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Abstract. Humans and other large-brained hominins have been proposed to increase energy 21 

turnover during their evolutionary history. Such increased energy turnover is plausible, given 22 

the evolution of energy-rich diets, but requires empirical confirmation. Framing human 23 

energetics in a phylogenetic context, our meta-analysis of 17 wild non-human primate species 24 

shows that daily metabolizable energy input follows an allometric relationship with body 25 

mass where the allometric exponent for mass is 0.75 ± 0.04, close to that reported for daily 26 

energy expenditure measured with doubly-labelled water in primates. Human populations at 27 

subsistence level (N = 6) largely fall within the variation of primate species in the scaling of 28 

energy intake, and therefore do not consume significantly more energy than predicted for a 29 

non-human primate of equivalent mass. In contrast, humans ingest a conspicuously lower 30 

mass of food (-64 ± 6%) compared to primates and maintain their energy intake relatively 31 

more constantly across the year. We conclude that our hominin hunter-gatherer ancestors did 32 

not increase their energy turnover beyond the allometric relationship characterizing all 33 

primate species. The reduction of digestive costs due to consumption of a lower mass of high-34 

quality food as well as stabilization of energy supply may have been important evolutionary 35 

steps enabling encephalization in the absence of significantly raised energy intakes.  36 

 37 

Key words: allometry – food intake – energy balance – seasonal variation – hominins 38 

 39 

 40 
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 3 

1. Background 42 

Humans and other large-brained hominins have been proposed to undergo an increased 43 

energy turnover during their evolutionary history and/or to evolve peculiar energy allocation 44 

trade-offs between growth, maintenance and reproduction relative to other primates (e.g. [1-45 

3]). Comparison of basal metabolic rate between modern humans and chimpanzees, our 46 

closest living relatives, suggests that basal energy requirements increased by ~19% during 47 

hominin evolution, though the available data are very limited [1,2]. Similarly, the available 48 

data on total daily energy expenditure (TEE) in humans and apes have been interpreted as 49 

indicating greater energy turnover in humans compared to non-human primates (e.g. 27% 50 

greater than chimpanzees and bonobos, our closest relatives [2]). At some point of hominin 51 

evolution, a shift towards an energy-rich diet [1,4,5] and later towards cooked foods, with an 52 

increased energy extraction per unit mass compared with raw foods [6,7], could have 53 

sustained the increased energy demand of a larger brain (among other possible sources of 54 

energy [2]). 55 

Nonetheless, our understanding of the extent to which human energy turnover 56 

deviates from that of other primates remains incomplete. The recent comparison of TEE 57 

between humans and great apes [2], is influenced by the very low TEE values of orang-utans, 58 

amongst the lowest observed in any mammal. Furthermore, the TEE data for chimpanzees 59 

and bonobos in this study showed much greater variability and imprecision than that typical 60 

of human studies, with a large difference in the mass-controlled TEE of the two ape species 61 

between two different studies [2,8].  62 

Clearly, additional data are needed to understand the evolution of hominin energetics 63 

and its proposed link [1-3] to the peculiar life history traits that modern humans exhibit 64 

relative to other primates. From an ecological perspective, the functioning of the brain 65 

requires continuous energy fuelling but the majority of non-human primates inhabit, and 66 
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 4 

evolved, in unpredictable seasonal environments that greatly challenge their energy strategy. 67 

Some authors have emphasized relationships between environmental unpredictability and the 68 

cognitive skills, brain organization and brain size [9,10], while others suggested that hominins 69 

may initially have evolved greater stability of energy metabolism, which subsequently 70 

allowed encephalization [11]. 71 

In the present study, we use an energy intake-based approach to test the hypothesis 72 

of a substantial difference in total energy turnover between humans and non-human primates. 73 

Specifically, we address the issue whether human traditional societies living at subsistence 74 

level have higher food intake and metabolizable energy intake for their body mass, compared 75 

with a representative set of 17 free-living non-human primate species. We also test whether 76 

these human populations have more stable energy supply year-round compared with other 77 

primates.  78 

 79 

2. Material and Methods 80 

(a) Non-human primate data.  81 

Daily food intake data were selected from field studies undertaken since the 1970’s, updated 82 

with new data (electronic supplementary material, note S1). We excluded intake data that 83 

have been pooled among adult/subadult individuals and other age classes or 84 

lactating/gestating females. We selected studies that provided an estimate of metabolizable 85 

energy intake (17 spp.; electronic supplementary material, table S1). These studies commonly 86 

assess the proportion of the different macronutrients in primate diets [12]: protein, fat, 87 

structural carbohydrates including cellulose and hemicelluloses among cell wall constituents, 88 

non-structural carbohydrates including soluble sugars and storage reserve compounds. Fibre 89 

digestibility, especially NDF (i.e. neutral detergent fibres which include cellulose, 90 

hemicelluloses and lignin) is determined in captivity for the species under investigation, or 91 
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 5 

from primate models sharing similar fermenting digestive systems. In many cases, the 92 

calculation of readily digestible sugars or total non-structural carbohydrates (TNC) in the diet 93 

is estimated as the difference between 100% and the sum of all other nutrients (protein, fat, 94 

NDF, ash). We used results obtained with this mode of calculation as a first data set for 95 

analyzing the metabolizable energy input:body mass relationship across primates. We also 96 

used results of a second method for calculating metabolizable energy intake since TNC 97 

determined by subtraction potentially severely overestimates the true proportion of non-98 

structural carbohydrates (electronic supplementary material, note S2). In the second method, 99 

we assessed the energy contribution of TNC to metabolizable energy intake based on a 100 

review of published data on the concentration of water soluble sugars and soluble fibres in 101 

primate foods and other tropical fruits and leaves. Results from the two ways of calculating 102 

metabolizable energy intake were referred to as the “High Energy Value of the Diet” (HEVD, 103 

involving TNC determined by subtraction in the original papers) and “Low Energy Value of 104 

the Diet” (LEVD, using a correction for TNC; electronic supplementary material, note S2 and 105 

table S1 and S3). Additional information on study sites and feeding ecology of primates 106 

tested is provided in electronic supplementary material, table S2. 107 

 108 

(b) Human data.  109 

For consistency of comparisons and to reduce methodological heterogeneity in the evaluation 110 

of food intake, we focused on populations in which direct quantitative methods were applied. 111 

Strict methodological criteria were retained, including procedures in which foods or dishes 112 

consumed during a meal by adult men and women (above 20 years old) were weighed [13] 113 

(details in [14]). These criteria were met for five forest and savannah populations from 114 

tropical Africa (Yassa, Mvae, Bakola, Duupa, Koma) and three Nepalese populations from 115 

mid-altitude temperate areas (considered as a single sample in the original study). Depending 116 
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 6 

on the population, the diet combines farming products, natural plant resources and/or animal 117 

matter from hunting/fishing activities (electronic supplementary material, table S4). They all 118 

live at subsistence level, that is they broadly rely on self-sufficiency modes of food 119 

production/provisioning and have relatively stable energy balance in the long-term (despite 120 

seasonal variations, they do not experience substantial increase in body mass throughout most 121 

of their adult lifespan, as indicated by cross-sectional measurements across wide age ranges 122 

[15]). They do not appear nutritionally deprived according to surveys of their health status 123 

and body mass index [15-17]. We discarded populations under nutritional transition from 124 

their traditional lifestyle, rural populations practicing substantial cash agriculture, or 125 

populations showing excessive body mass index and inadequate energy balance. For 126 

consistency, we also did not retain studies that approximated individual daily food intake by 127 

weighing the mass of foodstuff brought to the village. Food measurements were made at three 128 

distinct seasons, and these data were averaged to avoid potential energy imbalance that may 129 

occur seasonally, often during the peak season of agriculture [18]. Metabolizable energy 130 

intake (electronic supplementary material, table S1) is calculated from classical nutritional 131 

composition tables for raw and cooked foods as well as from complementary analyses made 132 

for specific foods when required. 133 

 134 

(c) Data analysis.  135 

We tested which of the HEVD and LEVD models best reflected the actual amount of 136 

metabolizable energy available to primates and hence provided the most accurate set of data 137 

to be contrasted with human energy intake measurements. Specifically, we tested which of 138 

these models best equated total energy expenditure (TEE) measured with doubly labelled 139 

water, the gold-standard method for measuring TEE in free-ranging animals (published data 140 

for primates and analyses in electronic supplementary material, note S3 and table S5). The 141 
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basic assumption underlying this comparison was i) that energy fluxes should broadly equate 142 

to a balanced energy budget, and ii) that energy expenditure is maintained within a narrow 143 

physiological range, making it possible to use it as a reference value (as evidenced by a 144 

growing number of mammal studies [8,19,20]).  145 

As for non-human primates, energy input estimates in humans are subject to some 146 

degree of inaccuracy. To assess data consistency, energy input was contrasted with the daily 147 

energy expenditure measured during three seasons alongside with the food intake studies on 148 

four of the populations tested (Douglas bag technique [21] in this case; published data on 149 

these populations and analyses in electronic supplementary material, note S3 and table S5). 150 

A phylogenetically controlled method (PGLS or phylogenetic least squares 151 

regression) was used to assess the effect of phylogenetic relatedness in the allometric analysis 152 

of food and energy intake across species (electronic supplementary material, note S4 and 153 

figure S1).  154 

 155 

3. Results 156 

(a) Energy intake in non-human primates and humans 157 

The LEVD model much more closely matched doubly labelled water measurements of TEE 158 

than the HEVD model (electronic supplementary material; Note S3, fig S2), therefore we 159 

only focus on the former model in the subsequent analyses. Energy intake in our human 160 

sample was consistent with energy expenditure measured in parallel using time-activity-161 

weighted indirect calorimetry, both calculated as the three-season average ([21]; electronic 162 

supplementary material, note S3 and table S5). 163 

Plotting the non-human primate LEVD energy intake data (electronic supplementary 164 

material, table S1) against species body mass yields the following phylogenetically-controlled 165 

equation: 166 
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 8 

log(daily energy intake, in kJ.day-1) = 0.41 + 0.75 logBM (N = 17 spp), where BM is 167 

body mass. A disproportionate part (96%) of the variation of energy input was explained by 168 

body mass variation (table 1; figure 1).  169 

The data show that humans do not consume significantly more energy than other 170 

primates with similar mass. The averaged observed value for humans is 10% above the 171 

expected LEVD value (electronic supplementary material, table S5), but it clearly falls within 172 

the confidence interval of the slope (figure 1). Calculation of the 95% prediction limits of the 173 

LEVD regression for an additional datum (20, 22), energy intake of humans should be > 79% 174 

above the predicted value to produce a significant difference (two-tailed t test;  > 62% with a 175 

one-tailed t-test). Similarly, with a 18% positive deviation from the TEE expected from the 176 

TEE:body mass regression published for primate species using doubly labelled water [8], 177 

mean energy intake of the humans studied remains largely below the upper limit at 54% of 178 

the 95% prediction interval (two-tailed test) calculated for this regression line (43% with a 179 

one-tailed test).  180 

Seasonal data available show that human populations exhibit minor variations of 181 

energy intake (median 7%, range 2–18%) relative to the nine primate species for which data 182 

are available (electronic supplementary material, table S1). Non-human primates show large 183 

seasonal variation regardless of their dietary adaptations, body size and phylogenetical 184 

relatedness (median 118%, range 0–547%). Exceptions (no variation observed) are the 185 

folivorous mountain gorillas that inhabit a relatively stable montane forest environment. 186 

 187 

(b) Food intake in humans versus other primates  188 

Food intake in primates including humans (averaged from six populations) follows an 189 

allometric relationship in which the equation is:  190 

log(wet matter input, g.day-1) = 0.11 + 0.73 log(body mass, g),  191 
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 9 

 according to phylogenetic least square regression (table 1). An allometric exponent of 0.74 ± 192 

0.16 is found using dry matter intake (database only available for non human primates in this 193 

case; electronic supplementary material, figure S3). Each human population falls as a low 194 

outlier in the regression analysis using wet matter (with Homo residual > -3 standard 195 

deviations). Figure 2 shows, besides the phylogenetically controlled regression for non-196 

human primates alone, daily food intakes measured in the various human populations studied. 197 

All human groups studied consistently ingest remarkably less food than predicted from their 198 

body mass, with a conspicuously low mean value of only 36 ± 6% (i.e. 2600 g less, on 199 

average) that expected in a non-human primate of the same body size. Only Propithecus 200 

coronatus consume very little food relative to its body mass but periods of observations were 201 

biased towards the long dry season when animals exhibited a thrifty energy strategy 202 

(reference in electronic supplementary material, table S1). 203 

The average energy density of the human diets (population mean ± sd: 6.8 ± 1.6 kJ.g-
204 

1 of wet diet including raw and cooked foods) was 178% greater than that of wild non-human 205 

primates (species mean ± sd: 2.4 ± 0.6 kJ.g-1 of wet matter).  206 

 207 

4. Discussion 208 

Our key finding is that, with a far more rich and energy-dense diet compared to other 209 

primates, humans consume much less food to obtain the amount of calories expected relative 210 

to their mass. At first glance, these results contradict the hypothesis that the costs of brain 211 

enlargement could be compensated by extra energy input. A recent study [2] stated that 212 

humans have 27% greater total energy expenditure relative to chimpanzees and bonobos but, 213 

as shown in figure 1, the greater energy expenditure of humans relative to apes [2] emerges in 214 

part because the three ape species have similar (Pan) or lower TEE (Gorilla, Pongo) than 215 

predicted for their body mass. Other relatively large-brain monkeys show only moderate 216 
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increase of TEE relative to the expected value (e.g. Sapajus apella; [23]), and their TEE 217 

adjusted for body mass is much smaller than that observed in several primates with a smaller 218 

brain — e.g. some small-brain species fall above the 95% confidence limits of the slope, with 219 

a deviation of 22 to 36% above expectations (see the grey symbols and solid black line in 220 

figure 1).    221 

All data available therefore suggest that humans do not stand out as a major outlier 222 

in the primate data. We acknowledge that measurements of food intake have shortcomings 223 

that challenge comparisons of daily energy intake across human groups or primate species. 224 

For instance, part of the variance observed in the energy intake:body mass relationship for 225 

primates likely reflects measurement errors. In food intake surveys of humans associated with 226 

food weighing, there are inter-observer errors, and some study subjects may omit to declare 227 

the food they consumed outside their regular meals. There is also some uncertainty in the 228 

energy value of some cooked foods, and potentially large day-to-day variation in energy 229 

balance through variation in food intake and physical activity. However, this latter effect is 230 

reduced in the case of weekly monitoring [24], the method we used here. On the positive side, 231 

low costs of the method allow energy intake to be measured in larger sample sizes than usual 232 

in isotope studies and in different seasons, which collectively improves accuracy of habitual 233 

energy turnover at the population level. Of note, our analysis of seasonal data averaged for 234 

the year showed that energy intake estimates did not differ significantly from energy 235 

expenditure measurements in the subsample we analysed (electronic supplementary material, 236 

note S3 and table S5). This suggests that any inaccuracy in our method should not markedly 237 

affect our conclusions.  238 

In the same way, the variability around the allometric regression line drawn for 239 

energy intake does not necessarily result mainly from methodological inaccuracy but may 240 

also reflect species or population biological characteristics. We note for example the 241 
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important variance in the scaling of primate TEE data with body mass (see § above) despite 242 

the use of a rigorous method (doubly labelled water). Clearly, greater accuracy in future 243 

energy intake studies and standardization of these methods relative to isotopic studies should 244 

increase the robustness of comparative analyses. 245 

Keeping in mind these methodological issues, our meta-analysis of primate energy 246 

intake suggests that ‘reorganization’ of the energy budget, rather than substantially increasing 247 

its total value, was probably an important step in brain evolution in the genus Homo [1,3]. 248 

There are several different ways in which such reorganization could have been achieved. 249 

First, the classic ‘expensive tissue hypothesis’ proposed that energy was diverted to the brain 250 

through reducing size of the gut [25] but this hypothesis has not been supported across 251 

mammals in general, and across primates in particular [3,26]. However, other tissues that may 252 

have traded off against the brain include muscle or liver [1,27]. The decreased cost of 253 

digestion due to the remarkable diminution of food intake (see below) may also have 254 

contributed to the assignment of the released energy to maintaining a larger brain. Second, 255 

humans have thrifty life histories, with slow growth profiles, reducing energy demands of 256 

both juveniles and parents supporting them [28]. Third, humans may distribute energy costs 257 

socially, both overall and through cooperative breeding [29-31]. Social capital can provide 258 

‘energy insurance’ protecting individuals from foraging failure [11]. Finally, humans may 259 

also benefit from somatic insurance, in the form of body fat stores. In contrast to social 260 

capital, body fat ring-fences energy for individual use [32]. Each of social and somatic capital 261 

can smooth over fluctuations in energy supply, reducing the need for routinely high energy 262 

intakes [33]. This generic strategy may initially have been favoured to resolve the stress of 263 

seasonality, potentially permitting the onset of encephalization in the absence of raised energy 264 

intakes [11]. Whereas subsistence human populations are able to maintain energy intake 265 

relatively stable across the year, the great seasonal variability in energy intake observed in 266 
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nonhuman primates — possibly implying periods of negative energy balance [34-36] 267 

(electronic supplementary material, table S1) — is a telling example of the constraints 268 

imposed by natural food resources on the expansion of energy budgets. 269 

The reduction of the quantity of food ingested to as low as 36% that of a primate 270 

with similar mass, the second main result of our study (Figure 2, see also [37]), suggests that 271 

humans may have targeting foraging at energy-dense foods which in turn may have reduced 272 

the energy costs of digestion. An extensive analysis of the activity budget among primates is 273 

beyond the scope of this paper, nonetheless the total time devoted to subsistence activities in 274 

the humans tested (5h30 ± 1h00, calculated from [21, 38, personal observation]) is not 275 

markedly different from that spent feeding/foraging by chimpanzees, i.e. 5h ± 1h30 in various 276 

habitats (and is less than that in orang-utans and lowland gorillas; [39]). In contrast, the 277 

specific duration of harvesting and processing food relative to feeding time is considerable in 278 

humans. In some hunter-gatherer societies, the cost of ranging is estimated to be 31% greater 279 

than in chimpanzees due to longer distances travelled daily and larger body mass [2,8,40]. 280 

We calculate that the increased energy costs of harvesting/processing foods (300-700 281 

kJ.d-1 according to the hunter-gatherer societies considered; electronic supplementary 282 

material, Note S5) could easily be offset by lower costs of digesting smaller food volumes. In 283 

humans, digestion costs represent ~10% of TEE (e.g. [41,42]) and increase basal energy 284 

expenditure by ~25% [43]. Based on predictive equations incorporating meal size and body 285 

mass, a human consuming the reduced amount of food we report here, relative to the primate-286 

predicted amount (-64%), would experience ~600 kJ.d-1 lower costs of digestion (electronic 287 

supplementary material, Note S5). Experimental studies on animal models with a digestive 288 

physiology similar to humans, such as pigs, indicate that further meal reductions can reduce 289 

digestion costs much more (~1600 kJ.d-1; [44]). We note that this energy saving could 290 

compensate for both the higher cost of foraging for energy-dense foods, and for maintaining a 291 
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large brain (the increased energy cost of the human brain compared to a chimpanzee is 292 

estimated at ~800.kJ d-1 [2]; electronic supplementary material, Note S5) among other 293 

metabolically costly organs. Moreover, on an evolutionary scale, the transition from a 294 

relatively fibrous diet toward softer edible foods in the genus Homo [4] likely led to an 295 

additional decrease in the energy cost of digestion [45].  296 

In conclusion, greater stability of energy use may have been important for human 297 

evolution, as others argued, while total energy budget does not seem to have increased to 298 

unusual proportions relative to other primates. We hypothesize that the calories saved by 299 

using readily digestible foods may have been one of the various means of reallocating energy 300 

to energy-demanding organs or costly life history traits specific to human. Future studies 301 

should investigate the variation of digestion costs in different nutritional contexts in humans 302 

and non-human primates to tackle this evolutionary biology issue in a more appropriate 303 

phylogenetic perspective. 304 
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Table legends 437 

Table 1. Results of the phylogenetic generalized least-square models testing the strength of 438 

the phylogenetic signal (λ) for various Y parameters plotted against body mass (logY = α + β 439 

logBM, with BM in g). 440 

441 
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Figure legends 442 

Figure 1. Scaling of daily energy intake and total daily energy expenditure (TEE) with species 443 

body weight in non-human primates and subsistence-level humans. Main figure: the solid 444 

orange regression line, y = 0.75(±0.04)x + 0.42(±0.15), refers to the “Low Energy Value of 445 

the Diet” (LEVD: filled circles) database for non-human primates (averaged for each species 446 

where seasonal data or different population data are available; electronic supplementary 447 

material, table S1). The solid black line shows the scaling of TEE (measured using doubly 448 

labelled water; diamonds) with body mass in primates, y = 0.73(±0.03)x + 0.45(±0.12) (after 449 

[8]). Recent additional TEE results for apes [2] include data combined for chimpanzees and 450 

bonobos (Pan*). The average energy intake of human populations tested in this study (blue 451 

circle; N = 6) is shown. Regressions using best-fit models are derived from phylogenetically 452 

controlled analysis (table 1). The dotted lines show the 95% confidence interval for each of 453 

the two regression lines. Box: details of human deviation from the TEE:body mass 454 

relationship (populations averaged for men and women; Y: Yassa, M: Mvae, D: Duupa, T: 455 

Nepalese, B: Bakola, K: Koma). 456 

 457 

Figure 2. Relationship between daily food intake and body weight of primates. The regression 458 

line is calculated for free-ranging non-human primate species using the best-fit model derived 459 

from the phylogenetically controlled analysis (table 1). Human populations are figured 460 

separately. The dotted lines show the 95% confidence interval for the regression line. 461 
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Figure 2. Relationship between daily food intake and body weight of primates. The regression line is 
calculated for free-ranging non-human primate species using the best-fit model derived from the 

phylogenetically controlled analysis (table 1). Human populations are figured separately. The dotted lines 

show the 95% confidence interval for the regression line.  
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