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Mixed optimization problems occur often

Test case from OQUAIDO research chair [Roustant et al., 2018]:
identify the mass of
239Pu in nuclear waste containers by gamma spectrometry. Parameters

Input Domain

distance [0, 1] continuous
density [0, 1] continuous
width [0, 1] continuous

surface [0, 1] continuous
energy {1, 2, 3, 4, 5, 6} discrete ordinal
shape sphere, cylinder, parallelepiped discrete nominal

chemical element {1, 2, . . . , 94} discrete nominal

Design of systems with discrete material & architecture and
continuous dimensions : aircraft wings, thermal insulation systems.

Machine Learning (neural networks): ordinal number of neurons and
layers, continuous weights.

. . .
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Problem formulation

min
x∈Rdr ,u∈Ddo+dn

f (x , u)

dr , do and dn fixed

D ordinal or nominal with levels ui ∈ {1, . . . , Li} , i = 1, (do + dn)

dd = do + dn

In scope: algorithms that work for a given number of nominal and ordinal
and continuous variables, fewer than 100 levels per discrete variable.

Out of scope: specialized algorithms (e.g., for graphs, for convex
problems,. . . ), very large number of levels Li (Bayesian methods).
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Mixed optimization algorithms (1/2)

Relaxation of integer into continuous variables: branch & bound and
MINLP solvers [Belotti et al., 2013], penalization for not being an
integer [Shin et al., 1989], softmax reformulation in terms of
probabilities with a stochastic (sampling) optimizer.

Evolutionary optimization: integers as rounded off continuous
variables [Lin et al., 2004, Hansen, 2011], composition of operators
[Cao et al., 2000], EDA with mixed trees
[Ocenasek and Schwarz, 2002].

Alternating mixed programming with a user definition of the
neighborhood of the discrete variables
[Audet and Dennis Jr, 2001, Lucidi et al., 2005]
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Mixed optimization algorithms (2/2)

Model based optimization:

model of the function [Bartz-Beielstein and Zaefferer, 2017]
[Holmström et al., 2008, Müller et al., 2013, Bajer and Holeňa, 2013];
model of the points distribution [Emmerich et al., 2008],
[Sadowski et al., 2018].

Mixed Bayesian optimization: for machine learning
[Hutter et al., 2011, Wang et al., 2016], look at kernels in
[Pelamatti et al., 2018], [Munoz Zuniga and Sinoquet, 2019].

This talk summarizes intermediate results that are part of an on-going
effort to address mixed optimization with Gaussian Processes.
May be, on the way, obtain results that apply to other mixed optimization
problems.
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Gaussian processes for mixed variables

Use a(n infinite number of) surrogate(s) to the objective function, a
Gaussian Process (GP), to reduce the number of calls to the true f ().

A GP depends on a kernel (covariance function) that decides on the
type of surrogates we handle.

GPs (kernels) exist for mixed variables. Here, use product of
continuous and discrete kernels.
GP model for discrete variables:

warping of ordinal variables using a normal function

compound symmetry matrix for the nominal variables: simplest model.
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Bayesian optimization

BO algorithm template
Input a function f to minimize, a budget

an optimization algorithm algo
a design of experiment D
an associated Gaussian Process, GP

current fbest ← min(f (D))
for k = 1 to budget do

Get (x ′, u′) ∈ arg maxx,u EI (GP(x , u)) using algo I
no call to f but still a
mixed opt problem

Calculate f (x ′, u′) and add [(x ′, u′), f (x ′, u′)] to D
current fbest ← min(current fbest, f (x ′, u′))
Update the Gaussian Process
end for
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Goals of the presentation

1 EI (x , u) is a multi-modal mixed function.
What is a good algorithm to maximize a mixed EI?
⇐ studied by composition of global optimizers.

2 Is it useful to optimize EI well?
It is just an internal optimization problem . . .
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Algorithms composition: principle

Generalizes operator composition in evolutionary computation.

min
x∈Rdr ,u∈Ddo+dn

f (x , u)

Input a function f to minimize
an continuous optimization algorithm algoC
a discrete optimization algorithm algoD

while not done do
x ′ ← algoC
u′ ← algoD
Calculate f (x ′, u′)
Update algoC with [x ′, f (x ′, u′)] I noisy evaluation
Update algoD with [u′, f (x ′, u′)] I noisy evaluation

end while
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Component algorithms: Evolution Strategy (continuous)

Initialize state variables m, σ, C and others
while termination criteria not satisfied do
Sample λ individuals, following N (m, σ2C)
Update the state variables according to the µ best sampled points
end while

CMAES
[Hansen and Ostermeier, 2001]:
Covariance matrix adaptation
evolution strategy.

State-of-the-art algo. in the
noise-free case;

the matrix might degenerate in
case of noise.

pcCMSAES
[Hellwig and Beyer, 2016]:
population control covariance
self-adaptive evolution strategy

adapted to the noisy setting;

if noise is detected: the
covariance matrix is fixed and
the population λ increases.

Noise ≈ “miscommunication” between the continuous (ES) and discrete
optimizers.
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Component algorithm: UMDA (discrete)

Estimation of Distribution Algorithms (EDAs): sampling using densities of
independent categorical variables [Larrañaga and Lozano, 2001]

Univariate Marginal Distribution Algorithm (UMDA).
Input: α, ε
Initialize probabilities of each variable having value j , pj

i , i = 1, dd , j = 1, Li

while termination criteria not satisfied do
Sample λ individuals u(k) = (u

(k)
1 , . . . , u

(k)
dd ), with u

(k)
i = j with proba. pj

i

Select the µ < λ best individals
Update the marginal probability:

pj
i

′
=

1

µ

µ∑
k=1

1(uk:λ
i = j)

uk:λ
i is the i th component of the k th best individual.

pj
i = αpj

i + (1− α)pj
i

′ ∈ [ε, 1− ε].

end while
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Component algorithm: EA (discrete)

Evolutionary Algorithms (EA), actually here a random local hill-climber

(1+1)-EA.
Input κ I expected nb of mutations
Initialize Sample u uniformly where each ui is in {1, . . . , Li} , i = 1, dd
while termination criteria not satisfied do
u′ ← u

Shift each component of u′ with probability κ
n

to the previous or next level (circular).
if f (u′) ≤ f (u) then

u ← u′

end if
end while
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Algorithms composition: instances

One-shot sampling:

Random Search;

Hybrid: Evolution Strategy in the continuous part and Evolutionary
Algorithms on the discrete part:

CMAES + EA;
CMAES + UMDA;
pcCMSAES + EA;

Separate the impact of the random search on the continuous and the
discrete part:

RS + EA;
CMAES + RS.
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Making mixed test functions

Using functions of the BBOB/COCO testbed;
Like in [Liao et al., 2014],

the ordinal variables are restrictions of the continuous variables to l
given levels,
the nominal variables are a shuffling of the ordinal variables.
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Ellipsoid in dim. 2. Left: 2 continuous variables. Center: one continuous
variable, one ordinal variable. Right: one continuous variable, one
categorial variable.
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Test functions
Functions: Sphere, Ackley, Ellipsoid, Griewank, Rastrigin;

Figure: Sphere,
−10 ≤ xi ≤ 10

Figure: Ellipsoid,
−10 ≤ xi ≤ 10

Figure: Rastrigin,
−5 ≤ xi ≤ 5

Figure: Ackley,
−40 ≤ xi ≤ 40

Figure: Griewank,
−1000 ≤ xi ≤ 1000

Figure: Griewank,
−50 ≤ xi ≤ 50

Figure: Griewank,
−10 ≤ xi ≤ 10

Figure: Griewank,
−5 ≤ xi ≤ 5
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Test functions

Functions: Sphere, Ackley, Ellipsoid, Griewank, Rastrigin;

L = 3 levels per discrete variable;

Dimensions

dr 3 3 3 2 2 8 8 4 6 2 2 2 16 16 16
do 2 1 0 8 0 2 0 3 7 9 2 16 2 4 0
dn 0 1 2 0 8 0 2 3 7 9 16 2 2 0 4

Number of function evaluations: 105;

Median over 11 runs.
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Effect on Ackley

Simple Regret=f (current best)− f (real opt.)

0 1 2 3 4 5

-6
-5

-4
-3

-2
-1

0

Ackley dim 10 cont 8 ordinal 2 nominal 0

#nb evals

Si
m

pl
e 

Re
gr

et

RS
RS-EA
pcCMSAES-EA
CMAES-RS (11)
CMAES-EDA (1)
CMAES-EA (11)

dr � do + dn

0 1 2 3 4 5

-6
-5

-4
-3

-2
-1

0

Ackley dim 10 cont 2 ordinal 8 nominal 0

#nb evals

Si
m

pl
e 

Re
gr

et

RS
RS-EA
pcCMSAES-EA
CMAES-RS (11)
CMAES-EDA (11)
CMAES-EA (9)

do � dr and dn

0 1 2 3 4 5

-6
-5

-4
-3

-2
-1

0

Ackley dim 10 cont 2 ordinal 0 nominal 8

#nb evals

Si
m

pl
e 

Re
gr

et

RS
RS-EA
pcCMSAES-EA
CMAES-RS (11)
CMAES-EDA (11)
CMAES-EA (8)

dn� dr and do

Similar observations have been made on the other test functions
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Observations on analytic test functions

Observations also made on the other test functions:

The CMAES variants perform best when there is a majority of
continuous variables, in particular CMAES-EDA.

As the number of discrete variables increases, pcCMSAES-EA
becomes competitive, especially with nominal variables.

CMAES-EA better for ordinal variables than CMAES-EDA and vice
versa with nominal variables. CMAES-RS is a particularly low
performer with discrete variables.

Explanations: noise tolerance. EA more sensitive to ordering than
UMDA.

⇒ does it apply to Bayesian optimization?
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Bayesian optimization (reminder)

BO algorithm template
Input a function f to minimize

an optimization algorithm algo
a design of experiment D
an associated Gaussian Process

current fbest ← min(f (D))
for k = 1 to 20 do
Get (x ′, u′) ∈ arg max(EI ) using algo I no call to f but still a mixed opt problem
Calculate f (x ′, u′) and add (x ′, u′), f (x ′, u′)) to D
current fbest ← min(current fbest, f (x ′, u′))
Update the Gaussian Process
end for

Monitor EI (x ′, u′) and f (x ′, u′)
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EI test cases

Functions: Sphere, Ackley, Ellipsoid, Griewank, Rastrigin;

Dimensions

Nb. continuous var. Nb. ordinal var. Nb. nominal var.

2 1 1
2 8 0
2 0 8
3 3 3
5 1 1
5 1 3
5 3 1
5 3 3

10 1 1
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EI test cases

Functions: Sphere, Ackley, Ellipsoid, Griewank, Rastrigin;

−1 ≤ xi ≤ 1 , i = 1, dr ;

Number of iterations: 20;

Median over 21 runs;

Number of evaluations within the EI optimization sub-procedure:
1500.

No update of the model.
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Detailed case: EI on the mixed sphere
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BComparison possible only on the 1st iteration, where the EI is the same for all
the algos.

RS-EA good when nb. discrete var � nb. continuous var.

pcCMSAES-ES competitive with RS-EA when nb. discrete var � nb. continuous
var.

ES variants better when nb. continuous var � nb. discrete var.
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Effect on Bayesian optimization (sphere)

Sphere dr = 5, do = 1, dn = 3
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Simple Regret

good algo. for max. EI ⇐⇒ good SR
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Effect on Bayesian optimization (Ackley)

Ackley dr = 2, do = 0, dn = 8
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SR = f (current best)− f (real opt.)

good algo. for max. EI ⇐⇒ good SR

Same observation for the other dr/do/dn/function cases
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Effect on Bayesian optimization (all functions)

Average performance on all functions based on median simple regret after
20 iterations (over 11 runs).
Total of 5× 9× 11 = 495 optimizations.
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Case (i ,j) display the % of time where algo. on column j outperform
algo. on row i .

pcCMSAES-EA is the most robust, RS and CMAES-RS the weakest,
CMAES-UMDA the best when there are more continuous variables
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Conclusions and further work

What is a good algorithm to maximize a mixed EI?
It depends on the ratios dc/(do + dn) and do/dn.

pcCMSAES-EA is robust: composing algorithms is like having
noisy observations.

Is it useful to optimize EI well?
Yes! The quality in optimizing the (mixed) Expected Improvement
is important to the performance of the Bayesian optimizer down
the road.

Further work: better kernels for mixed variable Gaussian processes;
associated acquisition criteria (new EI ’s) easier to optimize.
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