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Locating structural changes in a multiple scattering domain with an irregular shape

Locadiff is a method for imaging local structural changes in a random, heterogeneous medium.

It relies on the combination of a forward model to calculate the sensitivity kernel of the sourcereceiver pairs, with an inversion method to determine the position of the changes. So far, the sensitivity kernel has been evaluated based on an analytical solution of the diffusion equation, which lacks the flexibility to handle problems where the domain has boundaries with an irregular shape.

Moreover, the accuracy of the previous inversion method, based on linear algebra tools, was very sensitive to the values of the inversion parameters. This paper introduces a more generic approach to solve both these issues. The first problem is tackled by the implementation of numerical method as an alternative for solving the diffusion equation. The second problem is tackled by the introduction of enhanced optimization algorithms to improve the stability of the inversion. This improved version of Locadiff is validated via both numerical examples and experimental data from an actual civil engineering problem.

I Introduction

The imaging of multiple scattering media is of interest in a variety of research domains, ranging from the micrometer scale in optical tomography to the kilometer scale in seismology [START_REF] Lebedev | Global upper-mantle tomography with the automated multimode inversion of surface and s-wave forms[END_REF]. For example, monitoring changes associated with earthquakes or volcanic activity is a major research topic in seismology.

In ultrasonic nondestructive testing (NDT), which is the main focus of this paper, monitoring defects in civil engineering structures is a key aspect. The difficulty for imaging such media is the presence of heterogeneities with dimensions of the order of the wavelength (some millimeters to some centimeters).

For example, the monitoring of structures made of concrete is a challenging problem, because concrete is a highly heterogeneous medium composed of sand, gravel, pore etc. [START_REF] Anugonda | Diffusion of ultrasound in concrete[END_REF]. Temperature or pressure changes and the human or industrial activity on the structure result in the apparition of small cracks in the concrete [START_REF] Ramamoorthy | Ultrasound diffusion for crack depth determination in concrete[END_REF][START_REF] Zhang | Study of stress-induced velocity variation in concrete under direct tensile force and monitoring of the damage level by using thermally-compensated coda wave interferometry[END_REF]. Early detection and characterization of such defects is very important to preserve the integrity of the structure. However, at the early stage of their formation, cracks have a scattering cross section that is generally less than that of the heterogeneities in the concrete, which makes them particularly difficult to detect.

The multiple reflection and scattering of waves propagating in a heterogeneous medium yield a long lasting waveform known as the coda wave which exhibits strong sensitivity to small perturbation of the medium, because it provides broad sampling of the medium, by interacting with the heterogeneities a number of times that is proportional to the propagation time. This property has been used for almost 20 years in optics with diffuse wave spectroscopy [START_REF] Pine | Diffusing wave spectroscopy[END_REF][START_REF] Cowan | Diffusing acoustic wave spectroscopy[END_REF], in seismology with coda wave interferometry applied to the Earth's crust [START_REF] Snieder | Coda wave interferometry for estimating nonlinear behavior in seismic velocity[END_REF][START_REF] Brenguier | Postseismic relaxation along the san andreas fault at parkfield from continuous seismological observations[END_REF] and volcanoes [START_REF] Grêt | Monitoring rapid temporal change in a volcano with coda wave interferometry[END_REF][START_REF] Brenguier | Towards forecasting volcanic eruptions using seismic noise[END_REF], and in concrete damage assessment [START_REF] Deroo | Detection of damage in concrete using diffuse ultrasound[END_REF][START_REF] Larose | Observation of multiple scattering of kHz vibrations in a concrete structure and application to monitoring weak changes[END_REF][START_REF] Stähler | Monitoring stress changes in a concrete bridge with coda wave interferometry[END_REF][START_REF] Schurr | Damage detection in concrete using coda wave interferometry[END_REF][START_REF] Karaiskos | Monitoring of concrete structures using the ultrasonic pulse velocity method[END_REF].

Apart from overall monitoring of small changes inside a heterogeneous medium, Locadiff was proposed to locate and characterize the changes [START_REF] Pacheco | Time-lapse travel time change of multiply scattered acoustic waves[END_REF][START_REF] Larose | Locating a small change in a multiple scattering environment[END_REF], which consists of solving an inverse problem where the position and scattering cross-section of structural changes are recovered via analytical forward modeling of the diffuse wave and a linear inversion scheme. It has been applied both at the ultrasound scale [START_REF] Rossetto | Locating a weak change using diffuse waves: Theoretical approach and inversion procedure[END_REF][START_REF] Planès | A review of ultrasonic coda wave interferometry in concrete[END_REF] and at the seismic scale [START_REF] Obermann | Imaging preeruptive and coeruptive structural and mechanical changes of a volcano with ambient seismic noise[END_REF][START_REF] Obermann | Seismic noise correlations to image structural and mechanical changes associated with the mw 7.9 2008 wenchuan earthquake[END_REF]. It was successfully applied to characterize several local scatterers in a multiple scattering medium [START_REF] Planès | Imaging multiple local changes in heterogeneous media with diffuse waves[END_REF], and also showed promising results to image extended millimeter cracks in civil engineering structures [START_REF] Zhang | Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam[END_REF][START_REF] Zhang | Three-dimensional in-situ imaging of cracks in concrete using diffuse ultrasound[END_REF]. However, several technical limitations are listed in the following.

1. Only infinite domains or finite domains with a regular squared shape (cuboids) can be processed. This is because Locadiff requires the solution of the diffusion or the radiative transfer equation.

The diffusion equation has an explicit solution in infinitely homogeneous domain. In the previous implementation of Locadiff, boundaries were handled using the image source method: to take into consideration of the reflection from a plane boundary, a virtual source is added symmetrically on the other side of the plane. The final solution is obtained through superposition of all these sources. Therefore, so far Locadiff could not handle more complex boundaries. The first improvement presented in this paper consists of replacing the analytical model with a numerical model for the diffusion equation based on a finite element solver. This enables the use of Locadiff for civil engineering applications, where the concrete structures are not simple, e.g., bridges, buildings and dams. Other possible methods, including solving the radiative transfer equation [START_REF] Bal | Accuracy of transport models for waves in random media[END_REF], using the partial or photon method [START_REF] Przybilla | Monte carlo simulation of radiative energy transfer in continuous elastic random mediathree-component envelopes and numerical validation[END_REF], or computing the waveforms [START_REF] Kanu | Numerical computation of the sensitivity kernel for monitoring weak changes with multiply scattered acoustic waves[END_REF], can also be applied to compute the sensitivity kernel.

The previous version of

Locadiff is based on a regularized least squares problem with L-curve choosing the regularization parameter [START_REF] Planès | Imaging multiple local changes in heterogeneous media with diffuse waves[END_REF]. Negative components of the solution are decreased via a projected iterative step where negative components were forced to zeros at the beginning of each iteration. The solution should be positive because of its physical meaning, the scattering cross section. The drawbacks of this method are that it is time consuming and it cannot ensure convergence, i.e., the final solution still has negative components. In this paper, we demonstrate the importance of regularization through the singular value decomposition (SVD) [START_REF] Golub | Matrix computations[END_REF] of the linear equation system generated by the inverse problem, where the solution is expanded into a sum of a series of vectors corresponding to each singular value. The technique of regularization cuts off component vectors of the solution corresponding to small singular values which are highly contaminated by the noise. Meanwhile the importance of nonnegativity is demonstrated via the Picard condition [START_REF] Hansen | The discrete picard condition for discrete ill-posed problems[END_REF] (Definition IV.1), which tells us that to obtain a reasonable solution, large part of the component vectors should not be polluted by the noise. We find out that our problem doesn't satisfy the Picard condition. That is to say, it is difficult to get a reasonable solution with only the regularization of the original problem. Combining the regularization of the linear system and the nonnegativity of the solution, we arrive at a regularized least squares problem with nonnegative constraints, which belongs to the category of convex optimization [START_REF] Boyd | Convex optimization[END_REF]. We suggest to solve this problem with the interior point method [START_REF] Wright | Primal-dual interior-point methods[END_REF], which ensures the convergence and the computational efficiency. We consider two kinds of regularizations: the first one controls the magnitude (L 2 norm) of the solution and the second one controls its smoothness (norm of its Laplacian).

The manuscript is organized as follows. Section II is a brief description of the fundamental aspects of Locadiff. Section III introduces the numerical forward model used to overcome the limitations of the analytical model so far used in Locadiff. In Section IV, we carefully review the properties of the linear system generated by Locadiff and introduce more generic solvers. In section V we validate the improved Locadiff methodology on two examples.

II Review of Locadiff

Let us consider the basic problem of locating an isolated change inside a multiple scattering medium.

For simplicity we assume that the background velocity keeps unchanged and the scatterers are isotropic. At time t 0 , waves are generated at position s and propagated into the medium. The receiver at position r records the waveform h(s, r, t). We now assume a structural change such as the apparition of a new scatterer. The same waves are generated at the same position to obtain the waveform h (s, r, t). The decorrelation coefficient(DC) between h(s, r, t) and h (s, r, t) defined by

DC E (s, r, t) = 1 - t+T t-T h(s, r, τ )h (s, r, τ )dτ t+T t-T h(s, r, τ ) 2 dτ t+T t-T h (s, r, τ ) 2 dτ (1)
is a sensitive and stable indicator of a localized change of the medium. Here the superscript E means that the DC is computed from experimental data. It was proved in ref. [START_REF] Rossetto | Locating a weak change using diffuse waves: Theoretical approach and inversion procedure[END_REF] that, for an isolated new scatterer located at x, the theoretical DC is

DC T (s, r, x, t) = cσ(x) 2 K(s, r, x, t), (2) 
K(s, r, x, t) = t 0 P (s, x, τ )P (x, r, t -τ )dτ P (s, r, t) , ( 3 
)
where c is the wave speed and σ the total cross section of the new scatterer. The function P (s, r, t) is the intensity of the wave, and can be approximated by the solution of the diffusion equation in highly heterogeneous medium [START_REF] Shapiro | Seismic attenuation by scattering: theory and numerical results[END_REF][START_REF] Schriemer | Energy velocity of diffusing waves in strongly scattering media[END_REF]:

∂ t P (s, r, t) -D∆ r P (s, r, t) = δ(r -s)δ(t).
In practice, we employ several sources s 1 , s 2 , . . . , s M and receivers r 1 , r 2 , . . . , r N . The notation DC m,n (t) means the DC corresponding to the source s m and the receiver r n .

To locate the position of the new scatterer, we need to find x and σ that minimize the cost function

e(x) = m,n DC E m,n (t) -DC T m,n (x, t) 2 .
A maximum likelihood method was presented in ref. [START_REF] Rossetto | Locating a weak change using diffuse waves: Theoretical approach and inversion procedure[END_REF] to do the minimization. If the interaction of newly appearing scatterers is neglected, the total effect is the linear superposition of each individual one, i.e.,

DC T (s, r, t) = cσ(x) 2 K(s, r, x, t)dx. (4) 
The Locadiff method is extended to locate all these new scatterers by solving a linear least squares problem in ref. [START_REF] Planès | Imaging multiple local changes in heterogeneous media with diffuse waves[END_REF]. Let us separate the whole medium into Q equal voxels with volume δV . Then the discrete formula for the theoretical DC ( 4) is

DC T (s, r, t) = cδV 2 Q q=1 K(s, r, x q , t)σ(x q ). (5) 
Let us choose L discrete time t l , l = 1, . . . , L. We can summarize all these measurements into a linear system

Gm = d (6) 
with d the DC, G the sensitivity kernel and m the scattering cross section distribution. Each line of the matrix G corresponds to one of the acquisitions at source s m , receiver r n and time t l .

III Sensitivity kernels for irregular shapes

In this section we will use a disk as an example to demonstrate our modification of Locadiff. Since the boundary of a disk is a curve, previous version of Locadiff kernel do not apply. To deal with irregular shapes, a numerical solver for the diffusion equation is designed. Let us take a disk denoted by Ω (radius 0.4 meters) as an example. We impose reflecting boundary conditions for the diffusion equation, that is,

   ∂ t P (s, r, t) -D∆ r P (s, r, t) = δ(r -s)δ(t), r ∈ Ω, ∂ n P (s, r, t) = 0, r ∈ ∂Ω,
where n is the unit outer normal direction of ∂Ω. We use the finite element method [START_REF] Brenner | The mathematical theory of finite element methods[END_REF] to solve this diffusion equation. The whole medium Ω is cut off into small triangles as shown in Figure 1. The space derivative is approximated with those nodes and the time derivative is approximated using the Crank-Nicolson method. Let me clarify that the discretization strategy used here is different from the one in equation [START_REF] Pine | Diffusing wave spectroscopy[END_REF]. In equation ( 5), the mesh is generated from the discrete approximation of the integral equation ( 4), while here the mesh is used to solve the diffusion equation.

Let us recall the formula of the kernel (3). We need to compute P (s m , x q , t), P (x q , r n , t) and P (s m , r n , t) for all m = 1, 2, . . . , M , n = 1, 2, . . . , N and q = 1, 2, . . . , Q. In practice, M and N are of the order of 10, i.e., we use tens of sources and tens of receivers. The value Q is the discretization size of the medium, which is chosen by the user. Let us note that Q does not depend on the finite element method mentioned previously. A large Q means a fine meshing of the medium, which results in more unknowns in the linear system (6). The linear system becomes more under-determined, and therefore more difficult and time-consuming to solve.

We show a series of images demonstrating the sensitivity kernel. In this experiment we choose the diffusivity D = 125m 2 /s. The disk is represented by about 5000 equally spaced points (Q ≈ 5000).

We put 16 equally spaced sources on the boundary. In the middle of each adjacent source pair we put a receiver. We plot the sensitivity kernel of source 1 and receiver 2 at three different times: 0.2ms, 0.4ms and 0.6ms in Figure 2. With increasing time, the probed region becomes larger. Meanwhile, the impacting strength becomes stronger. 

IV Ill-posedness, regularization and nonnegativity

In this section we focus on demonstrating the difficulty of solving the linear system [START_REF] Cowan | Diffusing acoustic wave spectroscopy[END_REF]. We simulate to obtain the data based on the setup in Section III. The basic tool to study the property of a linear system is the singular value decomposition (SVD) [START_REF] Golub | Matrix computations[END_REF]. For the matrix G, we have the following decomposition

G = U ΛV T ,
where U and V are orthogonal matrices (U T U = I, V T V = I), and V T means the transpose of V . The matrix Λ is a diagonal matrix with non-negative, real, decreasing diagonal elements σ i , i = 1, 2, . . . , L.

The blue line in Figure 3 plots the singular values of the matrix G. The largest singular value has a magnitude of 10 3 and the smallest one has a magnitude of 10 -11 . Besides, the singular values decrease smoothly without any gap, i.e., the problem is ill-posed.

With the help of the SVD of G, the solution to the linear system ( 6) is

m = i u T i d σ i v i ,
with u i the i-th column of the matrix U and v i the i-th column of the matrix V . The vector d usually contains a certain quantity of noise, i.e., d = d + e, where e is the noise and d is the noise-free part which is not accessible in practice. In this section, d is simulated by adding four new scatterers which are shown by white points in Figure 5, and therefore we know d. Correspondingly, m is composed of two parts

m = i u T i d σ i v i + i u T i e σ i v i , (7) 
the noise-free components and the noisy components. We assume that the noise is white and the noise level is η, that is, |u T i e| ≈ η.

Regularization is necessary to obtain a reasonable solution to an ill-posed problem [START_REF] Hansen | Discrete inverse problems: insight and algorithms[END_REF]. The linear (

Let us consider a general kind of regularization, Tikhonov regularization. Instead of minimizing ( 8), an additional term is appended,

min m Gm -d 2 + λ 2 Bm 2 , ( 9 
)
where λ is called regularization parameter and B is a matrix or an operator chosen by the user. A general choice of B could be B = I, the identity matrix, which controls the magnitude of the solution, or B = ∆, the Laplacian operator, which controls the smoothness of the solution. The idea of the regularization is to filter out the noisy components from the final solution. For a very small singular value (large i), the noisy component

|u T i e| σi
≈ η σi becomes extremely large. The solution is spoiled by these large noisy components. Meanwhile, the corresponding singular vector v i is highly oscillating.

A regularized solution is able to provide a much more reasonable solution by diminishing or removing those noisy oscillating components.

A potential precondition for the regularization to be effective is that enough components of the solution [START_REF] Snieder | Coda wave interferometry for estimating nonlinear behavior in seismic velocity[END_REF] should not be contaminated by the noise. Usually speaking, components corresponding to small singular values are more susceptible to be polluted by the noise. We hope that the true solution has more proportion on large singular values than small ones, that is, we need to have enough components |u T i d| larger than the noise level η. This assumption, the discrete Picard condition, is precisely proposed by ref. [START_REF] Hansen | The discrete picard condition for discrete ill-posed problems[END_REF]. singular values larger than ε, the corresponding coefficients |u T i d|, on average, decay faster than the

σ i .
The discrete Picard condition indicates a decreasing tendency of the figure |u T i d|/σ i , while the white noise |u T i e|/σ usually has an increasing tendency. In the ideal case, we cut off the components after the crossing of these two lines. Unfortunately, our linear system does not satisfy the discrete Picard condition. The figure |u T i d|/σ i does not have a decreasing tendency and stays at a certain level. Let us create a 15% Gaussian noise by e = d * ξ * 15%, where ξ is the normalized Gaussian distribution. We see in Figure 4 that the noise begins to dominate after the first 30 components, i.e., most components of the solution are highly polluted, which indicates that the regularized least squares problem ( 9) is not a proper model. It is shown in ref. [START_REF] Planès | Imaging multiple local changes in heterogeneous media with diffuse waves[END_REF] that the nonnegative projection of the solution results in a better imaging of new scatterers. We propose the following model, a regularized least squares problem with the nonnegative constraint,

min m≥0 Gm -d 2 + λ 2 Bm 2 . ( 10 
)
In ref. [START_REF] Planès | Imaging multiple local changes in heterogeneous media with diffuse waves[END_REF], authors proposed to do projections to eliminate negative components, that is, the least squares problem ( 9) is solved and negative components are forced to be zero, and then this approximated solution is used as the initial guess to start the next iteration. The nonnegative projection has no guarantee of convergence. In fact, the problem (10) belongs to "convex quadratic optimizations" [START_REF] Boyd | Convex optimization[END_REF]. This kind of optimization problem has a unique solution. Efficient methods, such as interior point [START_REF] Wright | Primal-dual interior-point methods[END_REF], are able to solve this problem fast and stably.

As a conclusion of this section, we present the result of the example problem from Section (III).

First we demonstrate the effect of different regularizations and the nonnegative constraint. Figure 5 shows the results. In all these experiments, we fix the regularization parameter λ = 100. We see that the nonnegative constraint makes the solution more contracted near positions of new scatterers. The nonnegative constraint also stabilizes the result. New scatterers near source-receiver pairs are easier to be detected than those far away due to the impact region demonstrated in In Figure 6, we compare results with different regularization parameters. If the regularization parameter is too large, the problem is over regularized. The potential region of new scatterers is large (low resolution) as shown in the first picture, that is, we are not sure where are the scatterers exactly.

On the other hand, if the regularization parameter is too small, the result is too sensitive to the noise.

We have the result shown in the last picture, where the cross section of a scatterer is split into two.

For this problem, a regularization parameter λ = 10 provides a good balance between stability and resolution.

V Validation examples

In this section, we apply the Locadiff method with numerical kernel and new inversion technique to more realistic problems. We revisit previous simulations and real field experiments to test the validity of our new scheme. The first experiment is similar to the one from ref. [START_REF] Planès | Imaging multiple local changes in heterogeneous media with diffuse waves[END_REF]. In this experiment we simulate the propagation of acoustic waves in a multiple scattering medium using the finite difference time domain (FDTD) method. Then, three small groups of new scatterers are added and acoustic waves are simulated with the same sources and receivers. The second experiment is from ref. [START_REF] Zhang | Three-dimensional in-situ imaging of cracks in concrete using diffuse ultrasound[END_REF] in which sensors are glued on the surface of a concrete wall to generate and receive ultrasonic waves at two different states. Between these two states, the concrete wall changes a little (cracks open) because of the pressure change inside the building.

A Numerical simulation of coda waves

In this experiment, we simulate the propagation of acoustic waves inside a 75cm × 75cm multiplescattering medium using the FDTD method with a point source of central wavelength λ 0 = 0.375cm.

Positions of sources and receivers are denoted by red crosses and green squares in Figure 7a, respectively. The same simulation is repeated after adding three new scatterers which have radii of 3, 5 and 7 spatial pitches, respectively. The theoretical values of the cross section of these three new scatterers are 1.05λ 0 , 1.67λ 0 and 2.19λ 0 , respectively. The other parameters are set up the same with those in ref. [START_REF] Planès | Imaging multiple local changes in heterogeneous media with diffuse waves[END_REF] where the scattering mean free path is smaller than the size of the medium to ensure the multiple scattering regime to occur.

The DC is computed from formula [START_REF] Lebedev | Global upper-mantle tomography with the automated multimode inversion of surface and s-wave forms[END_REF]. Then 15% Gaussian noise is added. We tried different kinds of regularization and regularization parameters, and chose the one with B = ∆ and λ = 400.

The result is demonstrated in Figure 7b. The reconstructed cross section values of three new scatterers can be obtained by a localized summation which are 0.97λ 0 , 1.54λ 0 and 1.99λ 0 , respectively. They are quite similar to the theoretical values. Compared to the results from ref. [START_REF] Planès | Imaging multiple local changes in heterogeneous media with diffuse waves[END_REF], these new results are more compact and stable.

B Experiment using ultrasound in concrete

Here we re-investigate data from an aeronautical wind tunnel made of concrete at the French ONERA Toulouse center [START_REF] Zhang | Three-dimensional in-situ imaging of cracks in concrete using diffuse ultrasound[END_REF]. Due to changes of the pressure inside the tunnel, cracks in the concrete close or open. Our aim is to use the Locadiff method to image those cracks.

The experiment is done on a 2m × 2m area of the 35cm-thick concrete wall. [START_REF] Pacheco | Time-lapse travel time change of multiply scattered acoustic waves[END_REF] ultrasonic sound with frequency ranging from 80KHz to 100KHz. The experiment is repeated after the increasing of the pressure inside the tunnel. The whole concrete wall is much larger than our experimental domain. It is not necessary to compute the sensitivity kernel on the whole concrete wall, because the diffusion solution decreases exponentially with respect to the distance. On the other hand, in order to eliminate reflections from the truncated boundary in the model, the computational domain is chosen to be a 4m × 4m area surrounding the inspected area.

We choose B = I and λ = 0.2 to perform the inversion. The reconstructed cross section is compared with the one from ref. [START_REF] Zhang | Three-dimensional in-situ imaging of cracks in concrete using diffuse ultrasound[END_REF] in Figure 8. Since the original data set of ref. [START_REF] Zhang | Three-dimensional in-situ imaging of cracks in concrete using diffuse ultrasound[END_REF] is no longer available, we work on a different one, which results in the magnitude difference. Nevertheless, we still find the position of the most prominent crack (three black segments in Figure 8), which validates our new kernel and inversion methodology.

VI Conclusion and future work

In this paper we discussed some limitations of the Locadiff method to locate small changes in heterogeneous multiple scattering media. We propose to replace the explicit diffusion solution by a numerical • The computation of the sensitivity kernel. From our experiments, the sensitivity kernel is the most time-consuming part because of the fine mesh everywhere. Replacing the equally spaced mesh by an adaptive mesh, which is fine near sources and receivers and coarse other places, is able to reduce the size of the problem dramatically. Since the solving of the diffusion equation with sources locating at different positions are totally independent, the computation can be parallelized easily. In practice, if we fix source, receiver and time positions, the sensitivity kernel
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 1 Figure 1: Triangular mesh of a disk.
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 2 Figure 2: Sensitivity kernels of source 1 and receiver 2 at different times. Red circles show positions of sources and green circles are positions of receivers.
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 2 Compared to B = I, the regularization B = ∆ seems to be more proper for this problem. It has the ability to detect the new scatterer inside the domain and the result is more compact.

  (a) B = I, without nonnegative constraint. (b) B = ∆, without nonnegative constraint. (c) B = I, with nonnegative constraint. (d) B = ∆, with nonnegative constraint.
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 5 Figure 5: Comparison of results of the imaging problem with four new scatterers in a multiple scattering medium, with different regularizations and with/without the nonnegative constraint. The four white points inside the images are positions of new scatterers.

  (a) λ = 1000. (b) λ = 100. (c) λ = 10. (d) λ = 1.
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 6 Figure 6: Comparison of results with different regularization parameters. In this experiment, we choose B = ∆. The four white points inside the images are positions of new scatterers.

  receivers and 16 sources are glued on the surface of the wall. The sources are triggered alternatively, emitting an 12 Inversion result of the acoustic experiment.
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 7 Figure 7: Red crosses in the left figure are positions of sources and green squares are positions of receivers. The background cyan dots denote positions of scatterers. Three new scatterers (blue dots) are added in the second simulation. The top-left one is a disk with a 3-spatial-pitch radius. The bottom one is a disk with a 5-spatial-pitch radius. The top-right one is a disk with a 7-spatial-pitch radius. The result is shown in the right figure. In this experiment we choose B = ∆ and λ = 400.
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 8 Figure 8: Reconstructed changes in cross section of the ONERA experiment. The first line is the result from ref. [24]. The second line is our result. The three black segments denote positions of the crack. The magnitude difference is due to different data sets and different implementations of Locadiff.
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