
HAL Id: hal-02170550
https://hal.science/hal-02170550v1

Submitted on 2 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model-driven Design-Runtime Interaction in Safety
Critical System Development: an Experience Report

Romina Eramo, Florent Marchand de Kerchove, Maximilien Colange, Michele
Tucci, Julien Ouy, Hugo Bruneliere, Davide Di Ruscio

To cite this version:
Romina Eramo, Florent Marchand de Kerchove, Maximilien Colange, Michele Tucci, Julien Ouy, et
al.. Model-driven Design-Runtime Interaction in Safety Critical System Development: an Experience
Report. The Journal of Object Technology, 2019, The 15th European Conference on Modelling Foun-
dations and Applications (ECMFA 2019), 18 (2), pp.1:1-22. �10.5381/jot.2019.18.2.a1�. �hal-02170550�

https://hal.science/hal-02170550v1
https://hal.archives-ouvertes.fr


Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Model-driven Design-Runtime
Interaction in Safety Critical System
Development: an Experience Report

Romina Eramo3 Florent Marchand de Kerchove1

Maximilien Colange2 Michele Tucci3 Julien Ouy2

Hugo Bruneliere1 Davide Di Ruscio3

1. IMT Atlantique, LS2N (CNRS) & ARMINES, France
{hugo.bruneliere,florent.marchand-de-kerchove}@imt-atlantique.fr

2. CLEARSY, France
{maximilien.colange,julien.ouy}@clearsy.com

3. University of L’Aquila, Italy
{davide.diruscio,romina.eramo,michele.tucci}@univaq.it

Abstract Automotive, aerospace, industrial control, and railway systems
are examples of application domains which are particularly characterized
by the need for developing and managing critical systems. Model-driven
engineering is recognized as an effective solution to leverage abstraction
and automation while developing complex systems. One of the major and
key challenges in the model-driven engineering of critical software systems
is the integration of design and runtime aspects. Even though several
methods and tools are available for performing measurements of runtime
properties, the ability to trace them with design models is still limited. In
the context of a real railway system, this paper presents a model-based
approach that has been conceived to analyze runtime data (coming from
different sensors), to produce corresponding traceability models and to
automatically infer from them potential design issues that might need to
be fixed in order to solve detected system malfunctionings.

Keywords Model-Driven Engineering; Critical Systems; Design; Runtime;
Interactions; Traceability

1 Introduction

Nowadays complex systems are predominant in several domains, such as automotive,
health-care, aerospace, industrial control and automation [Boc04]. In this context,
Model-Driven Engineering (MDE) has emerged as an effective solution to leverage

Romina Eramo, Florent Marchand de Kerchove, Maximilien Colange, Michele Tucci, Julien Ouy, Hugo
Bruneliere, Davide Di Ruscio. Model-driven Design-Runtime Interaction in Safety Critical System
Development: an Experience Report. Licensed under Attribution 4.0 International (CC BY 4.0). In
Journal of Object Technology, vol. 18, no. 2, 2019, pages 1:1–22. doi:10.5381/jot.2019.18.2.a1

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2019.18.2.a1
http://dx.doi.org/10.5381/jot.2019.18.2.a1


2 · Eramo et al.

abstraction and automation [Sch06]. Among other things, it notably provides auto-
mated transformation and generation techniques which allow increasing productivity
and reducing time to market. It also provides analysis, validation and simulation
techniques that increase the overall quality of the developed system. However, most
of the current model-based solutions still need to be further developed to 1) scale-up
for real-life industrial projects and 2) provide significant benefits at execution time.

Indeed, one of the major open challenges is to achieve an efficient integration
between the design and runtime aspects of the concerned systems: the system behavior
at runtime has to be better matched with the original system design in order to
understand critical situations that may occur, as well as corresponding potential
failures in design [BEG+18]. Methods and tools already exist for monitoring system
execution and performing measurements of some runtime properties. However, many
of them do not rely on models and, usually, do not allow a relevant integration with
corresponding design models.

The European MegaM@Rt2 project1 notably intends to address such issues. As
part of its continuous system engineering approach [ABD+18], the project aims at
providing a runtime-design time feedback loop that could be deployed and used in
different industrial domains. Among other benefits, such a feedback from runtime-level
to (architectural) design-level allows software engineers to control and manipulate
elements they would not be able to access otherwise.

This paper reports on a practical experience of using a model-based approach and
related techniques to deal with the interactions between design time and runtime in
the development of a safety-critical software system. Notably, the novelty resides in
the combination of different complementary solutions for model traceability and model
views in order to provide support for such a practical use case. Using the proposed
approach, we also show how we can automatically infer some design deviations, and
identify elements affected by these deviations, from a possibly large spectrum of
runtime system configurations or conditions.

The reported model-based experiment is based on an real industrial use case,
a Railway system developed by CLEARSY2, one of the industrial partners of the
MegaM@Rt2 project. In this context, CLEARSY aims at improving the robustness of
its system by integrating the use of model-based techniques in its development cycle.
Their goal is 1) to determine whether environmental conditions are met, and 2) to
detect variations in the behaviour of the system in order to anticipate on possible
failures.

In this paper, we propose both a conceptual model-based approach and an imple-
menting solution that relies on Eclipse and EMF3-based tools. The core components
of our solution are 1) the definition of correspondences between design and runtime
elements (as traceability models), and 2) the building of related views aggregating
design and runtime models in a transparent way. To this intent, our implementation
leverages the existing JTL [CDREP10] and EMF Views [BPWC15] tools.

This paper is structured as follows: Section 2 describes the platform screen doors
control case study, as the main motivation for this work. Then, Section 3 introduces
the general model-based approach we propose to address the issue of design-runtime
traceability for improving such a system. Section 4 presents our Eclipse/EMF-based
implementation of this approach, and how we applied this solution to the case study.

1MegaM@Rt2 project: https://megamart2-ecsel.eu/
2https://www.clearsy.com/en/
3Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/

Journal of Object Technology, vol. 18, no. 2, 2019

https://www.clearsy.com/en/
http://dx.doi.org/10.5381/jot.2019.18.2.a1


Model-driven Design-Runtime Interaction in Safety Critical System Development: an Experience Report · 3

Section 5 discusses the benefits and current limitations of the proposed solution.
Section 6 describes related work while Section 7 concludes the paper.

2 The Platform Screen Doors Control Case Study

The work is motivated by a practical use case proposed by CLEARSY in the context
of the MegaM@Rt2 project. The Coppilot system4 is a controller for platform screen
doors that has been deployed on several subway lines across the world. It is a typical
example of a complex life-critical system and its role is to ensure that platform screen
doors never open at a time when passengers’ lives may be at risk (e.g., absence of
train, moving train, etc.).

A Coppilot system usually manages a metro, tram or train station. It uses a pair
of lidars (Laser Imaging Detection and Ranging) at each extremity of the platform
to measure the position and speed of trains entering the station, and one lidar over
each door of the vehicle that detects the movement of the doors. On top of the lidars,
several computation units are dispatched, one for each lidar that runs image processing
algorithms and a central one that calculates the safety critical outputs, i.e. opening
authorization for each platform doors.

Although certification authorities often require the use of formal methods to develop
such critical systems, there are both economical and technical issues reducing the
possibilities to formally validate all the components of the system. As a consequence,
one common strategy to develop such critical systems is to structure them around 1)
a safety core component that is formally validated and that provides the outputs of
the system, and 2) a set of satellite components for which formal methods are not (or
barely) used. The safety core must consider all the other components as unreliable
(i.e. without any assumption that they will behave as expected). In Coppilot, the
safety core is run by the central calculator and the lidar computation units are the
satellite components.

This strategy allows to decouple the safety analysis from the software development.
The safety analysis identifies both the nominal (intended and expected) behavior of
the system and the defective behavior caused by the unsafe components. As a result, a
list of safety requirements is obtained and have to be implemented into the safety core.
The formal methods used to develop the software then provide a formal proof that
of the correct implementation of those safety requirements. In Coppilot, the safety
core has been developed and certified by using the B method 5, formally ensuring that
the final implementation satisfies all the safety requirements. According to the safety
analysis, the system is required to take a fallback position as soon as a life-endangering
situation becomes possible. Examples of situations that require entering (or moving to)
a fallback position may be sensor inconsistencies, failures, or data/message corruption.
Different fallback position situations require different kinds of intervention (e.g. the
system could be manually restarted or it could automatically restore its previous state)

In order to obtain a balanced trade-off between safety and availability, we aim at
reducing fallback position occurrences. Some occurrences are legitimate and are part
of the nominal operation of the system. Although unavoidable, they are rare enough
to have little impact on the overall availability of the system (e.g. hardware failures or
exceptional temporary conditions). Moreover, other fallback situations may be caused
by design defects. For instance, a recurring fallback situation may be the result of an

4 Coppilot system: https://www.coppilot.fr/en/coppilot-system/
5B method: https://www.methode-b.com/en/

Journal of Object Technology, vol. 18, no. 2, 2019

https://www.coppilot.fr/en/coppilot-system/
https://www.methode-b.com/en/
http://dx.doi.org/10.5381/jot.2019.18.2.a1


4 · Eramo et al.

overly conservative safety analysis and significantly reduce the system availability. In
order to detect and resolve such defects, the system need to be tested in operational
conditions. In this context, the information collected at runtime play a key role. In
fact, linking (runtime) logs that point out fallback situations back to the corresponding
(design) safety requirements can help engineers in taking the appropriate corrective
actions (e.g., maintenance, bug tracking or safety analysis review).

2.1 Current log analysis practice

CLEARSY collected hundreds of gigabytes of logs over several months of system
operation. The monitoring infrastructure had access to the messages exchanged in the
system and to the components’ states. Logs are stored in comma-separated values
files and are manually analyzed in a spreadsheet processor.

The logs analysis is performed by initially identifying all the occurrences of fallback.
The cause of fallback is analyzed by considering that one of the last events has usually
triggered a transition that led the automaton in a wrong position. Discovering such
events may require to track back to a huge number of log items to find an explanation
to the defect. To this intent, system engineers require some support in order to
facilitate their exploitation work.

2.2 A concrete example

As show in Listing 1, logs are composed of a set of events with a timestamp. Each
event refers to a specific automaton and reports the value of variables from sensors.
1 [...]
2 20161017_231136106;u;dbg;192.168.10.101;1;0;M11.LogiqueSecu.Algo_DonneesUtiles__Position_M21;33139
3 20161017_231136106;u;dbg;192.168.10.101;1;0;M11.LogiqueSecu.Algo_DonneesUtiles__Position_M24;33116
4 20161017_231136106;u;dbg;192.168.10.101;1;0;M11.LogiqueSecu.Algo_DonneesUtiles__Vitesse_M21;6
5 20161017_231136106;u;dbg;192.168.10.101;1;0;M11.LogiqueSecu.Algo_DonneesUtiles__Vitesse_M24;2
6 [...]
7 20161017_231136377;u;dbg;192.168.10.101;1;0;M11.LogiqueSecu.Algo_DonneesUtiles__Position_M24;32766
8 20161017_231136377;u;dbg;192.168.10.101;1;0;M11.LogiqueSecu.Algo_DonneesUtiles__Vitesse_M21;0
9 20161017_231136377;u;dbg;192.168.10.101;1;0;M11.LogiqueSecu.Algo_DonneesUtiles__Vitesse_M24;1

10 [...]
11 20161017_231136480;u;dbg;192.168.10.101;1;0;M11.LogiqueSecu.Algo_DonneesUtiles__Position_M24;33117
12 20161017_231136480;u;dbg;192.168.10.101;1;0;M11.LogiqueSecu.Algo_DonneesUtiles__Vitesse_M24;65535
13 20161017_231136480;u;dbg;192.168.10.101;1;0;M11.LogiqueSecu.Algo_DonneesUtiles__fallback_M11;inconsistent_position
14 [...]

Listing 1 – A sample of raw log

Checking position consistency is one of the functions provided by the safety core
to ensure that sensors report correct values. When a train has stopped at the right
position, each sensor should report its position as zero. In real cases, sensors may not
correctly report the real position of the train; this may be caused by slow buffer, delay
in the communication network, or a displacement of the laser. The system tolerates
such inconsistency within a specified threshold limit value.

The raw logs in this Listing 1 show a fallback due to inconsistent position data
that occurs at timestamp 231136480 (see Line 13). This inconsistency is caused by
the sensors reporting positions that differ more than a specified threshold (in the
current model it is 372 millimeters). The positions that have to be considered are
the ones that precede the fallback events; in fact, Sensor M21 reports a position of
33139 (timestamp 231136106, Line 2) and Sensor M24 reports a position of 32766
(timestamp 231136377, Line 7).

Currently, this fallback would be analyzed by hand by looking at the last position
data communicated by the sensors. Those positions can be located a few lines above

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


Model-driven Design-Runtime Interaction in Safety Critical System Development: an Experience Report · 5

the fallback (as for position of M24) or dozens of lines above. Having the ability to
automatically detect the fallback and associate the values reported by the sensors
causing it, as well as their timestamps, would considerably simplify the log analysis
process. System engineers would be oriented more quickly towards the appropriate
corrective actions, such as maintenance, bug tracking, or safety analysis review.

3 Exploiting Design-Runtime Model-driven Traceability for Sys-
tem Improvement

As an answer to the problem described in the previous section, we propose a model-
based approach that facilitates the establishment and exploitation of correspondences
between design and runtime elements of a system. In particular, the system behavior
at runtime is monitored, logged and then related to the initial system design whenever
appropriate. The final objective is to connect fallback critical situations (at runtime)
with their corresponding potential causes (in the system design and runtime). We
specify design-runtime correspondences by means of a traceability model that links
design and runtime information. These correspondences, along with the design and
runtime models, are used as input to an integrated view that transparently relates
the runtime logs with the initial system design. Navigating and querying this view
can help the system engineer to discover fallback situations, identify their causes
without manually analyzing very verbose logs, and navigate back to related safety
requirements.

Figure 1 – Our Overall Model-based Approach (full-line arrows for the data/model flow)

Figure 1 depicts the overall approach proposed as an answer to our motivating
case study from Section 2. Components developed specifically for this experiment,
and existing solutions that had to be extended, are underlined in the figure. Note
that the proposed approach can be considered as a model-based instantiation (relying

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


6 · Eramo et al.

on traceability models as a "knowledge base") of the well-known MAPE-K loop, that
is frequently used in the context of self-adaptive systems for instance [ARS15]. The
main steps of our approach are the following:

1. Monitoring. The considered system first has to be correctly instrumented in
order to generate usable traces of its runtime execution. In practice, execution
traces are often serialized in specific and (semi-)structured textual formats (e.g.
comma-separated values). However, for large volumes of data, a binary format
may be more efficient (e.g. the Common Trace Format (CTF) standard [CTF]).
In any case, the runtime traces must contain the relevant information required
to later relate the runtime events with design elements. Moreover, we considered
UML diagrams 6 describing a static view of the system.

2. Discovering design and runtime models. When not already stored as
models that conform to an explicit metamodel, the design and runtime artefacts
(requirements specification, runtime traces, etc.) should be converted to models.
This may require specifying corresponding metamodels if not available. In our
approach, we specified both the Log Metamodel that describes the runtime traces
and the B Metamodel that covers B specifications (see Log Model and B Model
in Figure 1, respectively). To convert runtime traces and B specifications into
models, we use metamodel-driven model discoverers [BCDM14].

3. Computing design-runtime traceability links. Once the design and run-
time models are available, they can be linked together in several ways. We
use traceability relationships [PDK+11] which have been designed to help users
understand associations and dependencies of heterogeneous models. In MDE, a
traceability link is a relationship between one or more source model elements and
one or more target model elements, whereas a trace model is a structured set of
traceability links, e.g., between source and target models. For some previously-
identified cases, this can be performed automatically thanks to the definition of
a list of patterns (using an appropriate formalism or language) to be detected
from the analyzing the runtime data. Thus, the generated traceability model
relates together the previously obtained runtime and design models according to
these defined patterns [ACD+19].

4. Building the design-runtime view. In order to provide a transparent and
integrated access to the runtime-design traceability information, we build a model
view [BBCW17] based on the previously obtained runtime, design and traceability
models. This view acts as a “virtual” model that refers to these input models
and connects them together according to the traceability information computed
in the previous step. It has to be able to handle possibly large input models (e.g.
verbose runtime traces) [BMdKDC18]. Moreover, it is important to note that
this view conforms to a viewpoint that specifies how the different corresponding
metamodels (B, Log and UML in our present case) are interconnected together.
Such a viewpoint can also filter the element types that are not required by the
users/engineers for the targeted engineering activities.

5. Navigating and querying the design-runtime view. The view is an in-
tegrated interface provided to the system engineer in charge of analyzing and
diagnosing the system. It offers a single entry point to the engineer, thus hiding

6UML: http://www.omg.org/spec/UML/2.5/

Journal of Object Technology, vol. 18, no. 2, 2019

http://www.omg.org/spec/UML/2.5/
http://dx.doi.org/10.5381/jot.2019.18.2.a1


Model-driven Design-Runtime Interaction in Safety Critical System Development: an Experience Report · 7

Figure 2 – Implementation of our Model-based Approach from Figure 1

the unnecessary complexity of the individual models (including the Traceability
one) contributing to the view. From the view, the engineer can transparently
navigate and query all the information relevant to the system, its runtime behav-
ior and design specification. She/he can notably specify her/his own particular
queries, and also rely on predefined libraries of queries that are adaptable in
the context of her/his scenario. This way, the view can be used to diagnose the
system and conduct its evolution (in collaboration with the system architect for
example).

In this approach, when the system engineer wants to build a view on another
runtime trace, only two steps need to be run again: first building a model from the
new trace (2a), then recomputing the traceability links (3). The view can then be
navigated and queried accordingly.

If the engineer wants to analyze a new fallback situation, then the only change
required is to add a pattern for this fallback in the traceability link computation step
(3). If the view should contain more information, e.g. specific to this new fallback
situation, then the view configuration should be altered, or a new view should be
created to reflect the updated situation (step 4).

4 Experiences on Building and Using a Model-based Solution
An overview of our technical solution, implementing the approach from Section 3, is
depicted in Figure 2. The large orange and blue boxes represent the model-driven
frameworks that have been used to build the traceability links and related model views.
They are:

- JTL (Janus Transformation Language) [CDREP10], an Eclipse EMF-based tool
realized to maintain consistency between software artifacts. Its constraint-based

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


8 · Eramo et al.

and relational model transformation engine is specifically tailored to support
bidirectionality, change propagation and traceability between software artefacts.

- EMF Views [BPWC15], an Eclipse plugin allowing to aggregate several (hetero-
geneous) models together in a view. A view can contain virtual associations that
do not exist in any input model, and that can be used to link elements coming
from different related models. Elements from input models can also be filtered
out, making views useful for presenting information to the end user.

The Monitoring Infrastructure that has been used to monitor the system under
analysis is represented by the yellow box in the left part of the figure. Both the
design artifacts and the runtime data need to be mapped in their corresponding model-
based representation (in Ecore format). Thus, Log models and B models have been
automatically obtained by means of model discoverers implemented as Text2Model
Transformations (as represented by the green boxes in the figure). Whereas, the UML
component diagram that we used in the experiments has been directly modeled by
the system architect within EMF. The main steps of our approach, as previously
introduced in Section 3, have been implemented as follows7.

4.1 Monitoring the considered system

The CLEARSY monitoring infrastructure is realized by means of a specific monitoring
system connected to Coppilot. The monitoring system is able to collect messages
exchanged by components as well as memory dumps of the safety core. In particular,
such raw logs represent the output data produced by the safety core and consist of
concatenations of binary messages, time-stamped by the sensors, and arrays of internal
variables of the safety core.

For the purpose of this collaboration, a simplified public version of the safety core
specification has been produced by CLEARSY engineers, still in the B language. This
specification is voluntarily simpler than the original one and implements fewer safety
properties. CLEARSY collected the raw logs used in this experiment by animating
this new version of the B specification of the safety core and using the previously
described monitoring infrastructure.

4.2 Discovering design and runtime models

The collected runtime information and the system design need to be integrated in
the EMF-based environment and translated into EMF artifacts. In this step, we
describe how raw logs and the B specification are automatically transformed into
EMF-compatible models that conform to metamodels specified in Ecore. Once it is set
up a first time with our support, this process can be run again by CLEARSY as many
times as needed. We also describe how we manually created the UML component
diagram from an informal architecture design provided by CLEARSY.

4.2.1 From raw logs to Log models

The raw logs obtained from the infrastructure described in the previous section have
to be specified by means of a model-based representation. To this aim, we have defined
a dedicated metamodel, as depicted in Fig. 3a. It starts with Log, which is the root
element of a log model. A Log stores Events that are characterized by a name and
the timestamp. Each Event contains a set of Trace elements that stores the following

7The full implementation is available for download at: https://git.io/fjezR

Journal of Object Technology, vol. 18, no. 2, 2019

https://git.io/fjezR
http://dx.doi.org/10.5381/jot.2019.18.2.a1


Model-driven Design-Runtime Interaction in Safety Critical System Development: an Experience Report · 9

(a) Log Metamodel (b) A sample of Log Model

Figure 3 – Model-based representation of logs

information: automata name, component name, sensor name, variable name and its
value, and type that can be input IN or output OUT.

Figure 3b depicts a sample of a Log Model that represents the original logs shown
in Listing 1. For instance, the Event (with name 20161017 ) represents one of the
event in Listing 1 and is composed of three Traces that refer to the automata M11. In
particular, the first one refers to the sensor M24 and to the variable Speed, the second
one refers to the sensor M24 and to the variable Position, whereas the last one refers
to the variable fallback with value inconsistent_position.

The Log model (in XMI format) that conform to the Log Metamodel is auto-
matically generated from the original raw log by an automatic Java text to model
transformation.

4.2.2 From the B specification to B models

The safety core of the Coppilot system, which contains the logic for detecting and
triggering fallback situations, is written in the B language [Abr05]. For this experiment,
we focused on a simplified version of this safety core, which comprises 640 lines of B
specification across 11 files, while retaining the ability to trigger fallback situations
that we are interested in. The excerpt in Listing 2 shows a simple operation that can
trigger different fallback situations (inconsistent position or speed) depending on the
state of other components.
1 fallback <-- aopp_authorization =
2 VAR
3 train_in_par, train_stopped, doors_opening
4 IN
5 train_in_par <-- is_train_in_par;
6 train_stopped <-- is_train_stopped;
7 doors_opening <-- are_doors_opening;

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


10 · Eramo et al.

8
9 IF

10 train_in_par = INCONS_POSITION
11 THEN
12 fallback := INCONSISTENT_POSITION
13 ELSIF
14 train_stopped = INCONS_SPEED
15 THEN
16 fallback := INCONSISTENT_SPEED
17 ELSE
18 fallback := NOMINAL
19 END
20 END

Listing 2 – Excerpt of B specification from the simplified safety core.

In order to include the B specification in the view intended for the system engineer,
we need to turn this B specification into an EMF-compatible model. To that end, we
used a model2text framework. In particular, we wrote an Xtext [EB10] grammar for
the subset of the B language that was used by the simplified safety core. Starting from
such a grammar consisting of 382 lines of code and 71 rules, the Xtext supporting tools
generated an Ecore metamodel and all the related plugins allowing one to open any B
file of the simplified safety core as an EMF-compatible model. The B specification
could now be navigated and queried and, more importantly, it can be used as an input
for building the traceability links.

4.2.3 UML modeling

Starting from the informal architecture design provided by CLEARSY, we designed a
UML component diagram within EMF-Eclipse as shown in Figure 4. The diagram
describes the components involved in the simplified Coppilot system: the M11 Com-
puting Unit represents the main component that exploits the information obtained by
the sensors. Sensors are represented by further components, called M21 Positioning
LCU1, M22 Door LCU1, M24 Positioning LCU1, and M23 Door LCU1.

Figure 4 – UML Component Diagram of the simplified Coppilot system

4.3 Computing design-runtime traceability links

Starting from the runtime and design models, a Traceability Model is automatically
generated by means of JTL [CDREP10]. In order to do this, we initiated the solution by
specifying required inter-model correspondences based on the inputs from CLEARSY.
This can be run again and/or extended by CLEARSY in the future if needed to
consider more traceability scenarios.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


Model-driven Design-Runtime Interaction in Safety Critical System Development: an Experience Report · 11

Figure 5 – Traceability Metamodel

In order to represent the traceability information between design and runtime arti-
facts, the simple traceability metamodel depicted in Fig. 5 is considered. It facilitates
the definition of trace links with multiple sources and targets while considering different
types of links, artifacts and additional information as the development context of the
trace links. This traceability metamodel defines a TraceabilityModel, which is the root
element of a traceability model. A trace model stores all the traceability data regarding
the mapping of a set of source artifacts into a set of target artifacts, i.e. two sets of
traceable artifacts. For instance, trace links can be defined between a design model and
a model containing corresponding run-time information. A TraceabilityModel stores
TraceabilityLinks between artifacts. A TraceabilityLink relates one or more elements
belonging to the left domain (leftLinkEnd) and the correspondent (one or more)
elements belonging to the right domain (rightLinkEnd). It also associates to a number
of contexts through which it can capture custom information. TraceabilityLinkEnds
represents an end of a traceability link and it represents a specific TraceableArtefact.
These TraceableArtefact will normally be references to actual artifacts that live in
some kind of source or target model. In our experiment, artifacts refer to an object
of type EObject (org.eclipse.emf.ecore.EObject) that represents a specific object in
the source or target domain. The metaclass TraceabilityContext enables designers
to attach custom information about the context to traceability links. Each context
defines a number of TraceabilityContextData that captures additional information.
TraceabilityContextData can be specialized on the base of specific needs. Such data
may be relevant inference information calculated from the runtime models (eg., related
to the source of fallback and its measurements) that may be then further used at the
system/design model-level.
1 transformation Log2B (log:Log, b:B) {
2 top relation Trace2Variable {
3 v, s : String;
4 checkonly domain log trace: Log::Trace {
5 variable = v,
6 sensor = s
7 };
8 checkonly domain b var: B::Variable {
9 name = s + "_" + v

10 };
11 }
12 top relation Trace2Ref {
13 v, s : String;
14 checkonly domain log trace: Log::Trace {
15 variable = v,
16 sensor = s

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


12 · Eramo et al.

17 };
18 checkonly domain b ref: B::Ref {
19 var = var: B::Variable {
20 name = s + "_" + v
21 }
22 };
23 }
24 top relation Trace2Print {
25 v, s, i : String;
26 checkonly domain log trace: Log::Trace {
27 variable = v,
28 sensor = s,
29 value = i
30 };
31 checkonly domain b ref: B::Call {
32 op = op: B::Operation { name = "print" },
33 args = a1: B::StringLiteral { value = s },
34 args = a2: B::StringLiteral { value = v },
35 args = a2: B::StringLiteral { value = i }
36 };
37 }
38 }

Listing 3 – Specification of Log2B correspondences

Within the JTL framework [EPT18], the correspondences between the design and
runtime concepts are specified between the corresponding metamodels. In Listing 3,
a fragment of the correspondence specification between Log models and B models is
reported. The specification is defined by means of relations between elements of the
two involved domains. In particular, at Line 1 of Listing 3, variables log and b are
declared to match models conforming to the Log and B metamodels, respectively. The
specified relations are described as follows:

- The top relation Trace2Variable (Lines 2-11) maps an element of type Trace in
the Log domain and an element of type Variable in the B domain. Thus, each
event that involves a sensor s and a variable v is mapped to the correspondent
portion of the B specification where the variable is declared;

- The top relation Trace2Ref (Lines 12-23) maps an element of type Trace in
the Log domain and an element of type Ref that represents a reference to a
Variable element in the B domain. Thus, each event that involves a sensor s and
a variable v is mapped to the correspondent portion of the B specification where
the variable is called;

- The top relation Trace2Print (Lines 24-37) maps an element of type Trace in
the Log domain and an element of type Operation with name print in the B
domain. Thus, each event that involves a sensor s and a variable v is mapped
to the operation that prints it, to establish the origin of the event.

The described mapping assumes that models are consistent with the formal specifi-
cation. In this case study, models and code are also consistent in terms of the adopted
naming convention. However, JTL allows specifying also complex relationships between
elements, e.g., elements that do not trivially match by names, or model elements that
do not map one-to-one to the code [CDREP10].

The execution of the Log2B transformation takes as input the Log model and
the B model (as shown in the left and right part of Figure 6) and generates the
corresponding Traceability Model (as shown in the middle of Figure 6). In particular,
the arrows connect trace links with the source and target model elements they refer to.
Furthermore, a Context Data containing the difference between the positions reported
by the sensors M21 and M22 is created by means of a procedure able to navigate the
log models and detect the last values from sensors (as explained in Section 2).

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


Model-driven Design-Runtime Interaction in Safety Critical System Development: an Experience Report · 13

Figure 6 – Traceability Model between the Log and B models

1 transformation Log2UML (log:Log, uml:UML) {
2 top relation Sensor2Component {
3 s : String;
4 checkonly domain log trace: Log::Trace {
5 sensor = s
6 };
7 checkonly domain uml comp: UML::Component {
8 name = s
9 };

10 }
11 top relation Automata2Component {
12 a : String;
13 checkonly domain log trace: Log::Trace {
14 automata = a
15 };
16 checkonly domain uml comp: UML::Component {
17 name = a
18 };
19 }

Listing 4 – Specification of Log2UML correspondences

In Listing 4, a fragment of the correspondences specification between Log models
and UML models is reported. In Line 1, variables log and uml are declared to match
models conforming to the Log and UML metamodels, respectively. The specified
relations are described as follows:

- The top relation Sensor2Component (Lines 2-10) maps an element of type Trace
in the Log domain and an element of type Component in the UML domain. Thus,
each event that involves a sensor a is mapped to the corresponding component
named a;

- The top relation Automata2Component (Lines 11-19) maps an element of type
Trace in the Log domain and an element of type Component in the UML domain.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


14 · Eramo et al.

Thus, each event that involves a sensor a is mapped to the corresponding
component named a.

The execution of the Log2UML transformation takes as input the Log and UML
models (as shown in the left and right part of Fig. 7) and generates the corresponding
Traceability Model (as shown in the middle of Fig. 7). In particular, the arrows connect
trace links with the source and target model elements they refer to.

Figure 7 – Traceability model between the Log model and the UML component diagram

4.4 Building the design-runtime traceability view

While the traceability links computed in the previous section provide enough informa-
tion to help localize and diagnose fallbacks, they are not intended to be used directly
by the system engineer. Instead, we propose to build a view that aggregates together
all the models seen so far. This allows the system engineer to transparently point to
the relevant information (spread in different models) while also allowing him/her to
have a better vision of the full picture. We initiated such a view for our use case with
the help of CLEARSY engineers. However, they are now able to refine this view and
eventually define new ones for supporting different scenarios.

Technically, we built the view using EMF Views [BPWC15] by using four different
artifacts:

1. A viewpoint description, in which we list the metamodels the view requires.
In our case, the metamodels are: the B metamodel, the Log metamodel, the
Traceability metamodel, and the UML metamodel.

2. A viewpoint weaving model, which describes the new (virtual) features enriching
the view. We add a new bidirectional association designComponent, between
Trace and Component, which allows the system engineer to navigate from a
runtime trace back to the component that emitted it, and from a component to
all its emitted traces.
We also rename the features leftLinkEnd (which holds references to B variables)
and rightLinkEnd (references to events and traces) to specification and events,
making the view more useful to the engineer. We perform such a renaming by
filtering the existing features and creating new associations; the matching model
described below then simply carries their content over.

3. A view description, where we list the models contributing to the view: the model
of B specification, an excerpt of logs, the traceability links computed in 4.3,

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


Model-driven Design-Runtime Interaction in Safety Critical System Development: an Experience Report · 15

and the components model. The view description also points to the viewpoint
description above, and to the matching model.

4. A matching model, where we describe how the virtual features should be pop-
ulated. When loading the view in a model browser, EMF Views will use the
matching model to compute an internal view weaving model (analogous to the
viewpoint weaving model), and populate the virtual features accordingly.

Different languages can be used for the matching model. In the present case, we
use the Epsilon Compare Language (ECL) [Kol09]. Listing 5 shows the ECL rule
for populating the designComponent feature: if the name of the component (e.g.,
M21 Position LCU ) starts with the sensor property of the trace (e.g. M21 ),
the two are virtually linked in the view.

1 rule designComponent
2 match t : log!Trace
3 with c : uml!Component {
4 compare {
5 return c.name.startsWith(t.sensor);
6 }
7 }

Listing 5 – ECL matching model

With these four artifacts, the system engineer can open the view description in a
model browser. This causes EMF Views to first build the corresponding viewpoint,
by loading the contributing metamodels and the viewpoint weaving model in order
to build the virtual features. Then, EMF Views builds the actual view by loading
the contributing models, executing the matching model, and populating the virtual
features by collecting the matches. In this case, the process of building the view takes
less than a second, because the virtualization engine of EMF Views does not copy
elements of the contributing models into the view, but rather creates proxies to access
to them on-demand.

While four files are required to build the view, building a new view on another
runtime trace only requires to modify the view description by pointing out to the new
runtime trace model.

4.5 Navigation and querying the design-runtime view

The resulting model view can be navigated using the different types of available user
interfaces. In our Eclipse context, opening the view description file with a standard
model browser yields all the information the CLEARSY system engineer needs in
order to analyze the fallback situations. However, for a more complete user experience,
view navigation capabilities could also be integrated directly within the editors of the
various contributing models (cf. Section 5.3).

Figure 8 gives an example of such a view on a trace where an inconsistent position
fallback was triggered (still on the example from Section 2.2). On the left-hand side are
the four models: the Log model containing all the output traces, the UML component
model containing the design components, the Traceability model containing interesting
traces (here there are three), and the B model containing the B specification. On the
right-hand side, one traceability link is expanded so that its child feature are visible:
traceabilityContext summarizes the situation of the fallback in plain text, specification
points to B variables that are related to the fallback situation, and events contains
the events and traces that are causes for the fallback, as well as the trace in which
the fallback actually happened. One can furthermore consult the actual values of the

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


16 · Eramo et al.

involved sensors M21 and M24 and see that their difference is 373, which is above the
threshold required to trigger a fallback situation (the threshold of 300 is displayed
when expanding the traceability context). From the traces, the engineer can also follow
the designComponent link to navigate to the UML component of the corresponding
sensor.

Figure 8 – View showing an inconsistent position between the two sensors M21 and M24.

In addition to navigating the model view manually, the system engineer can also
query this view by using either dedicated query languages or more general-purpose
languages she/he is familiar with. Queries can be useful notably for automating
workflows, i.e. to support collecting data that will be processed by other tools, or to
create useful summaries. In particular domains or for given purposes (cf. our case
study for instance), it is possible to define some reusable sets of such queries. However,
this cannot be systematically performed in the general case and the engineers expertise
is still fundamental in order to write down more complex queries.

As a concrete simple example, the OCL query of Listing 6 will list all fallback
situations by date alongside with a one-line summary of this fallback (e.g. “Inconsistent
position M21-M24”). Note that we have only experimented with queries defined in
OCL so far, but other languages could also be used to the same intent (cf. Section
5.3).
1 TraceabilityLink.allInstances()->select(t | t.name.startsWith('Fallback'))
2 ->collect(t | t.events->asSequence()->first().timestamp + ' : ' + t.traceabilityContext.name)

Listing 6 – Example OCL query to summarize fallback situations from a view.

As another example, the query self.traces.values can be used to extract all
the sensor values for a given design component (the value of self). These values could
then be further analyzed by the system engineer to diagnose hardware failures. Recall
that traces is a virtual association that links UML components to Trace element of the
log model. The fact that the view aggregates all models into one makes such queries
easy to write and execute.
1 TraceabilityLink.all

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


Model-driven Design-Runtime Interaction in Safety Critical System Development: an Experience Report · 17

2 .select(t | t.name = 'Fallback Position')
3 .collect(t | t.events.first().timestamp + ': ' + t.traceabilityContext.name + ' : ' +
4 t.events.select(e | e.isTypeOf(Trace)).select(t | t.name.indexOf('setsM') > 0)
5 .collect(t | t.designComponent.name + ' : ' + t.value).concat(', ')).println();

Listing 7 – Epsilon query to analyze fallbacks due to inconsistent sensor positions.

Listing 7 is a last example, this time using the Epsilon Object Language [PKR+09].
We output one line for each fallback situation created by an inconsistent position
between sensors, along with the event timestamp and last known sensor values. When
run against the log of Listing 1, we get the line below
231136106: Inconsistent position M21-M24: M21 Positioning LCU1: 33139, M24 Positioning LCU2: 32766

providing all the information that was previously manually extracted.

5 Discussion

The experiment has been conducted in two complementary phases. According to
the CLEARSY interest in adopting model-based solutions, the first phase of the
experiment was devoted to 1) the study of their practices as currently operating in the
company and 2) the understanding of how their needs could be possibly supported by
our technologies. From this first phase, it was evident that a significant effort would be
required to integrate model-based methodologies directly within the existing internal
development processes at CLEARSY (as already strictly structured) .

After collecting the required experiment material, the second phase has been
dedicated to the design of the conceptual approach and the implementation of the
corresponding technical solution (as described in Section 4). Thanks to the performed
experiments, we have been able to integrate various existing artifacts from CLEARSY
within the EMF Eclipse platform. This way, we contributed to the apparition of a
new model-based process at CLEARSY complementary to the existing ones. This one
is specifically dedicated to the analysis of runtime information internally collected by
the company, and can be possibly generalized to other critical systems they have to
model (in B) for their different customers.

We now highlight the strengths and the limitations of the proposed approach. This
is motivated by the feedback received from CLEARSY, based on the usage they have
been able to make so far of our technical solution.

5.1 Benefits of the approach

Our initial experiment indicates that the use of traceability links between runtime and
design/architectural aspects is promising. CLEARSY has observed that providing
accessible correlations between situations of failures and the corresponding design
elements can help their system engineers to better understand critical issues occurring
at runtime. In fact, our approach has the potential for faster turnaround when
analyzing fallback situations: provided traceability links highlight such situations and
link directly to their root cause. Since system engineers can also jump from a fallback
trace to the related variables in the B specification, and also to the corresponding
element in the component diagram, the provided view can help them understanding
if fallback situations are actually caused by specification bugs or rather by involved
hardware components.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


18 · Eramo et al.

As a side benefit of discovering models from the raw (log) data, the structured
information aggregated in the view can be directly reused by model-based tools for dif-
ferent complementary engineering activities (e.g. for automated system documentation
or execution reports).

5.2 Limitations of the approach

One technical limitation of our current implementation is that the discovery of the log
model needs to be done manually. The transformation of raw logs into Log models is
automatic, but the creation of Log models need to be triggered separately from other
steps of the process. In contrast, the B code is discovered automatically as a model by
the Xtext plugins when loading them as EMF resources. The same principle could be
applied to Log models, but currently requires a separate step.

Another limitation of our current solution is that the final view is not yet deeply
integrated with some tools the system engineer may be familiar with. For instance,
while the view lets you browse the B specification as a model (somehow equivalent
to an AST), the system engineer may be more comfortable working directly with
the B source code. The view also currently lets you see UML components and their
usage relations, but not in a dedicated UML graphical editor. In other words, the
view exposes a model representation of the aggregated design-runtime information,
while the system engineer may be more used to deal with corresponding concrete
(textual or graphical) syntax. How to integrate the model view elements seamlessly
in order to enhance existing concrete syntax remains an open scientific and technical
challenge. Similarly to what has been done in [ACLP17], we plan to overcome such
limitations by employing bidirectional model transformations to define and implement
the relationships among the concepts belonging to the different concrete syntaxes of
the modeling artifacts at hand.

5.3 Planned technical improvements

In the context of this first experiment, we focused on detecting one specific cause of
fallback situations: when two sensors report inconsistent values. However, a fallback
may also be caused by faulty sensors or other types of conditions. To detect these
other causes in our current solution, we need to specify more general patterns that can
then be used by JTL when computing the traceability links. Supporting CLEARSY
in this process, we plan to study how to (semi-)automatically discover such patterns
based on the raw runtime data.

As far as the model view navigation is concerned, more work could be done on
improving the integration with the different already available editors (cf. also Section
5.2). For example, in our use case, it would be interesting to be able to navigate
directly from an entry in the Log model back to actual corresponding textual elements
in the B source code (without having to actually open and browse the view itself).

Concerning the model view querying aspects, an interesting continuation of our
work could be to test the support for other languages than OCL to define the needed
queries. In the context of our use case, we can work in close collaboration with the
CLEARSY system engineers in order to identify the language(s) (existing or to be
specified) which are possibly better-suited for them to write and maintain such queries
on the long run.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


Model-driven Design-Runtime Interaction in Safety Critical System Development: an Experience Report · 19

6 Related Work

As introduced in Section 1, the presented work directly belongs to the area of design-
runtime interactions in complex systems, as already prominent in the context of CPSs
notably [DLV12]. Among the different underlying challenges [BEG+18], our proposed
approach and related experiments are mostly related to the following main topics in
this area: 1) the discovery and representation (as models) of runtime information and
2) the creation and use of correspondences between runtime and design models.

The idea of extracting relevant information out of execution logs is not new and
has already been used quite a lot in other domains, such as in databases [AGL98]. As
far as software execution logs are concerned, it appears that there is not any standard
representation that emerged even if some common formats have been proposed quite
recently (e.g. the Common Trace Format - CTF [CTF]). As a consequence, and also
due to the relatively simple structure of the raw logs we were able to collect from the
studied system, we decided to opt in our approach for a simple custom Log metamodel
we designed ourselves.

Complementary to log modeling, some existing approaches intend to represent
system runtime behaviors with more details, either in the general case [LBTA10] or by
means of common notations such as dataflow diagrams for instance [MSS06]. Similar
approaches are also used when the final goal of the runtime analysis process is to perform
more formal verification activities, based on UML statecharts for example [Dru11].
However, in the present case and practical scenario, we have been more interested in
studying the produced runtime logs than in defining the system behavior in a more
general and abstract way.

Model traceability in general has been studied quite deeply in the past, as one of
the key features of MDE providing capabilities for establishing and using traceability
information [ARNRSG06]. There has been a few attempts to specify a common and
generic traceability metamodel [WJSA06]. However, up to our current knowledge,
we have not been able to identify a particular one actually used as a reference or
standard. On the contrary, there have been other types of approaches targeting
the definition of custom traceability metamodels according to the needs of given
scenarios [DKPF08]. In the present work, we decided to go this way by defining our
own custom traceability metamodel (obviously inspired by the work above-mentioned)
according to the requirements from the CLEARSY scenario.

Concerning the definition and representation of the inter-model correspondences
themselves, there has already been a significant work in the community on supporting
model-based principles and techniques such as model weaving (for instance in the
context of model transformation [DFV09] or language interoperability [JVB+10]) or
model comparison [Kol09]. In the present work, we are actually making good use of
model weaving internally in our EMF Views model view solution, notably in order to
represent the view-specific information.

Finally, formal methods are widely used at CLEARSY especially using the B
language, notably at the design time, for specification of models or systems [LDPM17].
Some techniques are also applied at runtime, such as formal validation [LBL12]: Rules
or properties are defined over a model and large data sets are validated against this
model. For example, this allows to detect inconsistencies or design flaws in sets of
software parameters.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1


20 · Eramo et al.

7 Conclusion and Future Work

The approach proposed in this paper globally aimed at helping CLEARSY system
engineers to analyze more easily their running critical systems and thus ultimately
improve their availability on the long run. To this end, it collects all the relevant
runtime-design information and transparently exposes it to the engineers as an all-
encompassing view. Our model-driven solution is composed of five steps: monitoring
the runtime activity, discovering models from the activity and design specification,
computing traceability links between the activity and specification, building a view
from the available/retrieved information, and finally navigating and querying the
view. Our implementation of this approach leverages EMF-based technologies like
Xtext, JTL and EMF Views, and produces a resulting view that aggregates all the
information needed by the system engineers.

As future work, we plan to extend the proposed approach and supporting tools in
different directions. Firstly, we are interested in investigating on how the proposed
approach can be enhanced in order to characterize more precisely the failures, detect
more types of failures and (automatically) identify specific actions to prevent them.
For example, our approach could be combined with the use of analysis or simulation
tools able to consume the traceability information we produce. Moreover, we plan
to improve the proposed approach to deal with large number of traceability links
and contexts. To this end, we expect to extend the currently developed tools by
investigating the applicability of existing stream processing platforms (e.g., Apache
Flink8, and Apache Kafka9). We also intend to improve the proposed supporting tools
for enabling an as smooth as possible adoption of the proposed approach. Finally, a
user study is also planned to actually assess to what extent the proposed approach is
accepted by different kinds of practitioners.

References

[ABD+18] W. Afzal, H. Bruneliere, D. Di Ruscio, A. Sadovykh, S. Mazzini,
E. Cariou, D. Truscan, J. Cabot, A. Gómez, J. Gorroñogoitia, L. Po-
mante, and P. Smrz. The MegaM@Rt2 ECSEL project: MegaMod-
elling at Runtime - Scalable model-based framework for continuous
development and runtime validation of complex systems. MICPRO,
61:86–95, 2018.

[Abr05] J. Abrial. The B-book - assigning programs to meanings. Cambridge
University Press, 2005.

[ACD+19] D. Arcelli, V. Cortellessa, D. Di Pompeo, R. Eramo, and M. Tucci.
Exploiting Architecture/Runtime Model-driven Traceability for Per-
formance Improvement. In ICSA, 2019. to appear.

[ACLP17] L. Addazi, F. Ciccozzi, P. Langer, and E. Posse. Towards seamless
hybrid graphical–textual modelling for uml and profiles. In A. Anjorin
and H. Espinoza, editors, Modelling Foundations and Applications,
pages 20–33, Cham, 2017. Springer International Publishing.

[AGL98] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models
from Workflow logs. In EDBT, pages 467–483, 1998.

8https://flink.apache.org/
9https://kafka.apache.org/

Journal of Object Technology, vol. 18, no. 2, 2019

https://flink.apache.org/
https://kafka.apache.org/
http://dx.doi.org/10.5381/jot.2019.18.2.a1


Model-driven Design-Runtime Interaction in Safety Critical System Development: an Experience Report · 21

[ARNRSG06] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni.
Model Traceability. IBM Systems Journal, 45(3):515–526, 2006.

[ARS15] P. Arcaini, E. Riccobene, and P. Scandurra. Modeling and Analyzing
MAPE-K Feedback Loops for Self-Adaptation. In Proceedings of the
10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, pages 13–23. IEEE Press, 2015.

[BBCW17] H. Bruneliere, E. Burger, J. Cabot, and M. Wimmer. A Feature-based
Survey of Model View Approaches. SoSyM, pages 1–22, 2017.

[BCDM14] H. Bruneliere, J. Cabot, G. Dupé, and F. Madiot. MoDisco: A Model
Driven Reverse Engineering Framework. JIST, 56(8):1012–1032, 2014.

[BEG+18] H. Bruneliere, R. Eramo, A. Gomez, V. Besnard, J. M. Bruel,
M. Gogolla, A. Kastner, and A. Rutle. Model-Driven Engineering
for Design-Runtime Interaction in Complex Systems: Scientific Chal-
lenges and Roadmap - Report on the MDE@DeRun 2018 workshop.
In Proc. of STAF 2018 Collocated Workshops, 2018.

[BMdKDC18] H. Bruneliere, F. Marchand de Kerchove, G. Daniel, and J. Cabot.
Towards Scalable Model Views on Heterogeneous Model Resources. In
MODELS, pages 334–344. Springer, 2018.

[Boc04] N. Boccara. Modeling Complex Systems. Graduate Texts in Comtem-
porary Physics. Springer, 2004.

[BPWC15] H. Bruneliere, J. G. Perez, M. Wimmer, and J. Cabot. EMF Views: A
View Mechanism for Integrating Heterogeneous Models. In ER, pages
317–325. Springer, 2015.

[CDREP10] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio. JTL: A
bidirectional and change propagating transformation language. In
SLE Proc., pages 183–202, 2010.

[CTF] Common Trace Format. https://diamon.org/ctf/.

[DFV09] M. D. Del Fabro and P. Valduriez. Towards the Efficient Develop-
ment of Model Transformations Using Model Weaving and Matching
Transformations. SoSyM, 8(3):305–324, 2009.

[DKPF08] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fernandes. Engi-
neering a DSL for Software Traceability. In SLE Proc., pages 151–167.
Springer, 2008.

[DLV12] P. Derler, E. A. Lee, and A. S. Vincentelli. Modeling Cyber–Physical
Systems. Proc. of the IEEE, 100(1):13–28, 2012.

[Dru11] D. Drusinsky. Modeling and Verification using UML Statecharts: a
Working Guide to Reactive System Design, Runtime Monitoring and
Execution-based Model Checking. Elsevier, 2011.

[EB10] M. Eysholdt and H. Behrens. Xtext: implement your language faster
than the quick and dirty way. In SPLASH/OOPSLA, pages 307–309,
2010.

[EPT18] R. Eramo, A. Pierantonio, and M. Tucci. Enhancing the JTL tool for
bidirectional transformations. In Conf. Companion of Programming,
pages 36–41, 2018.

Journal of Object Technology, vol. 18, no. 2, 2019

https://diamon.org/ctf/
http://dx.doi.org/10.5381/jot.2019.18.2.a1


22 · Eramo et al.

[JVB+10] F. Jouault, B. Vanhooff, H. Bruneliere, G. Doux, Y. Berbers, and
J. Bézivin. Inter-DSL Coordination Support by Combining Megamod-
eling and Model Weaving. In SIGAPP, pages 2011–2018, 2010.

[Kol09] D. S. Kolovos. Establishing Correspondences between Models with
the Epsilon Comparison Language. In ECMDA-FA, pages 146–157.
Springer, 2009.

[LBL12] T. Lecomte, L. Burdy, and M. Leuschel. Formally checking large data
sets in the railways. In DS-Event-B Workshop (ICFME 2012), 2012.

[LBTA10] G. Lehmann, M. Blumendorf, F. Trollmann, and S. Albayrak. Meta-
modeling Runtime Models. In MODELS, pages 209–223, 2010.

[LDPM17] T. Lecomte, D. Déharbe, É. Prun, and E. Mottin. Applying a formal
method in industry: A 25-year trajectory. In SBMF, pages 70–87,
2017.

[MSS06] N. Mitchell, G. Sevitsky, and H. Srinivasan. Modeling Runtime
Behavior in Framework-based Applications. In ECOOP, pages 429–
451. Springer, 2006.

[PDK+11] R. F. Paige, N. Drivalos, D. S. Kolovos, K. J. Fernandes, C. Power,
G. K. Olsen, and S. Zschaler. Rigorous identification and encoding of
trace-links in model-driven engineering. SOSYM, 10(4):469–487, 2011.

[PKR+09] R. F. Paige, D. S. Kolovos, L. M. Rose, N. Drivalos, and F. A. Po-
lack. The Design of a Conceptual Framework and Technical Infrastruc-
ture for Model Management Language Engineering. In IEEE ICECCS
2009, pages 162–171. IEEE, 2009.

[Sch06] D. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering.
Computer, 39(2):25–31, 2006.

[WJSA06] S. Walderhaug, U. Johansen, E. Stav, and J. Aagedal. Towards a
Generic Solution for Traceability in MDD. In ECMDA Traceability
Workshop (ECMDA-TW), pages 41–50, 2006.

Acknowledgments This work has received funding from the ECSEL Joint Un-
dertaking under grant agreement No. 737494 (MegaM@Rt2 project). This Joint
Undertaking receives support from the European Union’s Horizon 2020 research and
innovation program and from Sweden, France, Spain, Italy, Finland & Czech Republic.

Journal of Object Technology, vol. 18, no. 2, 2019

http://dx.doi.org/10.5381/jot.2019.18.2.a1

	Introduction
	The Platform Screen Doors Control Case Study
	Current log analysis practice
	A concrete example

	Exploiting Design-Runtime Model-driven Traceability for System Improvement
	Experiences on Building and Using a Model-based Solution
	Monitoring the considered system
	Discovering design and runtime models
	From raw logs to Log models
	From the B specification to B models
	UML modeling

	Computing design-runtime traceability links
	Building the design-runtime traceability view
	Navigation and querying the design-runtime view

	Discussion
	Benefits of the approach
	Limitations of the approach
	Planned technical improvements

	Related Work
	Conclusion and Future Work
	Bibliography

