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the fact that some people consult them both. In such a
framework, the web browsing history of an individual is
used to set the edge weights. We consider that this his-
tory can be a very sensitive information for the user, since
he/she could have visited sensible content web pages.
Treating such datasets as non-private could lead to leak-
ing information such as his/her political, sexual, or reli-
gious preferences. As a standard for data privacy preser-
vation, differential privacy (Dwork et al., 2006b) has
been designed: an algorithm is differentially private if,
given two close databases, it produces statistically indis-
tinguishable outputs. Since then, its definition has been
extended to weighted graphs. Though, machine learning
applications ensuring data privacy remain rare, in par-
ticular for clustering which encounters severe theoretical
and practical limitations. Indeed, some clustering meth-
ods lack of theoretical support and most of them restrict
the data distribution to convex-shaped clusters (Nissim
et al., 2007; Blum et al., 2008; McSherry, 2009; Dwork,
2011) or unstructured data (Ho and Ruan, 2013; Chen
et al., 2015). Hence, the aim of this paper is to offer a
theoretically motivated private graph clustering. More-
over, to the best of our knowledge, this is the first weight
differentially-private clustering algorithm able to detect
clusters with an arbitrary shape for weighted graph data.

Our method belongs to the family of Minimum Span-
ning Tree (MST)-based approaches. An MST represents
a useful summary of the graph, and appears to be a nat-
ural object to describe it at a lower cost. For clustering
purposes, it has the appealing property to help retriev-
ing non-convex shapes (Zahn, 1971; Asano et al., 1988;
Grygorash et al., 2006; Morvan et al., 2017). Moreover,
they appear to be well-suited for incorporating privacy
constraints as will be formally proved in this work.

Contributions: Our contributions are threefold: 1) we
provide the first theoretical justifications of MST-based
clustering algorithms. 2) We endow DBMSTCLU algo-
rithm (Morvan et al., 2017), an MST-based clustering al-
gorithm from the literature, with theoretical guarantees.



3) We introduce a differentially-private version of DBM-
STCLU and give several results on its privacy/utility
tradeoff.

2 PRELIMINARIES

2.1 NOTATIONS

Let G = (V,E,w) be a simple undirected weighted
graph with a vertex set V , an edge set E, and a weight
function w := E → R. One will respectively call the
edge set and the node set of a graph G using the ap-
plications E(G) and V (G). Given a node set S ⊂ V ,
one denotes by G|S the subgraph induced by S. We call
G = (V,E) the topology of the graph, andWE denotes
the set of all possible weight functions mapping E to
weights in R. For the remaining of this work, cursive
letter are used to represent weighted graphs and straight
letters refer to topological arguments. Since graphs are
simple, the path Pu−v between two vertices u and v is
characterized either as the ordered sequence of vertices
{u, . . . , v} or corresponding binding edges depending on
the context. We also denote VPu−v the unordered set
of such vertices. Besides, edges eij denote an edge be-
tween nodes i and j. Finally, for all positive integer K,
[K] := {1, . . . ,K}.

2.2 DIFFERENTIAL PRIVACY IN GRAPHS

As opposed to node-differential privacy (Ka-
siviswanathan et al., 2013) and edge-differential
privacy (Hay et al., 2009), both based on the graph
topology, the privacy framework considered here is
weight-differential privacy where the graph topology
G = (V,E) is assumed to be public and the private in-
formation to protect is the weight functionw := E → R.
Under this model introduced by Sealfon (2016), two
graphs are said to be neighbors if they have the same
topology, and close weight functions. This framework
allows one to release an almost minimum spanning tree
with weight-approximation error of O (|V | log |E|) for
fixed privacy parameters. Differential privacy is ensured
in that case by using the Laplace mechanism on every
edges weight to release a spanning tree based on a
perturbed version of the weight function. The privacy
of the spanning tree construction is thus provided
by post-processing (cf. Th. 2.5). However, under a
similar privacy setting, Pinot (2018) recently manages
to produce the topology of a tree under differential
privacy without relying on the post-processing of a more
general mechanism such as the “Laplace mechanism”.
Their algorithm, called PAMST, privately releases the
topology of an almost minimum spanning tree thanks to
an iterative use of the “Exponential mechanism” instead.

For fixed privacy parameters, the weight approximation
error is O

(
|V |2
|E| log |V |

)
, which outperforms the former

method from Sealfon (2016) on arbitrary weighted
graphs under weak assumptions on the graph sparseness.
Thus, we keep here privacy setting from Pinot (2018).

Definition 2.1 (Pinot (2018)). For any edge set E, two
weight functions w,w′ ∈ WE are neighboring, denoted
w ∼ w′, if ||w − w′||∞ := max

e∈E
|w(e)− w′(e)| ≤ µ.

µ represents the sensitivity of the weight function and
should be chosen according to the application and the
range of this function. The neighborhood between such
graphs is clarified in the following definition.

Definition 2.2. Let G = (V,E,w) and G′ =
(V ′, E′, w′), two weighted graphs, G and G′ are said to
be neighbors if V = V ′, E = E′ and w ∼ w′.

The so-called weight-differential privacy for graph algo-
rithms is now formally defined.

Definition 2.3 (Sealfon (2016)). For any graph topology
G = (V,E), let A be a randomized algorithm that takes
as input a weight function w ∈ WE . A is called (ε, δ)-
differentially private on G = (V,E) if for all pairs of
neighboring weight functions w,w′ ∈ WE , and for all
set of possible outputs S, one has

P [A(w) ∈ S] ≤ eεP [A(w′) ∈ S] + δ.

If A is (ε, δ)-differentially private on every graph topol-
ogy in a class C, it is said to be (ε, δ)-differentially pri-
vate on C.

One of the first, and most used differentially private
mechanisms is the Laplace mechanism. It is based on
the process of releasing a numerical query perturbed by a
noise drawn from a centered Laplace distribution scaled
to the sensitivity of the query. We present here its graph-
based reformulation.

Definition 2.4 (reformulation Dwork et al. (2006b)).
Given some graph topology G = (V,E), for any fG :
WE → Rk, the sensitivity of the function is defined as
∆fG = max

w∼w′∈WE

||fG(w)− fG(w′)||1.

Definition 2.5 (reformulation Dwork et al. (2006b)).
Given some graph topology G = (V,E), any func-
tion fG : WE → Rk, any ε > 0, and
w ∈ WE , the graph-based Laplace mechanism is
ML(w, fG, ε) = fG(w) + (Y1, . . . , Yk) where Yi are
i.i.d. random variables drawn from Lap(∆fG/ε), and
Lap(b) denotes the Laplace distribution with scale b(

i.e probability density 1
2b exp

(
− |x|b

))
.

Theorem 2.1 (Dwork et al. (2006b)). The Laplace mech-
anism is ε-differentially private.



We define hereafter the graph-based Exponential mech-
anism. In the sequel we refer to it simply as Expo-
nential mechanism. The Exponential mechanism rep-
resents a way of privately answering arbitrary range
queries. Given some range of possible responses to the
query R, it is defined according to a utility function
uG := WE × R → R, which aims at providing some
total preorder on the range R according to the total or-
der in R. The sensitivity of this function is denoted
∆uG := max

r∈R
max

w∼w′∈WE

|uG(w, r)− uG(w′, r)| .

Definition 2.6. Given some graph topologyG = (V,E),
some output range R ⊂ E, some privacy parameter
ε > 0, some utility function uG := WE × R → R, and
some w ∈ WE the graph-based Exponential mechanism
MExp (G,w, uG,R, ε) selects and outputs an element

r ∈ R with probability proportional to exp
(
εuG(w,r)

2∆uG

)
.

The Exponential mechanism defines a distribution on a
potentially complex and large rangeR. As the following
theorem states, sampling from such a distribution pre-
serves ε-differential privacy.
Theorem 2.2 (reformulation McSherry and Talwar
(2007)). For any non-empty rangeR, given some graph
topology G = (V,E), the graph-based Exponential
mechanism preserves ε-differential privacy, i.e if w ∼
w′ ∈ WE ,

P [MExp (G,w, uG,R, ε) = r]

≤ eεP [MExp (G,w′, uG,R, ε) = r] .

Further, Th 2.3 highlights the trade-off between privacy
and accuracy for the Exponential mechanism when 0 <
|R| < +∞. Th 2.4 presents the ability of differential
privacy to comply with composition while Th 2.5 intro-
duces its post-processing property.
Theorem 2.3 (reformulation Dwork and Roth (2013)).
Given some graph topologyG = (V,E), some w ∈ WE ,
some output range R, some privacy parameter ε > 0,
some utility function uG :=WE×R → R, and denoting
OPTuG

(w) = max
r∈R

uG(w, r), one has ∀ t ∈ R,

uG (G,w,MExp (w, uG,R, ε))

≤ OPTuG
(w)− 2∆uG

ε
(t+ ln |R|)

with probability at most exp(−t).
Theorem 2.4 (Dwork et al. (2006a)). For any ε > 0,
δ ≥ 0 the adaptive composition of k (ε, δ)-differentially
private mechanisms is (kε, kδ)-differentially private.
Theorem 2.5 (Post-Processing Dwork and Roth (2013)).
Let A : WE → B be a randomized algorithm that is
(ε, δ)-differentially private, and h : B → B′ a determin-
istic mapping. Then h ◦ A is (ε, δ)-differentially private.

2.3 DIFFERENTIALLY-PRIVATE CLUSTERING

Differentially private clustering for unstructured datasets
has been first discussed in Nissim et al. (2007). This
work introduced the first method for differentially pri-
vate clustering based on the k-means algorithm. Since
then most of the work in the field focused on adapta-
tion of this method (Blum et al., 2008; McSherry, 2009;
Dwork, 2011). The main drawback of this work is that it
is not able to deal with arbitrary shaped clusters. This is-
sue has been recently investigated in Ho and Ruan (2013)
and Chen et al. (2015). They proposed two new methods
to find arbitrary shaped clusters in unstructured datasets
respectively based on density clustering and wavelet de-
composition. Even though both of them allow one to pro-
duce non-convex clusters, they only deal with unstruc-
tured datasets and thus are not applicable to node cluster-
ing in a graph. Our work focuses on node clustering in
a graph under weight-differential privacy. Graph cluster-
ing has already been investigated in a topology-based pri-
vacy framework (Mülle et al., 2015; Nguyen et al., 2016),
however, these works do not consider weight-differential
privacy. Our work is, to the best of our knowledge, the
first attempt to define node clustering in a graph under
weight differential privacy.

3 DIFFERENTIALLY-PRIVATE
TREE-BASED CLUSTERING

We aim at producing a private clustering method while
providing bounds on the accuracy loss. Our method is an
adaptation of an existing clustering algorithm DBMST-
CLU. However, to provide theoretical guarantees under
differential privacy, one needs to rely on the same kind
of guarantees in the non-private setting. Morvan et al.
(2017) did not bring them in their initial work. Hence,
our second contribution is to demonstrate the accuracy
of this method, first in the non-private context.

In the following we present 1) the theoretical framework
motivating MST-based clustering methods, 2) accuracy
guarantees of DBMSTCLU in the non-private setting, 3)
PTCLUST our private clustering algorithm, 4) its accu-
racy under differential privacy constraints.

3.1 THEORETICAL FRAMEWORK FOR
MST-BASED CLUSTERING METHODS

MST-based clustering methods, however efficient, lack
proper motivation. This Section closes this gap by pro-
viding a theoretical framework for MST-based cluster-
ing. In the sequel, notations from Section 2.1 are kept.
The minimum path distance between two nodes in the
graph is defined which enables to explicit our notion of



Cluster.

Definition 3.1 (Minimum path distance). Let be G =
(V,E,w) and u, v ∈ V . The minimum path distance
between u and v is

d(u, v) = min
Pu−v

∑
e∈Pu−v

w(e)

with Pu−v a path (edge version) from u to v in G.

Definition 3.2 (Cluster). Let be G = (V,E,w), 0 <
w(e) ≤ 1 ∀e ∈ E a graph, (V, d) a metric space based
on the minimum path distance d defined on G andD ⊂ V
a node set. C ⊂ D is a cluster iff. |C| > 2 and ∀C1, C2

s.t. C = C1 ∪ C2 and C1 ∩ C2 = ∅, one has:

argmin
z∈D\C1

{ min
v∈C1

d(z, v) } ⊂ C2

Assuming that a cluster is built of at least 3 points makes
sense since singletons or groups of 2 nodes can be legiti-
mately considered as noise. For simplicity of the proofs,
the following theorems hold in the case where noise is
neglected. However, they are still valid in the setting
where noise is considered as singletons (with each sin-
gleton representing a generalized notion of cluster).

Theorem 3.1. Let be G = (V,E,w) a graph and T a
minimum spanning tree of G. Let also be C a cluster in
the sense of Def. 3.2 and two vertices v1, v2 ∈ C. Then,
VPv1−v2

⊂ C with Pv1−v2 a path from v1 to v2 in G, and
VPv1−v2

the set of vertices contained in Pv1−v2 .

Proof. Let be v1, v2 ∈ C. If v1 and v2 are neighbors,
the result is trivial. Otherwise, as T is a tree, there ex-
ist a unique path within T between v1 and v2 denoted
by Pv1−v2 = {v1, . . . , v2}. Let now prove by reduc-
tio ad absurdum that VPv1−v2

⊂ C. Suppose there is
h ∈ VPv1−v2

s.t. h /∈ C. We will see that it leads to
a contradiction. We set C1 to be the largest connected
component (regarding the number of vertices) of T s.t.
v1 ∈ C1, and every nodes from C1 are in C. Because of
h’s definition, v2 /∈ C1. Let be C2 = C\C1. C2 6= ∅
since v2 ∈ C2. Let be z∗ ∈ argmin

z∈V \C1

{ min
v∈C1

d(z, v) } and

e∗ = (z∗, v∗) an edge that reaches this minimum. Let us
show that z∗ /∈ C. If z∗ ∈ C, then two possibilities hold:

1. There is an edge ez∗ ∈ T , s.t. ez∗ = (z∗, z′) with
z′ ∈ C1. This is impossible, otherwise by definition
of a connected component, z∗ ∈ C1. Contradiction.

2. For all ez∗ = (z∗, z′) s.t z′ ∈ C1, one has ez∗ /∈ T .
In particular e∗ /∈ T . Since h is the neighbor of C1

in G there is also eh ∈ T , s.t. eh = (h, h′) with
h′ ∈ C1. Once again two possibilities hold:

(a) w(ez∗) = min
z∈V \C1

{ min
v∈C1

d(z, v) } < w(eh).

Then, if we replace eh by ez∗ in T , its to-
tal weight decreases. So T is not a minimum
spanning tree. Contradiction.

(b) w(ez∗) = w(eh), therefore h ∈
argmin
z∈V \C1

{ min
v∈C1

d(z, v) }. Since h /∈ C,

one gets that argmin
z∈V \C1

{ min
v∈C1

d(z, v) } 6⊂ C2.

Thus, C is not a cluster. Contradiction.

We proved that z∗ /∈ C. In particular, z∗ /∈ C2. Then,
argmin
z∈V \C1

{ min
v∈C1

d(z, v) } 6⊂ C2. Thus, C is not a cluster.

Contradiction. Finally h ∈ C and VPv1−v2
⊂ C.

This theorem states that, given a graph G, an MST T , and
any two nodes ofC, every node in the path between them
is in C. This means that a cluster can be characterized by
a subtree of T . It justifies the use of all MST-based meth-
ods for data clustering or node clustering in a graph. All
the clustering algorithms based on successively cutting
edges in an MST to obtain a subtree forest are mean-
ingful in the sense of Th.3.1. In particular, this theorem
holds for the use of DBMSTCLU (Morvan et al., 2017)
presented in Section 3.2.1.

3.2 DETERMINISTIC MST-BASED
CLUSTERING

This Section introduces DBMSTCLU (Morvan et al.,
2017) that will be adapted to be differentially-private,
and provide accuracy results on the recovery of the
ground-truth clustering partition.

3.2.1 DBMSTCLU algorithm

Let us consider T an MST of G, as the unique input of
the clustering algorithm DBMSTCLU. The clustering
partition results then from successive cuts on T so that a
new cut in T splits a connected component into two new
ones. Each final connected component, a subtree of T ,
represents a cluster. Initially, T is one cluster containing
all nodes. Then, at each iteration, an edge is cut if some
criterion, called Validity Index of a Clustering Partition
(DBCVI) is improved. This edge is greedily chosen to
locally maximize the DBCVI at each step. When no im-
provement on DBCVI can be further made, the algorithm
stops. The DBCVI is defined as the weighted average of
all cluster validity indices which are based on two pos-
itive quantities, the Dispersion and the Separation of a
cluster:

Definition 3.3 (Cluster Dispersion). The Dispersion of
a cluster Ci (DISP) is defined as the maximum edge



weight of Ci. If the cluster is a singleton (i.e. con-
tains only one node), the associated Dispersion is set to
0. More formally:

∀i ∈ [K], DISP(Ci) =

{
max

j, ej∈Ci

wj if |E(Ci)| 6= 0

0 otherwise.

Definition 3.4 (Cluster Separation). The Separation of
a cluster Ci (SEP) is defined as the minimum distance
between the nodes of Ci and the ones of all other clus-
ters Cj , j 6= i, 1 ≤ i, j ≤ K,K 6= 1 where K is the
total number of clusters. In practice, it corresponds to
the minimum weight among all already cut edges from T
comprising a node from Ci. If K = 1, the Separation is
set to 1. More formally, with incCuts(Ci) denoting cut
edges incident to Ci,

∀i ∈ [K], SEP(Ci) =

{
min

j, ej∈incCuts(Ci)
wj if K 6= 1

1 otherwise.

Definition 3.5 (Validity Index of a Cluster). The Validity
Index of a cluster Ci is defined as:

VC(Ci) =
SEP(Ci)−DISP(Ci)

max(SEP(Ci),DISP(Ci))
∈ [−1; 1]

Definition 3.6 (Validity Index of a Clustering Partition).
The Density-Based Validity Index of a Clustering parti-
tion Π = {Ci}, 1 ≤ i ≤ K, DBCVI(Π) is defined as the
weighted average of the Validity Indices of all clusters in
the partition where N is the number of vertices.

DBCVI(Π) =

K∑
i=1

|Ci|
N

VC(Ci) ∈ [−1, 1]

DBMSTCLU is summarized in Algorithm 1:
evaluateCut(.) computes the DBCVI when the cut
in parameter is applied to T . Initial DBCVI is set −1.
Interested reader could refer to (Morvan et al., 2017)
Section 4. for a complete insight on this notions.

3.2.2 DBMSTClu exact clustering recovery proof

In this section, we provide theoretical guarantees for the
cluster recovery accuracy of DBMSTClu. Let us first
begin by introducing some definitions.

Definition 3.7 (Cut). Let us consider a graph G =
(V,E,w) with K clusters, T an MST of G. Let denote
(C∗i )i∈[K] the set of the clusters. Then, CutG(T ) :=
{ekl ∈ T | k ∈ C∗i , l ∈ C∗j , i, j ∈ [K]2, i 6= j}. In the
sequel, for simplicity, we denote e(ij) ∈ CutG(T ) the
edge between cluster C∗i and C∗j .

CutG(T ) is basically the set of effective cuts to perform
on T in order to ensure the exact recovery of the clus-
tering partition. More generally, trees on which CutG(.)

Algorithm 1 DBMSTCLU(T )

1: Input: T , the MST
2: dbcvi← −1.0
3: clusters← ∅
4: cut list← {E(T )}
5: while dbcvi < 1.0 do
6: cut tp← ∅
7: dbcvi tp← dbcvi
8: for each cut in cut list do
9: newDbcvi = evaluateCut(T , cut)

10: if newDbcvi ≥ dbcvi tp then
11: cut tp← cut
12: dbcvi tp← newDbcvi
13: if cut tp 6= ∅ then
14: clusters = cut(clusters, cut tp)
15: dbcvi← dbcvi tp
16: cut list← cut list\{cut tp}
17: else
18: break
19: return clusters

enables to find the right partition are said to be a parti-
tioning topology.
Definition 3.8 (Partitionning topology). Let us consider
a graph G = (V,E,w) with K clusters C∗1 , . . . , C

∗
K . A

spanning tree T of G is said to have a partitioning topol-
ogy if ∀i, j ∈ [K], i 6= j, |{e = (u, v) ∈ CutG(T ) | u ∈
C∗i , v ∈ C∗j }| = 1.

Def. 3.7 and 3.8 introduce a topological condition on the
tree as input of the algorithm. Nevertheless, conditions
on weights are necessary too. Hence, we define homoge-
neous separability which expresses the fact that within a
cluster the edge weights are spread in a controlled man-
ner.
Definition 3.9 (Homogeneous separability condition).
Let us consider a graph G = (V,E,w), s ∈ E and T
a tree of G. T is said to be homogeneously separable by
s, if

αT max
e∈E(T )

w(e) < w(s) with αT =

max
e∈E(T )

w(e)

min
e∈E(T )

w(e)
≥ 1.

One will write for simplicity that HT (s) is verified.
Definition 3.10 (Weak homogeneity condition of a Clus-
ter). Let us consider a graph G = (V,E,w) with K
clusters C∗1 , . . . , C

∗
K . A given cluster C∗i , i ∈ [K], C∗i

is weakly homogeneous if: for all T an MST of G, and
∀j ∈ [K], j 6= i, s.t. e(ij) ∈ CutG(T ), HT|C∗

i
(e(ij)) is

verified. For simplicity, one denote
¯
αi = max

T MST of G
αT|C∗

i

Definition 3.11 (Strong homogeneity condition of a
Cluster). Let us consider a graph G = (V,E,w) with



K clusters C∗1 , . . . , C
∗
K . A given cluster C∗i , i ∈ [K],

C∗i is strongly homogeneous if: for all T a spanning
tree (ST) of G, and ∀j ∈ [K], j 6= i, s.t. e(ij) ∈
CutG(T ), HT|C∗

i
(e(ij)) is verified. For simplicity, one

denote ᾱi = max
T ST of G

αT|C∗
i

Weak homogeneity is indeed really natural considering
the non-private cases using an MST. Strong homogene-
ity is more demanding, but still a reachable condition.
Section 4 presents an experiment where the graph re-
spects strong homogeneity as well as being organised in
arbitrary shaped clusters. We show that the weak homo-
geneity condition is implied by the strong homogeneity
condition.

Proposition 3.1. Let us consider a graph G = (V,E,w)
with K clusters C∗1 , . . . , C

∗
K . If a given cluster C∗i ,

i ∈ [K] is strongly homogeneous, then, it is weakly ho-
mogeneous.

Proof. If T a spanning tree of G, and ∀j ∈ [K], j 6= i,
s.t. e(ij) ∈ CutG(T ), HT|C∗

i
(e(ij)) is verified, then in

particular, it is true for any MST.

Strong homogeneity condition appears to be naturally
more constraining on the edge weights than the weak
one. The accuracy of DBMSTCLU is proved under
the weak homogeneity condition, while the accuracy of
its differentially-private version is only given under the
strong homogeneity condition.

Theorem 3.2. Let us consider a graph G = (V,E,w)
with K homogeneous clusters C∗1 , . . . , C

∗
K and T an

MST of G. Let now assume that at step k < K − 1,
DBMSTClu built k + 1 subtrees C1, . . . , Ck+1 by cutting
e1, e2, . . . , ek ∈ E.

Then, Cutk := CutG(T ) \ {e1, e2, . . . , ek} 6= ∅ =⇒
DBCVIk+1 ≥ DBCV Ik, i.e. if there are still edges in
Cutk, the algorithm will continue to perform some cut.

Proof. See supplementary material.

Theorem 3.3. Let us consider a graph G = (V,E,w)
with K homogeneous clusters C∗1 , . . . , C

∗
K and T an

MST of G.

Assume now that at step k < K−1, DBMSTClu built k+
1 subtrees C1, . . . , Ck+1 by cutting e1, e2, . . . , ek ∈ E.
We still denote Cutk := CutG(T )\{e1, e2, . . . , ek}.

If Cutk 6= ∅ then argmax
e∈T \{e1, e2, ..., ek}

DBCV Ik+1(e) ⊂

Cutk i.e. the cut edge at step k + 1 is in Cutk.

Proof. See supplementary material.

Theorem 3.4. Let us consider a graph G = (V,E,w)
with K weakly homogeneous clusters C∗1 , . . . , C

∗
K and

T an MST of G. Let now assume that at step K −
1, DBMSTClu built K subtrees C1, . . . , CK by cutting
e1, e2, . . . , eK−1 ∈ E. We still denote CutK−1 :=
CutG(T )\{e1, e2, . . . , eK−1}.

Then, for all e ∈ T \{e1, e2, . . . , eK−1},
DBCV IK(e) < DBCV IK−1 i.e. the algorithm stops:
no edge gets cut during step K.

Proof. See supplementary material.

Corollary 3.1. Let us consider a graph G = (V,E,w)
with K weakly homogeneous clusters C∗1 , . . . , C

∗
K and

T an MST of G. DBMSTClu(T ) stops after K − 1
iterations and theK subtrees produced match exactly the
clusters i.e. under homogeneity condition, the algorithm
finds automatically the underlying clustering partition.

Proof. Th. 3.2 and 3.4 ensure that under homogene-
ity condition on all clusters, the algorithm performs the
K−1 distinct cuts withinCutG(T ) and stops afterwards.
By definition of CutG(T ), it means the DBMSTClu cor-
rectly builds the K clusters.

3.3 PRIVATE MST-BASED CLUSTERING

This section presents our new node clustering algorithm
PTCLUST for weight differential privacy. It relies on a
mixed adaptation of PAMST algorithm (Pinot, 2018) for
recovering a differentially-private MST of a graph and
DBMSTCLU.

3.3.1 PAMST algorithm

Given a simple-undirected-weighted graph G =
(V,E,w), PAMST outputs an almost minimal weight
spanning tree topology under differential privacy con-
straints. It relies on a Prim-like MST algorithm, and an
iterative use of the graph-based Exponential mechanism.
PAMST takes as an input a weighted graph, and a util-
ity function. It outputs the topology of a spanning tree
which weight is almost minimal. Algorithm 2 presents
this new method, using the following utility function:

uG : WE ×R → R
(w, r) 7→ −|w(r)− min

r′∈R
w(r′)|.

PAMST starts by choosing an arbitrary node to construct
iteratively the tree topology. At every iteration, it uses the
Exponential mechanism to find the next edge to be added
to the current tree topology while keeping the weights
private. This algorithm is the state of the art to find a
spanning tree topology under differential privacy. For



readability, let us introduce some additional notations.
Let S be a set of nodes from G, and RS the set of edges
that are incident to one and only one node in S (also de-
noted xor-incident). For any edge r in such a set, the
incident node to r that is not in S is denoted r→. Finally,
the restriction of the weight function to an edge set R is
denoted w|R.

Algorithm 2 PAMST(G, uG, w, ε)

1: Input: G = (V,E,w) a weighted graph (separately
the topology G and the weight function w), ε a de-
gree of privacy and uG utility function.

2: Pick v ∈ V at random
3: SV ← {v}
4: SE ← ∅
5: while SV 6= V do
6: r =MExp(G, w, uG,RSV

, ε
|V |−1 )

7: SV ← SV ∪ {r→}
8: SE ← SE ∪ {r}
9: return SE

Theorem 3.5 states that using PAMST to get an al-
most minimal spanning tree topology preserves weight-
differential privacy.

Theorem 3.5. Let G = (V,E) be the topol-
ogy of a simple-undirected graph, then ∀ε > 0,
PAMST(G, uG, •, ε) is ε- differentially private on G.

3.3.2 Differentially-private clustering

The overall goal of this Section is to show that one
can obtain a differentially-private clustering algorithm
by combining PAMST and DBMSTCLU algorithms.
However, PAMST does not output a weighted tree which
is inappropriate for clustering purposes. To overcome
this, one could rely on a sanitizing mechanism such as
the Laplace mechanism. Moreover, since DBMSTCLU
only takes weights from (0,1], two normalizing parame-
ters τ and p are introduced, respectively to ensure lower
and upper bounds to the weights that fit within DBM-
STCLU needs. This sanitizing mechanism is called the
Weight-Release mechanism. Coupled with PAMST, it
will allows us to produce a weighted spanning tree with
differential privacy, that will be exploited in our private
graph clustering.

Definition 3.12 (Weight-Release mechanism). Let G =
(G,w) be a weighted graph, ε > 0 a privacy parameter,
s a scaling parameter, τ ≥ 0, and p ≥ 1 two normal-
ization parameters. The Weight-Release mechanism is
defined as

Mw.r(G,w, s, τ, p) =

(
G,w′ =

w + (Y1, ..., Y|E|) + τ

p

)

where Yi are i.i.d. random variables drawn from
Lap (0, s). With w + (Y1, ..., Y|E|) meaning that if one
gives an arbitrary order to the edges E = (ei)i∈[|E|],
one has ∀i ∈ [|E|], w′(ei) = w(ei) + Yi.

The following theorem presents the privacy guarantees
of the Weight-Release mechanism.

Theorem 3.6. Let G = (V,E) be the topology of a
simple-undirected graph, τ ≥ 0, p ≥ 1, then ∀ε > 0,
Mw.r

(
G, •, µε , τ, p

)
is ε- differentially private on G.

Proof. Given τ ≥ 0, p ≥ 1, and ε > 0, the Weight
release mechanism scaled to µ

ε can be break down into a
Laplace mechanism and a post-processing consisting in
adding τ to every edge and dividing them by p. Using
Theorems 2.1 and 2.5, one gets the expected result.

So far we have presented DBMSTCLU and PAMST al-
gorithms, and the Weight-Release mechanism. Let us
now introduce how to compose those blocks to obtain a
Private node clustering in a graph, called PTCLUST. The

Algorithm 3 PTCLUST(G,w, uG, ε, τ, p)

1: Input: G = (V,E,w) a weighted graph (separately
the topology G and the weight function w), ε a de-
gree of privacy and uG utility function.

2: T = PAMST(G,w, uG, ε/2)
3: T ′ =Mw.r(T,w|E(T ),

2µ
ε , τ, p)

4: return DBMSTCLU(T ′)

algorithm 3 takes as an input a weighted graph (disso-
ciated topology and weight function), a utility function,
a privacy degree and two normalization parameters. It
outputs a clustering partition. To do so, a spanning tree
topology is produced using PAMST with time and space
complexities respectively equal to O(|V |2) and O(|E|).
Afterward a randomized and normalized version of the
associated weight function is released using the Weight-
release mechanism. Finally the obtained weighted tree is
given as an input to DBMSTCLU that performs a clus-
tering partition with O(|V |) time and space complexi-
ties. The following theorem ensures that our method pre-
serves ε-differential privacy.

Theorem 3.7. Let G = (V,E) be the topology of a
simple-undirected graph, τ ≥ 0, and p ≥ 1, then ∀ε > 0,
PTCLUST(G, •, uG, ε, τ, p) is ε-differentially private on
G.

Proof. Using Theorem 3.5 one has that T is produced
with ε/2-differential privacy, and using Theorem 3.6 one
has that w′ is obtained with ε/2-differential privacy as



well. Therefore using Theorem 2.4, T ′ is released with ε-
differential privacy. Using the post-processing property
(Theorem 2.5) one gets the expected result.

3.4 DIFFERENTIAL PRIVACY TRADE-OFF OF
CLUSTERING

The results stated in this section present the se-
curity/accuracy trade-off of our new method in the
differentially-private framework. PTCLUST relies on
two differentially -private mechanisms, namely PAMST
and the Weight-Release mechanism. Evaluating the ac-
curacy of this method amounts to check whether us-
ing these methods for ensuring privacy does not dete-
riorate the final clustering partition. The accuracy is
preserved if PAMST outputs the same topology as the
MST-based clustering and if the Weight-Release mech-
anism preserves enough the weight function. According
to Def. 3.8, if a tree has a partitioning topology, then it fits
the tree-based clustering. The following theorem states
that with high probability PAMST outputs a tree with a
partitioning topology.

Theorem 3.8. Let us consider a graph G = (V,E,w)
with K strongly homogeneous clusters C∗1 , . . . , C

∗
K and

T = PAMST(G, uG , w, ε), ε > 0. T has a partitioning
topology with probability at least

1−
K∑
i=1

(|C∗i | − 1) exp

(
− A

2∆uG(|V | − 1)

)

with A = ε

ᾱimax(w(e))
e∈E

(
G|C∗

i

) −min (w(e))
e∈E

(
G|C∗

i

)
+ ln |E|.

Proof. See supplementary material.

The following theorem states that given a tree T under
the strong homogeneity condition, if the subtree associ-
ated to a cluster respects Def. 3.9, then it still holds after
applying the Weight-Release mechanism to this tree.

Theorem 3.9. Let us consider a graph G = (V,E,w)
with K strongly homogeneous clusters C∗1 , . . . , C

∗
K and

T = PAMST (G, uG , w, ε), T = (T,w|T ) and T ′ =
Mw.r(T,w|T , s, τ, p) with s� p, τ . Given some cluster
C∗i , and j 6= i s.t e(ij) ∈ CutG(T ), if HT|C∗

i
(e(ij)) is

verified, then HT ′|C∗
i
(e(ij)) is verified with probability

at least

1− V(ϕ)

V(ϕ) + E(ϕ)2

with the following notations :

• ϕ = (maxYj)
2

j∈[|C∗i |−1]

− minZj
j∈[|C∗i |−1]

×Xout

• Yj ∼
iid
Lap

(
max

e∈E(T )
w(e)+τ

p , sp

)

• Zj ∼
iid
Lap

(
min

e∈E(T )
w(e)+τ

p , sp

)
• Xout ∼ Lap

(
w(e(ij)+τ

p , sp

)
,

Proof. See supplementary material.

Note that Theorem 3.9 is stated in a simplified version. A
more complete version (specifying an analytic version of
V(ϕ) and E(ϕ)) is given in the supplementary material.

4 EXPERIMENTS

So far we have exhibited the trade-off between clustering
accuracy and privacy and we experimentally illustrate it
with some qualitative results. We have performed ex-
periments on two classical synthetic graph datasets for
clustering with nonconvex shapes: two concentric circles
and two moons, both in their noisy versions. For the sake
of readability and for visualization purposes, both graph
datasets are embedded into a two dimensional Euclidean
space. Each dataset contains 100 data nodes that are
represented by a point of two coordinates. Both graphs
have been built with respect to the strong homogene-
ity condition: edge weights within clusters are between
wmin = 0.1 and wmax = 0.3 while edges between clus-
ters have a weight strictly above w2

max/wmin = 0.9. In
practice, the complete graph has trimmed from its irrel-
evant edges (i.e. not respecting the strong homogene-
ity condition). Hence, those graphs are not necessarily
Euclidean since close nodes in the visual representation
may not be connected in the graph. Finally, weights are
normalized between 0 and 1.

Figures 1 and 2 (best viewed in color) show for each
dataset (a) the original homogeneous graph G built by
respecting the homogeneity condition, (b) the cluster-
ing partition1 of DBMSTCLU with the used underly-
ing MST, the clustering partitions for PTCLUST with
µ = 0.1 obtained respectively with different privacy de-
grees2 : (c) ε = 0.5, (d) ε = 0.7 and (e) ε = 1.0.
The utility function uG corresponds to the graph weight.
Each experiment is carried out independently and the tree
topology obtained by PAMST will eventually be differ-
ent. This explains why the edge between clusters may
not be the same when the experiment is repeated with a

1For the sake of clarity, the edges in those Figures are rep-
resented based on the original weights and not on the privately
released weights.

2Note that, although the range of ε is in R?
+, it is usually

chosen in practice in (0, 1] (Dwork and Roth, 2013, Chap 1&2).



(a) Homogeneous graph (b) DBMSTCLU (c) PTCLUST, ε = 1.0 (d) PTCLUST, ε = 0.7 (e) PTCLUST, ε = 0.5

Figure 1: Circles experiments for n = 100. PTCLUST parameters: wmin = 0.1, wmax = 0.3, µ = 0.1.
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(a) Homogeneous graph
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(b) DBMSTCLU (c) PTCLUST, ε = 1.0 (d) PTCLUST, ε = 0.7 (e) PTCLUST, ε = 0.5

Figure 2: Moons experiments for n = 100. PTCLUST parameters: wmin = 0.1, wmax = 0.3, µ = 0.1.

different level of privacy. However, this will marginally
affect the overall quality of the clustering.

As expected, DBMSTCLU recovers automatically the
right partition and the results are shown here for com-
parison with PTCLUST. For PTCLUST, the true MST
is replaced with a private approximate MST obtained for
suitable τ and p ensuring final weights between 0 and 1.

When the privacy degree is moderate (ε ∈ {1.0, 0.7}),
it appears that the clustering result is slightly affected.
More precisely, in Figures 1c and 1d the two main clus-
ters are recovered while one point is isolated as a sin-
gleton. This is due to the randomization involved in de-
termining the edge weights for the topology returned by
PAMST. In Figure 2c, the clustering is identical to the
one from DBMSTCLU in Figure 2b. In Figure 1d, the
clustering is very similar to the DBMSTClu one, with
the exception of an isolated singleton. However, as ex-
pected from our theoretical results, when ε is decreasing
(even below 0.5), the clustering quality deteriorates, as
DBMSTCLU is sensitive to severe changes in the MST
(cf. Figure 1e, 2e).

5 CONCLUSION

In this paper, we introduced PTCLUST, a novel graph
clustering algorithm able to recover arbitrarily-shaped
clusters while preserving differential privacy on the
weights of the graph. It is based on the release of a pri-
vate approximate minimum spanning tree of the graph of

the dataset, by performing suitable cuts to reveal the clus-
ters. To the best of our knowledge, this is the first differ-
entially private graph-based clustering algorithm adapted
to nonconvex clusters. The theoretical analysis exhibited
a trade-off between the degree of privacy and the accu-
racy of the clustering result. Differential privacy is inves-
tigated in the framework of strong homogeneity but this
is quite restrictive. A smoother result would be very in-
teresting but it is more challenging. This will be a focus
of our future work. Our work suits to applications where
privacy is a critical issue and it could pave the way to
metagenomics and genes classification using individual
gene maps while protecting patient privacy. Future work
will also be devoted to deeply investigate these applica-
tions.
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