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Consistent Regression using Data-Dependent
Coverings

Vincent Margot, Jean-Patrick Baudry, Frederic Guilloux, Olivier
Wintenberger

Sorbonne Université, CNRS, LPSM, F-75005 Paris, France

Abstract

In this paper, we introduce a novel method to generate interpretable
regression function estimators. The idea is based on called data-dependent
coverings. The aim is to extract from the data a covering of the feature
space instead of a partition. The estimator predicts the empirical con-
ditional expectation over the cells of the partitions generated from the
coverings. Thus, such estimator has the same form as those issued from
data-dependent partitioning algorithms. We give sufficient conditions to
ensure the consistency, avoiding the sufficient condition of shrinkage of the
cells that appears in the former literature. Doing so, we reduce the num-
ber of covering elements. We show that such coverings are interpretable
and each element of the covering is tagged as significant or insignificant.

The proof of the consistency is based on a control of the error of the
empirical estimation of conditional expectations which is interesting on
its own.

Keywords: Consistency, Nonparametric regression, Rule-based algorithm,
Data-dependent covering, Interpretable learning.

1 Introduction

We consider the following regression setting: (X,Y’) is a couple of random
variables in R¢ x R of unknown distribution Q such that

Y =g"(X) + Z,

where E[Z] = 0, V(Z) = 02 and g* is a measurable function from R? to R.
We make the following common assumptions:

e Z is independent of X and o2 > 0 is known; (H1)

Y is bounded: Q(S) = 1 with & = R x [~L, L], for some L > 0

(unknown).

(H2)



Given a sample D, = ((X1,Y1),...,(X,,Y,)), we aim at predicting ¥ condi-
tionally on X. The observations (X;,Y;) are independent and identically dis-
tributed (i.i.d.) from the distribution Q. The accuracy of a regression function
g :R? — R is measured by its quadratic risk, defined as

L(g) =Eq [(9(X) - V)] .
Thanks to Hypothesis [(H1), we have

g (X)=E[Y|X] = arggminﬁ (9) as, (1)

where the arg min is taken over the class of all measurable regression functions.

The regression functions generated from the data D,, by a learning algorithm
are called estimators of g*. We consider a set of regression functions G,, that
contains all such estimators. Let Q,, be the empirical distribution of the sample
D,,. We define the empirical risk, the empirical risk minimizer and the minimizer
of the risk over G, as, respectively,

1 n
— Z (9(X;) — Yi)?, gn = argmin £,,(g) and g, = argmin L(g). (2)
ni4 9€Gn 9€Gn

Ln(g) =

The aim of this paper is to provide interpretable learning algorithms (see
Section for a discussion on the notion of interpretability) that generate G,
so that the associated empirical risk minimizer g, is consistent, i.e. g, converges
to g* as m — oo. More precisely, we show the weak consistency of the estimator
Jn, 1.€. its excess of risk

(9", gn) = L(gn) — L{g") = El(gn(X) — g"(X))?] = 0p(1).

1.1 Rule-based algorithms using partitions and coverings

In this paper we consider algorithms generating interpretable models that are
rule-based, such as CART [Breiman et al.| |[1984], ID3 |Quinlan| [1986], C4.5
Quinlan| [1993], FORS [Karali¢ and Bratko|[1997], M5 RulesHolmes et al.|[1999].
In these models, the regression function is explained by the realization of a
simple condition, an If-Then statement of the form:

IF (X[Zl] S Cl) And (X[’LQ} S 62) And ... And (X[Zk] € Ck) (3)
THEN  g,(X)=p

where X[i] is the i*" coordinate of X and ¢; C R.

The If part, called the condition of the rule, or simply the rule, is composed
of the conjunction of k < d tests, each of which checking whether a feature (a
coordinate of X) satisfies a specified property or not and k is called the length of
the rule. The Then part, called the conclusion of the rule, is the estimated value
when the rule is activated, i.e. when the condition in the If part is satisfied.
The rules are easy to understand and allow an interpretable decision process



when k is small. For a review of the best-known algorithms for descriptive
and predictive rule learning, see Zhao and Bhowmick| [2003] and [Firnkranz and
Kliegr| [2015].

Formally, the models generated by such algorithms are defined by a corre-
sponding data-dependent partition P, of R?. Each element of the partition is
named a cell and the empirical risk minimizer associated to P,, satisfies

Vil
Z iz Yilxiea =1 o Xied 4, xeRY (4)
AeP, Yimilxiea

Those algorithms use the dataset D,, twice; first, the partition P, = P,(D,)
is chosen according to the dataset, second, this partition and the data are used
to compute g, (x) as in . Note that g, is the empirical risk minimizer among
the class of all piecewise constant functions over P,, denoted G.oP,,. The major
issue for these algorithms is the model interpretability, which requires a small
value for the length k of the rule, whereas the consistency of the estimator is
usually proved for conditions implying that & = d, i.e. a high model complexity
(see Section [I.2)).

In order to reduce the complexity of the model, we present a novel method
of generating a partition. The idea is to generate a data-dependent covering
C, = C,(D,,) of R rather than a partition. To do so, the dataset D,, is used
to identify subsets of R? that fulfil coverage and significance conditions (see
Definition . As elements of coverings can overlap, the construction of the
subsets fulfilling these conditions can be done separately, which is not doable
for the cells of partitions. Using a covering instead of a partition we ensure
consistency without a condition on shrinkage of the cells. Moreover, each subset
of the covering defines a rule with a small length k. Thus, we obtain a regression
function described by a covering formed by simple rules rather than a partition
formed by complex rules:

IF (Xer;) And (X €rg) And ... And (X €1y)
THEN gn(X)=p
where, for j =1,...,1
rj = {x: (x[i51] € ¢j,1) And (x[ij2] € ¢j2) And ... And (x[ijx;] € cj7kj)}
with k; < d.
To estimate the value p, a partition P(C,) is generated from the covering

C, as an intermediate calculation. Formally, we define the partition generated
from any collection of subsets C using the power set 2¢ gathering all subsets of

C:



Definition 1.1. Let C be a finite collection of subsets of R and let c = |J r.
reC
We define the activation function as

we : R% i 26, pe(x)={reC:xer}.
Then P(C), the partition of ¢ generated from C, is defined as
P(C) = ¢g ' (Im(ec))-

We illustrate this transformation P on an example of four elements in Figures

[and2

B

Figure 1: The four elements of C. g)‘l(gcu)re 2: The 9 cells of the partition

Remark 1. If C is a covering of R, then P(C) is a partition of R?. The relation
C = P(C) holds if and only if C is a partition of Im(pc).

For each element r of C, the cells of the partition generated by C that are
included in r are gathered in

Pr)={AeP(C): ACr}.

We also introduce the maximal (resp. minimal) redundancy of C on a subset
recC:
M(C,x) = max #c(2)

m(C,r) := 1’;1&%1 #pe(z).

We shorten M (C,c) in M(C) and m(C,c) in m(C).

Remark 2. If C is a partition then for any r € C, we have P(r) = {r} and
M(C,r)=m(C,r)=1.



By using this transformation on a data-dependent covering, C,, we get the
partition P(C,) and the associated estimator (@). The major difference com-
pared to an estimator defined on a data-dependent partition is its interpretabil-
ity (see Section. Moreover, using a partition from a data-dependent covering
in place of a data-dependent partition generates a more complex partition where
cells are not necessarily conjonctions of tests as in . We illustrate it in Figure
Bl

As the construction of a partition from a covering is time consuming, it is
important to note that the partition P(C,) does not need to be constructed.
The trick is to identify the unique cell of P(C,) which contains some x € R?
used for calculating the prediction at x. By creating binary vectors of size #C,,,
whose value is 1 if x fulfilled the rule’s condition and 0 otherwise, this cell
identification becomes a simple sequence of vectorial operations. Figure [3|is an
illustration of this process (cf Margot et al.|[2018] for more details).

All the estimators generated by the data-dependent covering algorithm be-
long to the class

gn = gc o P(Cn) (5)
of piecewise constant functions on the partition P(C,) such that Vg € G,V €

R?, |g(z)| < L.
Hence, from definitions ([2]) we have

vi1
=y ety yens (©)
AdpC,) 2= Ixiea

and the risk minimizer over G,, is

1xeA, x € R, (7)
AeP(Cy)

The functions g,, and g, are indeed both in G,,, although the later is not com-
putable from the data only.

Remark 3. The definition () of g, guarantees that Vx € R, |g,(x)| < L so
that L doesn’t need to be known.

In the following Subsection we discuss about the important notion of inter-
pretability.

1.2 Interpretability

In many fields, such as healthcare, marketing or asset management, decisions
makers prefer an interpretable models rather than models with better accuracy
but uninterpretable. As mentioned in [Lipton| [2016], there are several mean-
ings of the term ‘interpretable’ and no rigorous mathematical foundation of the
concept. In this paper, interpretability correspond to parsimonious characteri-
sation of the estimators of g* generated by a given algorithm, i.e. the facility to
to describe the generated model in human words. Nowadays, the most popular
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Figure 3: Evaluation steps of the cell containing x = (0.1,0.7) of the parti-
tion generated from the covering of [0,1]%, C = {rj,re,r3}. Using partition
from a covering allows to generate complex cells with a simple interpretation
(r1 And r2), where a classical partitioning algorithm cannot. Note that the
condition x satisfies (r; And rs) implicitly implies that x does not satisfy rs.

and efficient algorithms for regression, such as Support Vector Machines, Neural
networks, Random Forests,. .. are uninterpretable. The lack of interpretability
comes from the complexity of the models they generate. We refer to them
as black box models. Usually, these black box models have an optimal accu-
racy. We assert that the novel family of covering algorithms described here, can
achieve a better Interpretability-Accuracy trade-off by reducing the complexity
of the generated models keeping Accuracy guarantees, i.e. weak consistency.
There exist two ways of constructing interpretable models. The first one
is to create black-box models and then to summarise them. For example, re-
cent researches propose to use explanation models, such as LIMFE Ribeiro et al.
[2016], DeepLIFT |Shrikumar et al. [2017] or SHAP Lundberg and Lee|[2017], to
interpret black-box models. These explanation models try to measure the im-
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Figure 4: Partitions generated by fully deployed decision tree algorithm, it
means without pruning, for a maximal depth A € {1, 2, 3,4}.

portance of a feature (a coordinate of X) on the prediction process (see Guidotti
for a survey of existing methods). The second way to interpretability
is to use algorithms that only generate interpretable models, such as rule-based
algorithms.

The interpretability of the rule-based algorithms of type is achieved when
the length k of each rule is small. But in order to prove the consistency of
the estimator g,, one usually applies results such as Theorem 13.1 in

et al. [2006] under the condition of shrinkage of the cells (Condition 13.10 in
Gyorfi et al.|[2006]). Each rule (3) must have a length k = d in order to fulfil

this sufficient condition without extra condition on the feature space. Then,
for large d, the condition becomes uninterpretable. Moreover, as illustrated in
Figure [d] the number of cells necessary to have an accurate model is very large
as the more precise the partition, the more complex the model.

For an estimator defined on a data-dependent covering, each prediction is
explained by a small set of fulfilled rules which are easy to understand, see Table



in Section [ for an example. Even if the partition generated may be finer
and more complex than a classical data-dependent partition, the explanation
of the prediction is given by the covering and not the partition, and it remains
understandable by humans, as illustrated in Figure [3]

Despite the fact that the parsimony of the selected set of rules is not theo-
retically guaranteed, the redundancy conditions and described below
are heading in the right direction.

We obtain a consistent estimator g, by carefully constructing the covering
elements. We can apply none of the classical approaches based on Stone’s theo-
rem [Stone| [1977] because the covering is data-dependent nor based on Theorem
13.1 in |Gyorfi et al.| [2006] as Condition 13.10 in |Gyorfi et al.| [2006] forces rules
to be complex (k = d). The key notion of this paper is the notion of suitable
data-dependent covering introduced in Section [2] Proposition [3.2] provides the
main tool to prove the weak consistency of suitable data-dependent covering
estimators stated in Theorem [2.I} This result of independent interest is given
in Section [3] Finally we apply our approach on covering elements using Random
Forest as rule generator in Section[d Supplementary material gathers the proof
of Proposition [3:2}

2 Main result

We denote P,, the empirical distribution associated to the sample X;,...,X,,.
For any r C R? such that P, (r) > 0, we also denote

1 n
n 21':1 Y:L']‘Xq‘,él'

E, Y |X€r]:= B, (r)

and
V(Y | Xer):=E, [Y?|Xer] -E, [V |Xer].

In the same way, we define E[Y|X € r] := % and V[Y|X € r] :=
E[Y?|X € r] — (E[Y|X € 1])%

2.1 Significance and coverage conditions

We introduce some conditions on each element of the covering. We use the
classical notation x4 = max{z,0} for any x € R.

Definition 2.1. We call a sequence (Cy,)n>1 of data-dependent coverings of R?
suitable if it satisfies the two following conditions:

1. the coverage condition: (H3)
Ja €10,1/2), Vr € Cp, Pp(r) > n™° a.s., (8)

for n sufficiently large;



2. the significance condition: (H4)

there exists two sequences By, — 0 and e, — 0 such that:
C,=C:UC a.s., (9)

for n sufficiently large, where the significant subsets C; are defined by

c: = {r €Cy i BulEalY|X € 1]-E,[Y]| > V(V,(YX €1) — 0—2)+},

(10)
the insignificant subsets Ci are defined by
Ci = {recn\c;:sn > \/(Vn(Y|X€r)—a2)+}, (11)
and their redundancies satisfy
and .
Aﬂf((g:)) = op(e; 2 Ant/?7) (13)

The coverage condition guarantees that the empirical within group
expectation is a good estimation of the within group expectation. Up to our
knowledge, the definitions of significant and insignificant elements of a covering
in are new. An element fulfils the significance condition if its condi-
tional expectation is sufficiently different from the unconditional expectation.
It ensures, in some sense, that the within-group variances of coverings with sig-
nificant elements is controlled by the between-group variances. The insignificant
condition guarantees that the conditional variance of the insignificant el-
ements shrinks to the noise variance. Both conditions and can be
checked for each element of the covering separately. Thus the construction of
such subsets can be parallelized which allow imagining algorithms less complex
in comparison of usual ones.

Remark 4. An easy way to ensure and is to avoid inclusion between
elements of the covering. Let (C,) be a sequence of coverings that fulfills |(H3)|
We consider 1 < i < #C,, any ordering of the covering. If

]P’n(rim{ U rj})gvpn(ri), 1 <i<#C,.

1<5<i-1

then the cardinal of C,, is upper bounded by 1”_: for every n sufficiently large.
Indeed, by the inclusion-exclusion principle we get
#Cn

1= Pn(cn) - Z ]P)n(l‘l \Ulgjgiflrj) Z #Cn (]. - ’Y) ’17,7017

=1



Thus and can be checked for any « € [0,1/4), using the fact that
M(C2) and M(C!) are smaller than % and setting £, = op(n'/*~*/?) and
en = op(nt/1=a/2),

Example 1. The significant condition can hold for a subset r with arbi-
trary diameter that does not satisfy Condition 13.10 of |Gyorfi et al.| [2006]. For
instance, consider the case g* = 1,¢ 4 for some Borel set A such that 0 < P(X €
A) < 1. Then r = A is a significant subset as it satisfies the condition with
high probability for any 3, such that n='/% = o(3,,) and n sufficiently large. In-
deed, from the Strong Law of Large Numbers k,, := #{X; € A} ~nP(X € A)
a.s. as n — oo. On the one hand, we obtain thanks to several applications of
the Central Limit Theorem

|E,[Y|X € A] = Ep[Y]| 2 En[Y|X € A] — E,[Y]

—1—7+7221X€A—f22
=1-P(X e A) + op(nfl/Q).
On the other hand, we obtain

(Vo (YIX € A) —0?), < |V, (YIX € A) — 02

n

LS e (S )

= O]p(n_l/Q)
Then
Ba|Ea[Y|X € A] —E,[Y]| = (VW (Y|X € A) — 02),
2 5n(1 —P(X € A) + Op(n~'?) + Op(8; 71/4))

Thus ) holds for r = A with high probability for n sufficiently large. Note
that for smular reasons ([10]) also holds with high probability for r = A¢, n=1/4 =
o(B,) and n sufficiently large. Finally, conditions (8], and are easﬂy
checked on the partitions C,, = P,, = {4, A°} that constitute a suitable coverings
sequence with high probability for n large enough.

Remark 5. The significant condition does not follow from a condition on
the diameter of the subset. On the opposite, the insignificant condition (11]) can
follow from a condition on the diameter of the subset, see Proposition

2.2 Partitioning number

To control the complexity of families of partitions, some tools introduced in
[Nobel, [1996] Sec. 1.2] are recalled (see also [Gyorfi et al., 2006, Def 13.1]).

10



Definition 2.2. Let II be a family of partitions of RY.

1. The maximal number of cells in a partition of 11 is denoted by
M) :=sup {#P : P €11}.

2. For a set x} = {x1,...,%X,} € (RO, let
AxP,I) :=#{{xfNA: AeP}:Pell}
be the number of distinct partitions of X7 induced by elements of II.
3. The partitioning number A, (II) of I is defined by:

A, (ID) == A(x™,TI).
(1T) T (x1, 1)

The partitioning number is the maximal number of different partitions of
any n points set that can be induced by elements of II.

2.3 Consistency of data-dependent covering algorithms

In the following, we use the classical notion of Donsker class that is discussed
in details in Section

Theorem 2.1. Assume that Q satisfies and|(H2) Let (C,) be a suitable

data-dependent covering sequence (i.e. it satisfies|(H3) and|(H4)) fulfilling the
two following conditions:

M(I1,) Vog(An(Iln)) = o(n), (H5)
where I1,, := {P(C,(dy)) : d,, € S"} for any n € N*;
Yn e N* {cxR,ceC,} CB, (H6)

where B is a Q-Donsker class.
Then the predictor g, definied by @ is weakly consistent:

C(g", gn) = op(1). (14)

The proof of this theorem is postponed to Section

This theorem gives us conditions on data-dependent covering algorithms to
ensure that the generated empirical risk minimizer g,, converges in probability
to the regression function g* defined in (1. The condition is a classical
one (e.g. |Gyorfi et al., 2006, Conditions (13.7) and (13.8)]) used to ensure that
the family of partitions II,, is not too “complex”. It means that the maximal
number of cells in a partition, and the logarithm of the partitioning number,
are small compared to the sample size. This condition guarantees that the
estimation error tends to 0. The conditions |(H3)} |(H4)|and |(H6)| guarantee that
the approximation error tends to 0 without any condition on the diameter of
the cells.

11



3 Proof of Theorem 2.1

In order to prove the main theorem, we need some preliminary results based on
notions of Q-Donsker class and outer probability.

The outer probability, defined for A C Q by P*(A) := inf {IP’(A) CACAAe .A}
is introduced to handle functions which are not necessarily measurable. The no-
tation Op~ (1) stands for asymptotically tight instead of the usual Op(1) (bounded
in probability). See [Van der Vaart), 2000, Chapter 18].

Let us define for any f : S — Rin £1(Q), v, f := v/n(Q, f—Qf) and consider
the empirical process indexed by a set F of such functions: {v,f: f € F}.

Definition 3.1. [Van der Vaart, |2000, Section 19.2] F is called Q-Donsker if
the sequence of processes {v, f : f € F} converges in distribution to a tight limit
process in the space £>°(F).

The limit process is then a Q-Brownian bridge.

Definition 3.2. A class of sets B C Bs is called Q-Donsker if Ig :== {14 : A €
B} is a Q-Donsker class of functions.

Now, with Qf := [ fdQ and Q,, f := [ fdQ,, for any f € L}(Q), if F is a Q-
Donsker class of functions, then the empirical process ((v/n(Qnf—Qf)) feF)nen
is asymptotically tight as a sequence of maps with values in ¢°°(F) (this is a
consequence of Prohorov’s Theorem adapted to this framework — see Theo-
rem 18.12 in |Van der Vaart| [2000]). Keeping in mind that a compact set in
£>°(F) is bounded, we have:

Proposition 3.1. Let F be a Q-Donsker class of functions. Then

1Qn — QI = Op-(n~/2),
where for any v: F = R, |[v]| z = supse £ [v(f)]-

Remark 6. If B C Bs is a Q-Donsker class of sets, where Bg is the Borel set on
S, then

1Qn — Qlls = Op- (n~1/2),
where for any v : B = R, ||v]|z = sup¢p [v(A4)].

Remark 7. Tt can be checked that if (Z,)nen is a sequence of non-negative
random variables, (an)neny € (RT)N such that a,, = op(1) and (M, )nen is a

sequence of maps such that M, = Op«(1) and Z,, < a,M, for any n, then
Z, — 0.

n—-+oo

The usual notion of boundedness in probability for sequences of random
variables need be generalized because sequences of maps are to be considered,
with values in metric spaces which are not Euclidean spaces (thus bounded and
closed sets need not be compact) and which are not guaranteed to be measurable.

We need involve the outer probability P*.

12



Definition 3.3. [Van der Vaart, |2000, Chapter 18] A sequence (My)nen of
maps defined on 0 and with values in a metric space (D, d) is said to be asymp-
totically tight if

Ve > 0,3K C D compact/¥é > 0,lim sup P*(M,, ¢ K‘S) <e,

n— oo

with K% = {y € D : d(y,K) < §} for any K C D and § > 0.

Remark 8. If D = R, (M,,) is asymptotically tight if and only if Ve > 0,3IM >
0/limsup,, . P*(|M,| > M) < e.

3.1 Empirical estimation of conditional expectations

We shall also use the following proposition, which is inspired by Proposition 3.2
of |Grunewalder| [2018].

Proposition 3.2. Let B C Bs and let Fg := {fla: f € F,A € B} where F
is a set of functions in L1(Q) uniformly bounded. If B and Fps are Q-Donsker
classes then for any o € [0,1/2) and with B,, :== {A € B,Q,(A) > n~°},

sup sup |E, [f | A —E[f | A]| = Op-(n*/?).
fEF A€B,

Proof od Proposition[3.3 Let € > 0. First, for any f € F and A € B, since
Qn(A) > 0 and then Q(A) > 0,

[En [f | Al -E[f [ Al

| JafdQu [, fdQ‘
Q.(4)  Q4)
_ | Q(A) ([, £dQn — [, £dQ) + (QA) ~ Qu(4)) [, FdQ
QA)Qn(4)
J4 Q0 — [, fdQ ~ J4 fdQ
< [ LT TR o) - @) gl b sl )

Now, according to Proposition [3.1

sup
feF,AcB

/AfdQn - /A fdQ’ = Op-(n"1/?)

and R ~
sup |Qu(4) = QA)| = Op- (n~1/2).
AeB
Thus, According to Remark [8] there exists M > 0 such that for any n large
enough,

/AfdQn/AfdQ‘ >Mn1/2} <%

13
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and

p* {Sup ’Qn(A) - Q(fl)‘ > Mn—1/2} < %

AeB
so that P*(,) > 1 — ¢ with

Q, ::{ sup ‘/Afd(@n—/[&fd(@‘SMn_l/z}ﬂ

fer,AeB

{S}lp |Qn(4) —Q(A)| < Mn‘1/2}.

AeB

Then yields, with c:=  sup |f(x)| < oo and since Q,(A4) > n~¢, for
feF,xeS
n large enough, in the event ,,,

sup |E, [f | A= E[f | A]| < Mn®"Y2(1 +¢),
feF,AeB,

. Ja fdQ
since <Gy <e.

Finally, it has been proved that Ve > 0,3M > 0,3dN € N*/Vn > N,

]P’*{ sup |En[f|A]—E[f|A]>Mn°‘1/2}<6
fEF,A€B,

and then Ve > 0,dM > 0 such that

limsup]P’*{ sup |En[f|A]—E[f|A]>Mn°‘_1/2}§6
n—00 feF,AeBy
which, together with Remark [8| again, proves the proposition. O

Corollary 3.1. Let B C Bs be a Q-Donsker class. If Y is bounded then for
any i € N and any o € [0,1/2), with By, := {A € B,Q,(A) > n~*} we have

Sup |E, [Y'|(X,Y)e Al —E[Y"|(X,Y) € A]| = Op-(n*"/3),  (16)

and

sup V. [V | (X,Y) e A= VY | (X,Y) € 4]] = Op- (n>"1/?). (17)

Proof of Comllary . Let L = esssupY, i € N, and f; € £}(Q) be de-
fined by

fi :RYx [-L,L] = [-L, LY
(x,9) — y".

fi is bounded and {f;} is finite thus Donsker. The result is then a straightfor-
ward application of Proposition [3.2} O

14



Proof of Corollary . This part follows from since Y is bounded and
Vo[V | (X,Y) €A :=E, [Y? | (X,Y)€ A] —E, [V | (X,Y) € 4.
O

It seems that the result of Corollary which is of independent interest,
does not appear as such in the existing literature. As a first application of Corol-
lary we show that any partition with shrinking cells diameters is a suitable
covering. We define the diameter of a cell r as Diam(r) = sup,¢, wer |2 — 2|,
where || - || is any norm of R9.

Proposition 3.3. Consider a sequence (Pp)nen of data-dependent partitions,
that satisfies the coverage condition and such that

U U exRr

neN* reP,

18 a.s. a Q-Donsker class. If g* is uniformly continuous and if

max Diam(r) = op(1) (18)
reP,

then the sequence (Py) is suitable.

Proof. Let us show that each cell is significant or insignificant. Thanks to Con-

dition 7 Corollary Eq. and Remark
max [V, (V[X €x) = V(Y | X €1)| = Op(n®1/2), (19)
rekln

Moreover V(Y | X € r) = V(¢*(X) | X € r) + 0. Thus, as the redundancy

condition is automatically satisfied for cells of a partition, the desired result
will follow if we check that

- YXer) o2
en = max (Vo (VX €1) —02)4

converges to 0.
From we remark that

en < max /V(g"(X) [ X € 1) + Op(n/271/%) .
rePn,

For all n, if r € P,,, then r xR € Bs. We denote X, and X!, two independent
variables distributed as X given that X € r. We obtain
V(g"(X) [ X er) =V(9"(Xy))
3V(9"(Xe) = g"(X}))
< 3E((g"(Xe) — 9" (X)) -

15



Thus, if we denote w the modulus of continuity of g*, we get

VV(g*(X) | X er) < 2712w (Diam(r)).

By uniform continuity, the condition implies that

ey < 271/2 m%x (w(Diam(r))) + Op(na/2_1/4) = op(1).
rePny

Thus, from , each cell wich is not significant is insignificant and the corre-
sponding covering sequence is suitable. O

Remark 9. The condition of uniform continuity of ¢* in Proposition [3.3| may
be simply raised. Indeed, from |Gyorfi et al 2006, Corollary A.1], ¢* can be
approximated arbitrarily closely in L£2(Qx) by fonctions of C$°(RY) where Qx
is the marginal distribution of X.

3.2 Estimation-approximation decomposition

The excess risk (1)) can be decomposed into two terms using the following lemma:

Lemma 3.1 (Lemma 10.1 of|Gyorfi et al.|[2006]). Let G, be a class of functions
g : R = [~L, L] depending on the data D,, = ((X1,Y1),..., Xn,Yn)). If gn
satisfies then

£(9%,9.) <2 sup Lo (9) = £ (9)] + inf E[(9(X) —g"(X))?].
9EGn geyn

Hence, to prove it is sufficient to prove that:

sup £a(9) = £(9)] = ox(1). (20)
and
Jnf E[(9(X) — "(X))?] = 0x(1). (21)

The estimation error controls the distance between the best function in G,,
and g,. The approximation error is the smallest error for a function of G,.

The two terms have opposite behaviors. Indeed, if G, is not too complex
the empirical risk will be close to the risk uniformly over G,. Thus, the error
due to the minimization of the empirical risk instead of the risk will be small.
On the other hand, the risk cannot be better than for the best function of
Gn. So, G, must be complex enough. It is the classical Bias/Variance or
Approximation/Estimation trade-off.

16



3.3 Approximation Error

In this subsection, we prove using hypotheses [(H1), [(H2) [(H3)| [(H4)|

and [(TT6)]
The function g, is in G, thus to prove , it suffices to show that W,, =

op(1) where

Wn =E |:(§n(X) - g* (X))2]
From ,

W, =E > E[Y|Xe€Alxea—g'(X)
A€eP(Crn)

which shows that W,, is a within-group variance for the variable ¢*(X) and the
groups P(C,).

First we use the decomposition of the total variance into the sum of the
within-group and the between-group variances:

2

W,= > E Y E[Y|Xe€Alxea—g"(X) | lxea

A’eP(Cr) A€eP(Crn)
= Y E[®Y]XeA]-g"(X) Lyen]

A’eP(Cp)
- Y E [(E[Y | X € A _g*(X)ﬂx € A’] P(X e A)

A’€P(Cn)
=V(g"(X)) = By, (22)

where
B,:= Y (E[Y|XeA-E[Y])’P(XcA). (23)
AeP(Crn)

Let’s consider B,, and replace the summation over the partition P(C,) by a

17



summation over the covering C,,. We have, from the definition of M(C,,r),

=y Y #SD Foe A (E[Y | X e A -E[Y])’P(X € A)

reC, AeP,(

_Z SV Y EY|XecA-E[Y)’P(XeA)

reCy A€EPy,(r)

Z (E[Y|X€A]—E[Y])2P(XeA|Xer)IP’(X€r)

( > ]E[Y|XeA]IP(XeA|X€r)—IE[Y]) P(X er)

A€P, (r)

72 E[Y |Xer|-E[Y])’P(Xer)
reC,

where we last applied Jensen’s inequality.

Now, we focus on the set C; of significant elements of the covering. Since
C, =C; UC}, we have

reCs
1
> EY | Xer|-E[Y]) " PXer
wep 2 (B 1X exl-EV) P en
1
> UlP(Xer 24
e Xz P e (24
where
U, =E[Y | Xer]-E[Y] .
Let’s define

Var =En[Y | X €rx] - E,[Y]

the empirical counterpart of U,

Ay =V2 —U?

n,r
and

A, = sup{A, .} .
reC,

18



In order to control B,, with its empirical counterpart, we shall make use of

the outer probability P* defined in Section 3| Using hypotheses |(H2)| and [(H6)|
and Corollary 3.1 (with B,, = {c x [-L, L],c € C,}) we have :

A, = sup{(Var—Ur)(Vor+Us)}

reC,

= OIP’* (’I’La_l/Q) . (25)

Continuing (24),
1
B, > Vfr —Apy)P(X er

ey 35 V- e

1
> Vi —A)PXer).
ey &g, e~ A e

By definition of C;, Vr € C;,
Ve 2 B (Va(Y|X €x) —0®) . > B, 2(Va(Y|X €1) — 0?).

Thus

B, > — > (BAVA(Y[XEeT)—0%) - Ay) P(X €7).

Let

Al = sup {|V(Y|X er) -V, (Y|X €1)|}
reC,

Using again Corollary [3.1] leads to
Al = Op- (no7%) (26)
Thus,

1
M(C3)

n

B, >

S (BRAVY[Xer) -0 = Al) = A,) P(X €1) .
reCs

By independence between Z and X, we have
V(Y|X6r)—a2:E{(Y—]E[Y|Xer])2|Xer] e

:E[(]E[Y\XEr]—g*(X))Q|X€r}. (27)
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Hence we have
By?
= ey
3 (E [(JE VX er-g(X) | X e r} — (AL + BZA,,)) P(X € 1)

reCs
Br?

Mcy)
> <]E [(E[Y X er]— g"(X))" | XGADIP’(XGA)
reCs AP, (r)

B,

Y

since ) .o P(X €r) < M(C;;). Thus, by definition of m(C;,),

> m(Cy)

M(C;)
3 (]E [(IE[Y X er]-g" (X))’ | X e AD]P’(X € A)
A€eP(Cs)

(8200, + A) (28)

B, > B,

X

We remark that
E[EN|Xer]-g'(X)*| X e =E[E[lf"(X) | X ex]—g"(X))’ | X € 4]
>E[(Elg"(X) | X € 4] - ¢" (X))’ | X € 4]

ZE[(JE[mXeA]_g*(X))?|XGA}

Let us define

W= > E[(E[Y|XeA]—g*(X))z‘XeA}P(XeA)
AeP(Cs)

and Wi, = ) E[(E[Y|X6A]—g*(X))Q‘XeA]P(XeA).
AEP(Ci)

Since C,, = C3 UCL, )
W, <W; + W, .

20



Continuing ,
> m(Cy)
= Phre)
3 (IE [(E[Y | X €Al - g"(X))* | X € AD P(X € A)
AeP(Cs)

—om(C}) s —2 A/

From and , we conclude:
V(g*(X)) + 8, A5 + Ay

B,

WS

" - —2m(C})
OE._) 0
n—oo

using Remark Equations and and Regarding the insignificant
part of the within group variance and assuming that C;, is not empty, we have

7l—

E[Y | X € A] — g*( ))Q\XGA}P(XGA)

rewAeP(r)
Cz Z 3 E[ vV |Xer - ‘XGA] (X € A)
n) reci AeP(r)
! E|(E]Y|X *(X))?| X P(X e
m(c)zc( [(ElY | X ex]-g" (X)X ex])P(X ex).
Using we have
. 1
W, < 4 YIXer)-o)P(Xer
m<¢’%>§(” )—o*)P(X Ex)
1 /
sm(cz)rezci( (Y Xer)—o? +AL)P(Xer)
Then,
, 1
W;gm(ci)Z(siJrA’) (Xer)
" reci,
;P(Xer
sz”“;l(ci) )(ggmf)
M(Cr) (2 | A
< 2 (ex + A
m( ;)( )
LO
n— oo

Hence, is proved.
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3.4 Estimation Error

In this subsection we prove using hypotheses |(H1)| [(H2)| and [(H5)}
Recall from that G, is the set of piecewise constant functions with values
in [-L, L] on the elements of the partition P(C,(D,,)). Then, with the definition

of IT,, in in mind,

sup £, (9) —L(9)] < sup |Ln(9) — L(9)],
geGn geGeoll,

where G, is the set of constant functions R? — [~L, L] and

chHn = {ng%Rg: ZfAlAypenTthegc}'

AeP

The following is based on the same idea as |Gyorfi et al., 2006, Theorem
13.1].
According to |Gyorfi et al.l [2006, Theorem 9.1 and Problem 10.4] we have,

P{ s 16, (o)~ L) > e}

g€Geoll,
2

chH’rmX?):I exp{l28—.(7/jf[/2)2}’ (30)

€

< 8B [Nl (32L’

where X7 = {Xy,..., X, }.

Here V1 (g, G, o I1,,, X7) is the random variable corresponding to the minimal
number N € N such that there exist functions g,...,gnx : R? — [~L, L] with
the property that for every g € G. o IL, there is a j € {1, ..., N} such that

S lg(Xs) - g5(X0)| < <

This number is called the e-covering number of G.oIl,,. It can be interpreted
as the complexity of the class. Then using |Gyorfi et al., |2006, Lemma 13.1] we
have

N (552,60 01, X7 )

M(I1,,)
< A(m){ sup N (557 gc,zin)} ,

b
21z €4X 1 X m<n 32L

£
32L°

According to |Gyorfi et al., 2006, Lemma 9.2] for any set of function G and
any sample 27" we have

£
32L°

3

Nl( g’zm <M (32L,g7z;n),
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where Mj (¢,G, 2]") is the maximal N € N such that there exist functions
gi,---,9N € G with

m

1
> Z l9j(2i) — gr(2:)| > €,
=1

forall 1 <j <k < N. It is called Ly e-packing of G on z]*. See |Gyorfi et al.,
2006, Definition 9.4 (c)].
Now, from the definition of G.,

2L
sup M (5,Ge, 21) = [}
Zl7~~-vzm,€{X1,...7Xn},mSn £
Finally,
£ 6412 M(I1,,)
P N, (7,gConZm) < A(I1, ’V -‘ . (31
v € (Xrr X m<n \32L 1 () | — (31)

n

According to and we have:
=3 19(Xi) = Yi]* = E [|g(X) - Y|?]

1
P < sup

>5}

27 M) 2

B © 128.(4L2)2
and since
G4£27 M) ne?
8A,(I1,,) { . W P < 2048L4>
6412 ne?
3 64L7\\  mne”
< 8exp (log A, (IL,) + M(I1,,) log <[ c —D 2048.L4>
L2

s [ [ togananyzt MLt log ([#£])
= OO 77T | 2048 n n ’

this concludes the proof of and of Theorem

4 Application

In this section we propose a simple algorithm to generate a suitable sequence of
data-dependent coverings using the Random Forests algorithm (RF) Breiman
[2001] as rule generator. The interest is double; first, it shows that there exists
a sequence of suitable data-dependent coverings in practice. Second, it could
prove the consistency of an estimator generated from RF. For now there are
few results about the consistency of an estimator generated by RF, we may cite
Denil et al|[2013], [Scornet et al.| [2015].
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Let C be the set of all hyperrectangles of R%:
C.— {[a,a+h] CR?:acR% he Ri} u{0}.

The following result ensures that any covering C,, such that C,, C C satisfies

Lemma 4.1. B:={c xR :c € C} is a Q-Donsker class.

The proof is given for completeness in Appendix.

4.1 Algorithm

The proposed algorithm is an easy way to generate an estimator using data-
dependent coverings. It can be decomposed into four steps.

1. The generation of RF with my,e. trees fully deployed (without pruning).

2. For a chosen « € (0,1/4), B, = n®/> 4 and ¢,, = 3,V,(Y), it extracts
all significant and insignificant rules according to |(H3)| and from all
nodes and leaves of all trees generated by RF.

3. The selection of a minimal set of rules using Algorithm[I} The redundancy
is controlled recursively as described in Remark [} A rule is added to the
current set of rules if and only if it has at least a rate v € (0,1) of points
not covered by the current set of rules.

4. TIf the selected set of rules does not form a covering, generation of a unique
no-rule that is one of the smallest hyperrectangle satisfying contain-
ing the remaining points.

Remark 10. The sequence (g,,) of the no-rule condition is not controlled by
this algorithm. Indeed, the no-rule is added to ensure a covering without any
control on its variance.

4.2 Simulation

We generate artificial n = 2000 data following the regression setting
Y =mXi +nXe+ 7,

where Z ~ N(0,1), X1, Xo ~U(—1,1), 71 = 3.5 and 1 = —2.5.

We a = 1/4 —1/100. The data are randomly split into a training set and a
test set, with a ratio of 80% / 20%, respectively. We use RF with myyee = 50
generating 100808 rules among which 73 are significant according to and
and 18 are insignificant according to and . Then, the selection
process, with v = 0.95, extracts a set of 5 significant rules which cover 57% of
the training data and add 5 insignificant rules to generate a covering (see Table
[1). It is no necessary to add a no-rule.
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Algorithm 1: Selection of minimal set of rules

© 00 N O ok W N

L T S = T v S Sy S Gy Gy
© © 0N O Uk W N = O

Input:
e therate 0 <~y < 1;

e a set of significant rules S,
e a set of insignificant rules I;

Output:
e a minimal set of rules Cy;

Cp + argmax,cg Py, (r);

S+ S\Cp;

while > . P,(r) <1do

r* < argmax,c g P, (r);

if P,(r* N{Urec,r}) <P, (r*) then
‘ Cpn+CpoUr™,

S+ S\r*;

if #5 =0 then
‘ Break ;

end

£ iec, Pu(r) <1 then

while . P,(r) <1do

r* <« argmin,.; V,,(Y|X €r);

if P,(r* N{Urec,r}) <P,(r*) then
‘ Cp <+ CpoUr™,

I+ I\r*

if #1 =0 then
‘ Break ;

e

end
return C,;
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Rule Conditions Coverage Prediction Var MSE

X0 € [0.09,1.0]
R1 & 0.26 2.99 2.35  4.07
X1€[-1.0,0.13]

X0 € [~0.06, 1.0]
R2 & 0.26 2.98 2.39  4.13
X1 € [-1.0,-0.01]

X0 € [~1.0, —0.03]

R3 & 0.21 ~3.33 251 457
X1 €0.13,1.0]
X0 € [~1.0,-0.32]

R4 & 0.22 346 221 433

X1 € [-0.18,1.0]

X0 € [-1.0,0.05]

R5 & 0.19 —347 242 484
X1 €[0.31,1.0]
X0 € [—0.03,0.52]

R6 & 0.17 —0.08 176 7.42

X1 € [-0.24,1.0]

X0 € [—1.0, —0.06]
R7 & 0.18 —24 195 6.23
X1 € [~0.18,0.61]

X0 € [-0.59, —0.01]

RS & 0.18 027  2.02 742
X1 € [-1.0,0.28]
X0 € [0.09,1.0]
R9 & 0.19 0.44 2.02 7.35
X1 €[0.13,1.0]
X0 € [-1.0, —0.37]
R10 & 0.2 141 204 6.99

X1 € [-1.0,0.13]

Table 1: Summary of selected rules.
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4.3 Results

Regarding the accuracy on the test set, RF has a MSFE score of 1.32 and the
data-dependent covering estimator has a MSE score of 1.57 (see Fig[5)). This
loss of accuracy is the price of turning a black box model into an interpretable
one. The Figure [5| is composed of four graphics: the dataset (upper left), the
model generated by RF (upper right), the model generated by the selected set of
rules (lower left) and the 10 selected rules (lower right). It is interesting to note
that the cells of the partition generated by the 10 set covering are represented

in the bottom left graphic.

Figure 5: Top-left: the dataset, the darker the color the higher the value of Y.
Top-right: the model inferred by RF. Bottom-left: the model inferred by the
minimal data-dependent covering. Bottom-right: the model inferred by the 10

selected rules.

a0
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4.4 Comments

The presented algorithm has no control over the sequence (e,,) of the no-rule. So,
it cannot guarantee that the generated sequence of data-dependent coverings C,
is suitable. However this application emphases that data-dependent coverings
are very efficient to generate an interpretable estimator without a significant
loss of accuracy. With 0.01% of the rules from RF, it constructs an estimator
with 1.19 M SE ratio accuracy compared with the RF one.

5 Conclusion and perspectives

In this paper we provide a general setting for studying the consistency of inter-
pretable rule-based estimators. The novelty is to introduce the notion of cover-
ing composed by two kinds of set, the significant and the insignificant ones. The
significant sets are thought as interpretable sets by construction. The insignif-
icant ones are thought as small sets which variances tend to zero. We provide
an algorithm that extracts from any rule generator a suitable data-dependent
covering. We apply it to Random Forest.

This very effective approach appeals for an algorithm that generates signifi-
cant and insignificant rules and a suitable sequence of data-dependent coverings
on its own. Generating insignificant rules with shrinking diameters as in Propo-
sition a control on the sequence (e,) of the insignificant condition
seems possible. It is a subject of research for future works. The theoretical
setting could also be refined; unbounded Y may be considered by introducing
a truncation operator as in |Gyorfi et al| [2006]; strong consistency and rates of
convergence of the data-dependent covering estimators may be established un-
der slightly stronger assumptions. Finally, the scope could be broaden from the
regression setting to the classification one by adapting the significant condition.

Appendix

We remind that, given two functions ! and u, the bracket [I,u] is the set of
all functions f with | < f < u. An ebracket in Ly(Q) is a bracket [I,u]
with ||[u —1]|,(@) < €. The bracketing number Njj(e, F, £2(Q)) is the minimum
number of e-brackets needed to cover F. (The bracketing functions ! and u must
have finite Ly(Q)-norms but need not belong to F.) A simple condition for a
class to be Q-Donsker is that Nj(e, F, L2(Q)) don’t grow too fast to infinity as
¢ tends to 0. The speed is measured in terms of the bracketing integral defined
by

0
118, F, £5(Q)) = /0 V108 Nj (&, F, £2(Q)) de.

Theorem 5.1. [Van der Vaart, 2000, Theorem 19.4] Every class F of measur-
able functions with Jpj(1, F, L2(Q)) < oo is Q-Donsker.
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Proof of Lemma[{.1 Let € > 0 and consider the sequence {ti}ie{ow,[gd/d}
defined as follows: for any k € {1,...,d},

to,k = —00
{ Vi € {1,...,|2d/e|}, tix, = sup{t € R: QR* "' x|t;_1 1, t[xR* x [~L, L]) < £/2d}
trada/e),x = +00

From the definition of t;’s we have Vk € {1,...,d}, Vi € {1,...,[2d/e]},
(Rk 1>< i— 1k7 zk[XRd k [ L,L]) SE/?d

Q (R xJti—q o, tin] x RTF x [-L, L]) > ¢/2d
(Rk 1><
(Rk "Xto ks ti2ase) k] X RTF x [=L,L]) > 1 —¢/2d (since |2d/e] > 2d/e — 1)

Jt
]
}to;g,m] x RYF x [—L,L])Zie/Qd
]
]

Q (R* ']t 2a/e| &, +0o[xRY™* x [-L, L]) < e/2d
Hence, Vi € {1,...,[2d/c]} and Vk € {1,...,d} we have that
Q (R¥ ' xJti—1 g, tiw[xR“F x [-L, L)) < e/2d.
Consider now the set of brackets defined by (see Fig @
A={lpg_ g ottty el I Tty oty (7R € (o d},0 S i < i < [2d/e1} .

We have #A = ([2d/e]([2d/<] + 1)/2)? and

LG VAR SN DYSEONO PR s N TS S S5 )

:/Rd

d
< /]Rd Z Lgi-s X ([t eotin 11,k [U]ts, — 1,k ot 6 ) X REF ><[—L,L]d@

lnzzl]tik,k,t]‘k,k[x[*L,L] - lnzzl[tikJrl,k;tjk—l,k]X[*L’L] ’ dQ

< Z@ (REY 5 (Jtiy s it k[ U Tt 1. iy k) X RYTF X R)

<d (5/2d +e/2d)
<e

The term after the first equality corresponds to the integration of the hatched
area in Figure [ and the term after the next inequality corresponds to the
integration of the area delimited by the dotted lines.

Thus, the £1(Q)-size of the brackets is not larger than . Since Qf? = Qf
for every f € Ic = {14 : A € C}, the Ly(Q)-size of the brackets is not larger
than /e.

Let f € Io. Then 3a € R h € R‘i s.t. f = 1{aathx[—L,0]- We set, for any
ke{l,...,d},

iy == max{t € {0,...,[2d/e]|} : t,r < ai}
Jr=min{t € {0,...,[2d/e]} : t.x > ar + hi}.
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Figure 6: Example of bracket for d = 2. With I = 14, | 110, 1 1 ]x[tig1.05t,_1.0] a0d
U= 1[4, i1, 1]x[ti.05t;.0]» fOT any rectangle A, 14 € [I,u] if and only if its boundary
A\ A is included in the hatched area.

There always exist j; and ¢} since the sets {¢ € {0,...,[2d/e]} : t, 1 < ax} and
{t€{0,...,[2d/e]} : ¢, > ar + hi} are not empty (they contain respectively
0 and [2d/e]) and, by construction, j; > if. Moreover,

Mgttty )22 S Maash)x (=2, S M et [x (- L,L)

and
rr iy sty 052,20 Tt e (x(-2.01] € A

Thus, Vf € Z¢,J[l,u] € A such that I < f < u.
d
It follows that Njj(v/e,Zc, L2(Q)) < (W) . Hence,

J[](l,zc,ﬁz((@)) < oQ.

According to Theorem this guarantees that Z¢ is a Q-Donsker class. O
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