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© Context

ML Cauwet et al. (CNRS EMSE ESIEE) Mixed global optimization 2/34 June 2019 2 /34



Mixed optimization problems occur often

@ Test case from OQUAIDO research chair [Roustant et al., 2018]:
identify the mass of
239Py in nuclear waste containers by gamma spectrometry. Parameters

Input Domain
distance [0, 1] continuous
density [0, 1] continuous
width [0, 1] continuous
surface [0,1] continuous
energy {1,2,3,4,5,6} discrete ordinal
shape sphere, cylinder, parallelepiped discrete nominal
chemical element {1,2,...,94} discrete nominal

@ Design of systems with discrete material & architecture and
continuous dimensions : aircraft wings, thermal insulation systems.

e Machine Learning (neural networks): ordinal number of neurons and
layers, continuous weights.

° ...
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© Problem formulation and related work
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Problem formulation

min f(x,u)
XERdr,UEDdO+d”

dr , do and dn fixed
D ordinal or nominal with levels u; € {1,...,L;} , i =1,(do+ dn)
dd = do+dn

In scope: algorithms that work for a given number of nominal and ordinal
and continuous variables, fewer than 100 levels per discrete variable.

Out of scope: specialized algorithms (e.g., for graphs, for convex
problems,. . .), very large number of levels L; (Bayesian methods).
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Mixed optimization algorithms (1/2)

@ Relaxation of integer into continuous variables: branch & bound and
MINLP solvers [Belotti et al., 2013], penalization for not being an
integer [Shin et al., 1989], softmax reformulation in terms of
probabilities with a stochastic (sampling) optimizer.

@ Evolutionary optimization: integers as rounded off continuous
variables [Lin et al., 2004, Hansen, 2011], composition of operators
[Cao et al., 2000], EDA with mixed trees
[Ocenasek and Schwarz, 2002].

o Alternating mixed programming with a user definition of the
neighborhood of the discrete variables
[Audet and Dennis Jr, 2001, Lucidi et al., 2005]
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Mixed optimization algorithms (2/2)

@ Model based optimization:

e model of the function [Bartz-Beielstein and Zaefferer, 2017]
[Holmstrom et al., 2008, Miiller et al., 2013, Bajer and Holefia, 2013];
o model of the points distribution [Emmerich et al., 2008],
[Sadowski et al., 2018].
@ Mixed Bayesian optimization: for machine learning
[Hutter et al., 2011, Wang et al., 2016], look at kernels in
[Pelamatti et al., 2018], [Munoz Zuniga and Sinoquet, 2019].

This talk summarizes intermediate results that are part of an on-going
effort to address mixed optimization with Gaussian Processes.

May be, on the way, obtain results that apply to other mixed optimization
problems.
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Gaussian processes for mixed variables

@ Use a(n infinite number of) surrogate(s) to the objective function, a
Gaussian Process (GP), to reduce the number of calls to the true ().

@ A GP depends on a kernel (covariance function) that decides on the
type of surrogates we handle.

@ GPs (kernels) exist for mixed variables. Here, use product of
continuous and discrete kernels.

@ GP model for discrete variables:
e warping of ordinal variables using a normal function

02

e compound symmetry matrix for the nominal variables: simplest model.
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Bayesian optimization

BO algorithm template
Input a function f to minimize, a budget
an optimization algorithm algo
a design of experiment D
an associated Gaussian Process, GP
current_fbest < min(f(D))
for k = 1 to budget do

Get (x, u") € arg maxy,, EI(GP(x, u)) using algo nm(:x:(?"o':f pl:o:ll;:nsn" a
Calculate f(x,uv’) and add [(x', v"), f(x, u")] to D

current_fbest < min(current_fbest, f(x', u’))

Update the Gaussian Process

end for
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Goals of the presentation

Q@ El(x,u) is a multi-modal mixed function.
What is a good algorithm to maximize a mixed E/?
< studied by composition of global optimizers.

@ s it useful to optimize E/ well?
It is just an internal optimization problem ...
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© Algorithms
@ Composition of algorithms
@ Benchmark on analytical functions
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Algorithms composition: principle

Generalizes operator composition in evolutionary computation.

min f(x, u)

xE€Rdr , ucDdo-+dn

Input a function f to minimize
an continuous optimization algorithm algoC
a discrete optimization algorithm algoD
while not done do
x" < algoC
u' < algoD
Calculate f(x', u")
Update algoC with [x’, f(x’, u’)] » noisy evaluation
Update algoD with [/, f(x’, u’)] » noisy evaluation
end while
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Component algorithms: Evolution Strategy (continuous)

Initialize state variables m, o, C and others
while termination criteria not satisfied do
Sample X individuals, following N(m, o?C)

Update the state variables according to the u best sampled points

end while

CMAES

[Hansen and Ostermeier, 2001]:
Covariance matrix adaptation
evolution strategy.

o State-of-the-art algo. in the
noise-free case;

@ the matrix might degenerate in
case of noise.

pcCMSAES

[Hellwig and Beyer, 2016]:
population control covariance
self-adaptive evolution strategy

@ adapted to the noisy setting;

@ if noise is detected: the
covariance matrix is fixed and
the population )\ increases.

Noise ~ “miscommunication” between the continuous (ES) and discrete

optimizers.
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Component algorithm: UMDA (discrete)

Estimation of Distribution Algorithms (EDAs): sampling using densities of
independent categorical variables [Larrafiaga and Lozano, 2001]

Univariate Marginal Distribution Algorithm (UMDA).
Input: o, € '
Initialize probabilities of each variable having value j, p!, i=1,dd, j=1,L;
while termination criteria not satisfied do
Sample A individuals u® = (u{?), ... 4, with u*) = j with proba. p
Select the u < X best individals
Update the marginal probability:

P{/ _ iz ]l(u,fd _ J)

k=1

uk is the i component of the k™ best individual.

pl=ap +(1—a)p €le1—4.

end while
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Component algorithm: EA (discrete)

Evolutionary Algorithms (EA), actually here a random local hill-climber

(1+1)-EA.
Input < » expected nb of mutations
Initialize Sample u uniformly where each v isin {1,...,L;} , i=1,dd
while termination criteria not satisfied do
u +—u

Shift each component of u” with probability % to the previous or next level (circular).
if f(u') < f(u) then
u+u
end if
end while
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Algorithms composition: instances

@ One-shot sampling:
e Random Search:;

@ Hybrid: Evolution Strategy in the continuous part and Evolutionary
Algorithms on the discrete part:

o CMAES + EA;
e CMAES + UMDA;
e pcCMSAES + EA;

@ Separate the impact of the random search on the continuous and the
discrete part:
e RS + EA;
o CMAES + RS.
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© Algorithms
@ Composition of algorithms
@ Benchmark on analytical functions
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Making mixed test functions

@ Using functions of the BBOB/COCO testbed;
@ Like in [Liao et al., 2014],
o the ordinal variables are restrictions of the continuous variables to /
given levels,
o the nominal variables are a shuffling of the ordinal variables.

—— ey || e

Ellipsoid in dim. 2. Left: 2 continuous variables. Center: one continuous
variable, one ordinal variable. Right: one continuous variable, one
categorial variable.
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Test functions
@ Functions: Sphere, Ackley, Ellipsoid, Griewank, Rastrigin;

Figure: Sphere, Figure: Ellipsoid,  Figure: Rastrigin, Figure: Ackley,
—-10< x; <10 —-10< x; <10 —5<x <5 —40 < x; <40
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Figure: Griewank, Figure: Griewank, Figure: Griewank, Figure: Griewank,
—1000 < x; <1000 —50 < x; <50 —-10<x, <10 —-5<x <5
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Test functions

Functions: Sphere, Ackley, Ellipsoid, Griewank, Rastrigin;

L = 3 levels per discrete variable;

@ Dimensions

|3 3 3 2 2 8 8 4 6 2 2 2 16 16 16
do|2 1 0 8 0 2 0 3 7 9 2 16 2 4 0
dn|0 1 2 0 8 0 2 3 7 9 16 2 2 0 4

Number of function evaluations: 10°;

Median over 11 runs.
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Effect on Ackley

Simple Regret=f(current_best) — f(real_opt.)

Ackley dim 10 cont 8 ordinal 2 nominal 0

Ackley dim 10 cont 2 ordinal 8 nominal 0

Ackley dim 10 cont 2 ordinal 0 nominal 8
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dr > do + dn

do > dr and dn

dn > dr and do

Similar observations have been made on the other test functions
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Observations on analytic test functions

Observations also made on the other test functions:

@ The CMAES variants perform best when there is a majority of
continuous variables, in particular CMAES-EDA.

@ As the number of discrete variables increases, pcCMSAES-EA
becomes competitive, especially with nominal variables.

o CMAES-EA better for ordinal variables than CMAES-EDA and vice
versa with nominal variables. CMAES-RS is a particularly low
performer with discrete variables.

@ Explanations: noise tolerance. EA more sensitive to ordering than
UMDA.

= does it apply to Bayesian optimization?
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@ Bayesian optimization of mixed problems
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Bayesian optimization (reminder)

BO algorithm template
Input a function f to minimize
an optimization algorithm algo
a design of experiment D
an associated Gaussian Process
current_fbest < min(f(D))
for k =1 to 20 do
Get (x',u’) € arg max(El) using algo » no call to f but still a mixed opt problem
Calculate f(x',v’) and add (x',u), f(x',u")) to D
current_fbest <— min(current_fbest, f(x', u"))
Update the Gaussian Process
end for

Monitor El(x’, u") and f(x', u")
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El test cases

@ Functions: Sphere, Ackley, Ellipsoid, Griewank, Rastrigin;

@ Dimensions

Nb. continuous var. | Nb. ordinal var. | Nb. nominal var.
2 1 1
2 8 0
2 0 8
3 3 3
5 1 1
5 1 3
5 3 1
5 3 3
10 1 1
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El test cases

Functions: Sphere, Ackley, Ellipsoid, Griewank, Rastrigin;
-1<x<1, i=1,dr
Number of iterations: 20;

Median over 21 runs;

Number of evaluations within the El optimization sub-procedure:
1500.

@ No update of the model.
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Detailed case: El on the mixed sphere
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@ A\ Comparison possible only on the 1 iteration, where the El is the same for all

the algos.

@ RS-EA good when nb. discrete var > nb. continuous var.

@ pcCMSAES-ES competitive with RS-EA when nb. discrete var > nb. continuous

var.

@ ES variants better when nb. continuous var > nb. discrete var.
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Effect on Bayesian optimization (sphere)

Sphere dr =5, do=1, dn=3
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@ good algo. for max. El <= good SR
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Effect on Bayesian optimization (Ackley)

Ackley dr =2, do =10, dn =8
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Simple Regret
SR = f(current_best) — f(real_opt.)

@ good algo. for max. El <= good SR

@ Same observation for the other dr/do/dn/function cases

Expected Improvement
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Effect on Bayesian optimization (all functions)

Average performance on all functions based on median simple regret after
20 iterations (over 11 runs).

Total of 5 x 9 x 11 = 495 optimizations.

dr > do + dn do + dn = dr do + dn > dr

Case (i,j) display the % of time where algo. on column j outperform
algo. on row i.

pcCMSAES-EA is the most robust, RS and CMAES-RS the weakest,
CMAES-UMDA the best when there are more continuous variables
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Conclusions and further work

What is a good algorithm to maximize a mixed E/?
@ It depends on the ratios dc/(do + dn) and do/dn.

@ pcCMSAES-EA is robust: composing algorithms is like having
noisy observations.

Is it useful to optimize E/ well?
@ Yes! The quality in optimizing the (mixed) Expected Improvement

is important to the performance of the Bayesian optimizer down
the road.

Further work: better kernels for mixed variable Gaussian processes;
associated acquisition criteria (new EI's) easier to optimize.
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