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REVERSIBLE MAPS AND PRODUCTS OF INVOLUTIONS IN GROUPS OF IETS

An element f of a group G is reversible if it is conjugated in G to its own inverse; when the conjugating map is an involution, f is called strongly reversible. We describe reversible maps in certain groups of interval exchange transformations namely Gn ≃ (S 1 ) n ⋊ Sn, where S 1 is the circle and Sn is the group of permutations of {1, ..., n}. We first characterize strongly reversible maps, then we show that reversible elements are strongly reversible. As a corollary, we obtain that composites of involutions in Gn are product of at most four involutions.

We prove that any reversible Interval Exchange Transformation (IET) is reversible by a finite order element and then it is the product of two periodic IETs. In the course of proving this statement, we classify the free actions of BS(1, -1) by IET and we extend this classification to free actions of finitely generated torsion free groups containing a copy of Z 2 . We also give examples of faithful free actions of BS(1, -1) and other groups containing reversible IETs.

We show that periodic IETs are product of at most 2 involutions. For IETs that are products of involutions, we show that such 3-IETs are periodic and then are product of at most 2 involutions and we exhibit a family of non periodic 4-IETs for which we prove that this number is at least 3 and at most 6.

On one hand, according to Proposition 3.4 of [OS15] any permutation is strongly reversible in S n . On the other hand, reversible elements in abelian groups are involutions. Groups G n are somewhat intermediate.

Given σ and τ that reverses σ, in this paper we firstly determine necessary and sufficient conditions on α f such that f = (α f , σ) is reversible in G n by an involution of the form T = (α T , τ ) and we describe the possible α T 's.

Definition 1.2. Consider σ and τ that reverses σ, let us denote S i the σ-cycle by i. An element u is called distinguished if either τ (u) / ∈ S u or τ (u) ∈ {u, σ(u)}.

Introduction.

An element f of a group G is called reversible if there exists b ∈ G such that bf b -1 = f -1 . We say that the element b reverses f and f is said to be b-reversible.

An element f is called strongly reversible if there exists an involution b ∈ G such that bf b = f -1 .

An interval exchange transformation (IET) is a bijective map f : [0, 1) → [0, 1) defined by a finite partition of the unit interval into half-open subintervals and a reordering of these intervals by translations. We denote by G the group consisting in all IETs. If the partition has cardinal r, we say that f is an r-IET.

More generally, an affine interval exchange transformation (AIET) is a bijective map [0, 1) → [0, 1) defined by a finite partition of the unit interval into half-open subintervals such that the restriction to each of these intervals is a direct affine map.

In [START_REF] Guelman | Distortion in groups of Affine Interval Exchange transformations[END_REF], the authors have proved that the Baumslag-Solitar groups (see [START_REF] Baumslag | Some two-generator one-relator non-Hopfian groups[END_REF]) defined by BS(m, n) = a, b | ba m b -1 = a n do not act faithfully by AIET, when |m| = |n|. So, it is natural to ask whether BS(1, -1) acts faithfully by AIET or IET. In section 2, we will construct examples of free faithful actions of BS(1, -1) by IET.

Therefore, it is of interest to classify reversible maps in AIET or IET. O'Farrell and Short, motivated by the importance of reversibility in dynamical systems and group theory, wrote a quite complete survey (see [START_REF] Anthony | Reversibility in dynamics and group theory[END_REF]) exposing mostly recent works on the problem of classifying reversible elements in a large number of groups. The authors have raised the following questions: given a group G, are all reversible elements of G strongly reversible? Does there exist bounds for the minimal number of involutions that are needed for writing an element in the subgroup of G generated by its involutions.

In this paper, we first answer the O'Farrel-Short questions for some particular groups of interval exchange transformations G n ≃ (S 1 ) n ⋊ S n , where S n is the group of permutations of {1, ..., n}. Later, we answer partially these questions in G, noting that the groups G n play an important role. These groups G n will be precisely defined in the following Definition 1.1.

Let n be a positive integer and S n = [0, 1 n ]/0 = 1 n the circle of length 1 n . We define G n as the set of IETs on [0, 1) that preserve the partition [0, 1) = [0, 1 n ) ∪ [ 1 n , 2 n )... ∪ [ n-1 n , 1) and whose restrictions to intervals I i = [ i-1 n , i n ) are IETs with only one interior discontinuity. For g ∈ G n , we define σ g as the element of S n given by σ g (i) = j, if g(I i ) = I j . It follows that g |I i = R α i ,σg(i) , where R α i ,σg(i) (x) = x + α i + σg(i)-i n

(mod 1 n ). We define α g = (α 1 , ..., α n ) = (α 1 (g), ..., α n (g)) ∈ S n n and we denote g = (α g , σ g ).

Remark 1.1. A straightforward consequence of this definition is that the map (α, σ) : G n → (S n ) n ⋊ S n is an isomorphism, thus the group G n is virtually abelian. It can be seen as a subgroup of GL(n, C) and any finitely generated virtually abelian group is a subgroup of some G n . These groups are very relevant since Dahmani, Fujiwara and Guirardel (see [START_REF] Dahmani | Solvable groups of interval exchange transformations[END_REF]) recently proved that any finitely generated torsion free solvable subgroup of IETs is virtually abelian.

In Lemma 3.1, we will prove any σ f , τ -orbit has distinguished elements. We can now formulate our first result that characterizes strongly reversible elements in G n .

Theorem 1. Let f = (α f , σ f ) ∈ G n , τ an involution that reverses σ f and D a set of distinguished representatives of the σ f , τ -orbits.

There exists an involution T = (α T , τ ) that reverses f if and only if for any u in D,

( † †) j∈Su α j (f ) + j∈τ (Su) α j (f ) = 0.
Under these conditions, (A) if S u is τ -invariant then α u (T ) is given by

2α u (T ) = 0 if τ (u) = u or 2α u (T ) = 2α u (f ) if τ (u) = σ f (u).
and it determines uniquely α j (T ) for all j ∈ S u ;

(B) if S u is not τ -invariant then α u (T ) can be chosen arbitrary and this choice determines uniquely α j (T ) for all j ∈ S u ∪ τ (S u ).

Remark 1.2. More precisely, under an admissible choice of α u (T ) for u ∈ D, the other coordinates of α(T ) are uniquely defined by induction using the identities

(1 k ) α τ (u k ) (T ) = -α u k (T )
and

(4 k ) α u k (T ) = α u (T ) - k-1 j=0 α u j (f ) - k j=1
α τ (u j ) (f ), where u k = σ k f (u). As consequences of Lemma 3.2, we will see that these identities are necessary and they will be used in the proof of Theorem 1 (2) in order to establish that Conditions ( † †) are sufficient to construct a reversing involution of f with associated permutation τ .

In addition if S u has an odd length then distinguished representatives of both nature exist and give rise to apparently distinct conditions but they are equivalent by (4 k ).

The last theorem allows to prove the following Corollary 1.

(1) A strongly reversible element f of G n having a cycle as associated permutation σ f (or a product of cycles with distinct lengths) has finite order and there exist finite order elements of G n that are not strongly reversible in G n . (2) There exist strongly reversible elements that are not of finite order, however minimal strongly reversible elements do not exist in G n .

Summing Conditions ( † †) over u ∈ D, we get that any strongly reversible

f ∈ G n satisfies 2 n j=1 α j (f ) = 0. So, it is convenient to define A(f ) = 2 n j=1 α j (f ) for f ∈ G n . It is easy to check that A is a morphism and A(f ) = 0 for f strongly reversible in G n .
Remark 1.3. When σ f is a n-cycle, f is strongly reversible if and only if A(f ) = 0 and there are two possible admissible choices for α u (T ) (since it is well defined modulo 1/2).

Corollary 2. Let I n be the normal subgroup of G n generated by its involutions.

(1) The kernel of A coincides with I n .

(2) Any f ∈ I n can be written as the product of at most 4 involutions.

(3) For any n ≥ 3, there exists f ∈ G n which can not be written as a product of 3 involutions.

Theorem 1 provides a characterization of strongly reversible maps in G n . It turns out that it also holds for reversible elements according to next

Theorem 2. Let f = (α f , σ f ) ∈ G n reversible in G n then f is strongly reversible in G n .
For G we show a similar result. For that, we describe the free faithful actions of BS(1, -1) = a, b | bab -1 = a -1 by IET. We recall that a group is said to act freely if the only element having some fixed point is the trivial element. In section 2, an example of such an action of BS(1, -1) by elements of G 4 is given.

Theorem 3. Let f, h be a free faithful action of BS(1, -1) by IET then f, h is P L • IETconjugated (that is conjugated through g = R • E, where R is a PL-homeomorphism and E is an IET ) to a free action of BS(1, -1) by elements of some G n .

In Lemma 6.2, it is shown that a BS(1, -1) action is faithful if and only if f and h have infinite order therefore it is natural to deal with the case where f is a minimal IET. As a consequence of next statement, there does not exist free faithful actions of BS(1, -1) by IET with f minimal.

Theorem 4.

(1) If an IET f is minimal and reversible by h then f, h is free.

(2) There does not exist a minimal IET that is reversible by an infinite order h.

(3) Any periodic IET is strongly reversible.

Note that Item (3) is not true in G n (see item (1) of Corollary 1). The last two results will be combined with a dynamical decomposition (see Proposition 6.3) for proving Theorem 5. Let f ∈ G reversible in G then f is reversible in G by a finite order element h. Moreover h is either an involution or its order is a multiple of 4.

Corollary 3. Any reversible IET can be written as a product of 2 periodic elements.

Related to the second question of O'Farrell-Short, it has been proved by Vorobets ([Vor17]) that the subgroup of G generated by its involutions coincides with G 0 , the subgroup of G consisting in IETs having zero SAF-invariant (definition and properties of SAF-invariant will be given in section 8). Unfortunately, Vorobets tools do not give upper bounds for the number of involutions that are needed. Theorem 4 Item (3) and Corollary 3 directly imply the following Corollary 4. Any periodic element of G is the product of at most 2 involutions. Any reversible IET can be written of 4 involutions.

Finding an upper bound for the number of involutions that are needed to write non periodic r-IETs of G 0 with r > 3 is a delicate problem. As indicated in item (1) of the following theorem, our first example of a non strongly reversible element of G 0 is a product of two restricted rotations of pairwise disjoint supports. Definition 1.3. An IET g whose support is an interval I is a restricted rotation if there exists a direct affine map from I to [0, 1) that conjugates g |I to a 2-IET.

In section 7, we show that if a product of two restricted rotations of supports I 1 and I 2 = [0, 1) \ I 1 belongs to G 0 then |I 1 | is a rational number, where |J| denotes the length of the interval J.

Under an additional assumption on |I 1 |, item (2) of next Theorem gives a bound for the number of involutions. Theorem 6.

(1) Any 3-IET that belongs to G 0 is periodic so is the product of two involutions.

(2) There exists a 4-IET f ∈ G 0 that is not reversible.

(3) Any element of G 0 that is a product of 2 restricted rotations with respective supports I 1 and I 2 = [0, 1) \ I 1 , satisfying |I 1 | = p p+1 with p ∈ N * , can be written as a product of 6 involutions.

In the last section of this paper, we are interested in actions by IET of some torsion-free groups containing reversible elements. Using properties of the Poincaré rotation number, it is easy to check that a group containing an infinite order reversible element can not act freely by circle homeomorphisms. This is no longer true for actions by IET. More precisely, we prove Theorem 7.

(1) The Baumslag-Solitar group BS(1, -1) acts freely and minimally by IET.

(2) The crystallographic group In item (3), since a, c is isomorphic to the non abelian free group of rank two F 2 (see [START_REF] Le | Free planar actions of the Klein bottle group[END_REF]), the existence of faithful actions of C 2 by IET is related to Katok's question: Does G contain a subgroup isomorphic to F 2 ? A partial answer was given by Dahmani, Fujiwara and Guirardel: the group generated by a generic pair of IETs is not free ( [START_REF] Dahmani | Free groups of interval exchange transformations are rare[END_REF]).

C 1 = a, b | ba 2 b -1 = a -2 , ab 2 a -1 = b -2
Notice that the actions constructed in items (1) and (2) are by elements of G 4 .

In addition any finitely generated group acting freely by IET is a subgroup of some G n : indeed since translations commute, the orbit of any point under a finitely generated group H of IETs has polynomial growth therefore if H acts freely it has polynomial growth so it is virtually nilpotent by [START_REF] Gromov | Groups of polynomial growth and expanding maps[END_REF]. According to Novak [START_REF] Christopher | Discontinuity-growth of interval-exchange maps[END_REF], H is virtually abelian. Finally, by Remark 1.1 H is isomorphic to a subgroup of some G n . In particular, neither F 2 or C 2 can act freely by IET.

We will prove a dynamical rigidity result for free actions by IET: Theorem 8. Let G be a finitely generated torsion free group that contains a copy of Z 2 .

If ρ : G → G is a free faithful action of G by IET then the image ρ(G) is P L • IET -conjugated to a subgroup of some G n .

Examples and general properties.

We let the reader check the following basics facts of reversibility.

Examples.

2.1.1. Basic examples. Involutions are strongly reversible and any product of two involutions f = σ 1 σ 2 is strongly reversible by σ 1 and σ 2 .

2.1.2. Actions of BS(1, -1) by IET. The following elements a and b of G 4 generate a faithful and free action of BS(1, -1) provided that α and β are rationally independent irrational numbers. The graph of an element f of G n is represented in [0, 1] × [0, 1] by indicating in each square

I i × I σ(i) the corresponding angle α i (f ). 0 1 4 1 2 3 4 1 1 4 1 2 3 4 1 -α α -α α IET a 0 1 4 1 2 3 4 1 0 β 0 -β IET b 2.2. Properties. • An element f is strongly reversible if and only if f = σ 1 σ 2 with σ 2 1 = σ 2 2 = Id. • If h 1 and h 2 reverse the same f then h -1 2 h 1 commutes with f . • If f is h-reversible then f is (hf s )-reversible for all s ∈ Z. • If f is h-reversible [resp. strongly h-reversible] then f n is h-reversible [resp. strongly h-reversible], for all n ∈ Z. • If f is h-reversible then h 2p
commutes with f and h 2p+1 reverses f , for all p ∈ Z.

3.

Strong Reversibility in G n . Proof of Theorem 1.

Necessary preliminaries.

3.1.1. Action of the symmetric group S n on vectors. The symmetric group S n acts on R n by permuting the coordinates leading to an action on the quotient space S n n , where

S n = [0, 1 n ]/ 0= 1 n . Definition 3.1. Given σ ∈ S n and α = (α 1 , • • • , α n ) ∈ S n n , we define σ(α) = (α σ(1) , • • • , α σ(n) ).
We denote by M σ its associated matrix with respect to the canonical basis of R n .

Claim 1. Let α = (α 1 , • • • , α n ) ∈ S n
n and σ, τ ∈ S n . Then (στ )(α) = τ (σ(α)). In other words,

M στ = M τ M σ . Proof. By definition, σ(α) = (α σ(1) , • • • , α σ(n) ) = (β 1 , ..., β n ) and τ (σ(α)) = (β τ (1) , • • • , β τ (n) ) with β i = α σ(i) , so β τ (j) = α σ(τ (j)) . Finally, τ (σ(α)) = (α σ(τ (1)) , • • • , α σ(τ (n)) ) = στ (α).
3.1.2. Strong reversibility of σ. Next lemma describes σ, τ -orbits and shows existence of distinguished elements in each σ, τ -orbit.

Lemma 3.1. Let f ∈ G n be T -strongly reversible in G n . Then • σ f is σ T -strongly reversible in S n .
• If i ∈ {1, ..., n} belongs to a σ f -cycle S of length p then either -σ T (i) belongs to S and there exists u in S such that σ T (u) ∈ {u, σ f (u)} or -σ T (i) generates a disjoint σ f -cycle of length p.

Proof.

The first item is a direct consequence of the fact that the map f → σ f is a morphism. For the second item, it is obvious that if σ T (i) ∈ S that is if there exists s ∈ N such that σ T (i) = σ s f (i) then i and σ T (i) generate the same cycle of σ f . In addition, for any k one has σ

T (σ k f (i)) = σ -k f (σ T (i)) = σ -k+s f (i) = σ -2k+s f (σ k f (i)). Taking u = σ f k (i) with k = [ s 2
] the integer part of s 2 , it holds that σ T (u) ∈ {u, σ f (u)}. The remaining case occurs when for any j in S, σ T (j) is not in S. By the first item, for 0 ≤ k < p we have σ k f (σ T (i)) = σ T σ -k f (i) and these p points do not belong to S.

Moreover, σ k f (σ T (i)) = σ T σ -k f (i) = σ T (i), for k = 1, ..., p -1 since σ -k f (i) = i, and σ p f (σ T (i)) = σ T σ -p f (i) = σ T (i).
In conclusion, σ T (i) generate a σ f -cycle of length p consisting in the σ T (j), j ∈ S.

Necessary and sufficient conditions for strong reversibility.

Consequences of Definition 1.1 and straightforward calculus give rise to:

Properties 3.1. Let f , g and T in G n . (1) σ f •g = σ f • σ g and α f •g = α g + σ g (α f ). (2) σ f -1 = σ -1 f and α f -1 = -(σ f ) -1 (α f ). (3) T = (α T , σ T ) is an involution if and only if σ 2 T = Id and α T = -σ T (α T ) that is α σ T (i) (T ) = -α i (T ), for 1 ≤ i ≤ n. (4) T reverses f if and only if σ T σ f σ -1 T = σ -1 f and α T -1 + σ T -1 (α f ) + σ T -1 (σ f (α T )) = -σ -1
f (α f ). We will use these properties to prove the following Lemma 3.2. Let f = (α f , σ f ) and T = (α T , σ T ) in G n . Then T is an involution that reverses f if and only if σ T is an involution that reverses σ f and

(1)

α T ∈ Ker(I + M σ T ), (2) α T ∈ Ker(I + M σ T σ f ) + α f .
Proof. For simplicity, for g ∈ G n the matrix M σg is denoted by M g . Suppose that T is an involution that reverses f . According to item (3) of Properties 3.1, σ T is an involution that reverses σ f and α T +M T (α T ) = 0.

It remains to prove item (2). As T is an involution, Properties 3.1 (4) leads to

α T + σ T (α f ) + σ T (σ f (α T )) = -σ -1 f (α f ).
Using matrix notation, last formula implies that

(I + M T M f )(α T ) = -(M T + M -1 f )(α f ). Left multiplying both sides by M T , we obtain (M T + M f )(α T ) = -(I + M T M -1 f )(α f ). On one hand, since M T (α T ) = -α T , we have that (M T + M f )(α T ) = (M T + M f )M T M T (α T ) = (I + M f M T )(-α T ) = (I + M T •f )(-α T ).
On the other hand, since f -1 • T = T • f , we get that

(I + M T M -1 f )(α f ) = (I + M f -1 •T )(α f ) = (I + M T •f )(α f ).
Combining these, we conclude that

(I + M T •f )(α T ) = (I + M T •f )(α f ). Therefore α T -α f ∈ Ker(I + M T •f ).
Note that under the assumptions that α T ∈ Ker(I + M σ T ) and σ T reverses σ f , all formulas below are equivalent since M T is invertible.

Consequences of Lemma 3.2. Let τ ∈ S n be an involution, f = (α f , σ f ) and T = (α T , τ ) be two elements of G n .
• The following properties (a), (b) and (c) are equivalent.

(a) f is strongly reversible by T .

(b) (1) τ reverses σ, α τ (j) (T ) = -α j (T ) for j ∈ {1, • • • , n} and (2) α σ(j) (T ) = α j (T ) -α j (f ) -α τ σ(j) (f ) for j ∈ {1, • • • , n}. (c) (1) τ reverses σ, α τ (j) (T ) = -α j (T ) for j ∈ {1, • • • , n} and (2 ′ ) α τ σ(j) (T ) = -α j (T ) + α j (f ) + α τ σ(j) (f ) for j ∈ {1, • • • , n}. • If f is strongly reversible by T then for any j ∈ {1, • • • , n}, (3) 2α j (T ) = 0 if τ (j) = j or 2α j (T ) = 2α j (f ) if τ (j) = σ(j) and (4) α σ k (j) (T ) = α j (T ) - k-1 p=0 α σ p (j) (f ) - k p=1 α τ (σ p (j)) (f ) for any k ∈ N.
Proof.

• The equivalence between Items (a) and (c) is exactly the statement of Lemma 3.2. Under Condition (1), Conditions (2) and (2') are equivalent since α τ σ(j) (T ) = -α σ(j) (T ). So Items (b) and (c) are also equivalent. • Condition (3) is a direct consequence of (1) and (2').

Condition ( 4) is proved by induction on k. Indeed, for k = 0 we get α j (T ) = α j (T ) (under the convention that b a = 0 if b < a) and for k = 1, Condition (4) is Condition (2). We suppose that (4) holds for a given arbitrary positive integer k, using Condition (2) one has:

α σ k+1 (j) (T ) = α σσ k (j) (T ) = α σ k (j) (T ) -α σ k (j) (f ) -α τ σ k+1 (j) (f ).
Therefore, by induction hypothesis

α σ k+1 (j) (T ) = α j (T ) - k-1 p=0 α σ p (j) (f ) - k p=1 α τ (σ p (j)) (f ) -α σ k (j) (f ) -α τ σ k+1 (j) (f )
which leads to the required formula.

Proof of Theorem

1. Let u ∈ D a set of distinguished representatives of the σ f , σ T - orbits. Let S u be the σ f -cycle by u and m be its length. We recall that u is distinguished if either σ T (u) / ∈ S u or σ T (u) ∈ {u, σ f (u)}. For clarity, we will denote α i (f ) = α(i), σ f = σ, α i (T ) = β(i) and J = δ∈<σ,τ > I δ(u) , noting that J is an f -invariant set.
(1) We first prove that if f is strongly reversible by some T with σ T = τ then j∈Su α(j) + j∈τ Su α(j) = 0. Summing for j ∈ S u the equalities (2) of Consequences of Lemma 3.2, we get that

j∈Su β(σ(j)) = j∈Su β(j) - j∈Su α(j) - j∈Su α(τ σ(j)) and since j∈Su β(σ(j)) = j∈Su β(j), we get j∈Su α(j) + j∈Su α(τ σ(j)) = 0.
(2) We now prove that under the previous condition, the choice of α u (T ) satisfying an eventual additional condition determines a unique involution T that reverses f on J.

CASE A : S u is τ -invariant. We first note that β(u) = -β(u) if τ (u) = u and 2β(u) = 2α(u) if τ (u) = σ(u) are necessary conditions for reversibility by (3) of Consequences of Lemma 3.2. We fix β(u) such that 2β(u) = 0 if τ (u) = u and such that 2β(u) = 2α(u) if τ (u) = σ(u). We consider the map T defined by σ T = τ , α u (T ) = β(u) and Conditions (4 k ) that is α u k (T ) = β(u k ) = β(u) - k-1 j=0 α(u j ) - k j=1 α(τ (u j )) for 0 ≤ k < m, where u k = σ k (u).
The map T is therefore well defined as a bijection of J.

Supposing that the condition ( † †) 2 j∈Su α(j) = 0 holds, we will prove that T is an involution that reverses the restriction to J of f , by checking that T satisfies Conditions (1) and (2) of Consequences of Lemma 3.2.

• For (2), we have to check that

β(u k+1 ) = β(u k ) -α(u k ) -α(τ (u k+1 )), for 0 ≤ k < m. By definition, β(u k+1 ) = β(u) - k j=0 α(u j ) - k+1 j=1 α(τ (u j )) therefore β(u k+1 ) =   β(u) - k-1 j=0 α(u j ) - k j=1 α(τ (u j ))   -α(u k ) -α(τ (u k+1 )).
The condition ( † †) is used for treating the case k = m -1.

• For (1), proof depends on the nature of u.

Note that for all j ∈ {1, ..., m} it holds that τ

(u j ) = u m-j if τ (u) = u or τ (u j ) = u m+1-j , if τ (u) = σ(u). Suppose τ (u) = u, checking (1) is proving that β(u m-k ) = -β(u k ). β(u m-k ) = β(u) - m-k-1 j=0 α(u j ) - m-k j=1 α(τ (u j )), adding 0 = m-1 j=0 α(u j ) + m j=1 α(τ (u j )), one get: β(u m-k ) = β(u) + m-1 j=m-k α(u j ) + m j=m-k+1
α(τ (u j ))), changing j for p = mj, and noting that β(u) = -β(u), we have:

β(u m-k ) = β(u) + k p=1 α(u m-j ) + k-1 p=0 α(τ (u m-j )) = -β(u) + k p=1 α(τ (u j )) + k-1 p=0 α(u j ). Suppose that τ (u) = σ(u), checking (1) is proving that β(u m+1-k ) = -β(u k ). β(u m+1-k ) = β(u) - m-k j=0 α(u j ) - m+1-k j=1 α(τ (u j )). Adding 0 = m-1 j=0 α(u j ) + m j=1 α(τ (u j )), one get β(u m+1-k ) = β(u) + m-1 j=m+1-k α(u j ) + m j=m-k+2 α(τ (u j )). Changing j for p = m + 1 -j, β(u m+1-k ) = β(u) + k p=2 α(u m+1-j ) + k-1 p=1 α(τ (u m+1-j )),
As τ (u j ) = u m+1-j and β(u) = -β(u) + α(u) + α(τ σ(u)), we have

β(u m+1-k ) = -β(u) + α(u) + α(τ (u 1 )) + k p=2 α(τ (u j )) + k-1 p=1 α(u j ) = -β(u k ).
CASE B : S u and τ S u are disjoint cycles.

We fix β(u) arbitrary and we define a map T verifying σ T = τ , α u (T ) = β(u) and Conditions

(4 k ) β(u k ) = β(u) - k-1 j=0 α(u j ) - k j=1 α(τ (u j )) and (1 k ) β(τ (u k )) = -β(u k ) for 0 ≤ k < m.
Supposing that 2 j∈Su α(j) = 0, we check that T defined by these conditions is an involution that reverses the restriction to J of f , that is, T satisfies conditions (1) and (2) of Consequences of Lemma 3.2.

• (1) is condition (1 k ).

• For (2), we have to check that β(u k+1 ) = β(u k )α(u k )α(τ (u k+1 )). As in case A, we get: (1) Suppose that f is a strongly reversible element with σ f a n-cycle (a cycle of length n).

β(u k+1 ) = β(u)- k j=0 α(u j )- k+1 j=1 α(τ (u j )) = β(u)- k-1 j=0 α(u j )- k j=1 α(τ (u j ))-α(u k )-α(τ (u k+1 )).
By Properties 3.1 (1), α(f p ) = p-1 j=0 σ j f (α(f )). Therefore 2α i (f n ) = 2 n-1 j=0 α i j (f ) = A(f ) = 0 for all i ∈ {1, ..., n} by Theorem 1.
Finally, σ f n = Id and 2α i (f n ) = 0 for all i ∈ {1, ..., n}. Hence, f has finite order at most 2n. This extends to the case where σ f is a product of cycles with distinct lengths, noting that the restriction of f to any cycle of σ f must be "separately" strongly reversible.

The map f = (α 1 , Id) ∈ G 1 with α 1 = p q with q > 2 has finite order but is not strongly reversible in G 1 .

(2) In G 2 , the map f = ((α 1 , α 2 ), (1, 2)) with α 2 = -α 1 / ∈ Q has infinite order and is strongly reversible. Minimal strongly reversible elements do not exist since for a minimal element f , σ f is a n-cycle.

Composites of involutions in

G n . Proof of Corollary 2.
Items (1) and (2). As involutions satisfy A(f ) = 0 and A is a morphism, it holds that

I n ⊂ KerA. Conversely, let f ∈ G n such that A(f ) = 2 α i (f ) = 0.
Let γ be a n-cycle, τ = γσ -1 f and T be the element of G n defined by σ T = τ and α T = 0. Therefore σ T f = τ σ f = γ is a n-cycle and A(T f ) = 0 since A(f ) = A(T ) = 0 and A is a morphism. Thus by Remark 1.3 and Theorem 1, T f and T are strongly reversible so both are product of 2 involutions.

Consequently f is a product of at most 4 involutions. In particular, Ker(A) ⊆ I n .

In addition, according to Corollary 1, T f is also periodic and f is a product of at most 2 periodic IETs.

Item (3)-General case : for n ≥ 5, there exists f ∈ G n which can not be written as a product of 3 involutions. Definition 4.1. The rank of f ∈ G n is the rank of the subgroup of S n generated by the α i (f )'s and 1 2n .

Let f be the element of G n defined by σ f = Id and

α f = (γ 1 , • • • , γ n-1 , δ)
, where the γ i 's are rationally independent irrational numbers and δ

= -(γ 1 + • • • + γ n-1 ).
Then A(f ) = 0, f is not strongly reversible and it has rank n, we claim that f can not be written as a product of 3 involutions.

We argue by contradiction supposing that f = T r where T is an involution and r is strongly reversible by l = (τ, α l ) ∈ G n . In particular, one has σ r = σ T is an involution and we decompose it as a product of 1 and 2 cycles of disjoint supports:

σ r = p i=1 (a i , b i ) p+s i=p+1 (a i , b i ) p+s+t i=p+s+1 (a i ) p+s+t+v i=p+s+t+1 (a i ),
where

{a i , i = 1, • • • p+s+t+v}∪{b i , i = 1, • • • , p+s} = {1, ..., n}, in particular 2p+2s+t+v = n and (1) τ (a i , b i ) = (a i , b i ) (it is another 2-cycle disjoint from (a i , b i )), for i = 1, • • • p, (2) τ (a i , b i ) = (a i , b i ) for i = p + 1, • • • p + s, (3) τ (a i ) = a i (it is another 1-cycle disjoint from (a i )), for i = p + s + 1, • • • p + s + t, (4) τ (a i ) = a i for i = p + s + t + 1, • • • p + s + t + v.
For clarity, for g ∈ G n , we denote α a i (g) = α i (g) and α b i (g) = β i (g).

According to Theorem 1, the reversibility of r leads to the following equations:

(1)

α i (r) + β i (r) + α τ (i) (r) + β τ (i) (r) = 0, for i = 1, • • • p, (2) 2(α i (r) + β i (r)) = 0 for i = p + 1, • • • p + s, (3) α i (r) + α τ (i) (r) = 0, for i = p + s + 1, • • • p + s + t, (4) 2α i (r) = 0 for i = p + s + t + 1, • • • p + s + t + v.
We get then p 2 + s + t 2 + v independent equations. In addition, since T is an involution, α T satisfies:

(1)

α i (T ) + β i (T ) = 0, for i = 1, • • • , p + s, (2) 2α i (T ) = 0 for i ≥ p + s + 1. By properties 3.1, α T r = α r + σ r (α T ) = α r + σ T (α T ) = α r -α T .
It is easy to check that α i (T r) satisfies the equations (1), (2) and (4) of α i (r). For equations (3) we get α i (T r)

+ α τ (i) (T r) = α i (r) -α i (T ) + α τ (i) (r) -α τ (i) (T ) = α i (r) + α τ (i) (r) -(α i (T ) + α τ (i) (T )) = -(α i (T ) + α τ (i) (T )) by condition (3) for r. But condition (2) for α i (T ) states that 2α i (T ) = 2α τ (i) (T ) = 0, so 2(α i (T ) + α τ (i) (T )) = 0. So α i (T r) satisfies p 2 + s + t 2 + v equations. Therefore the rank of T r is at most n + 1 -( p 2 + s + t 2 + v) ≤ n + 1 -n 4
, the maximum being for 2p = n, s = t = v = 0. This contradicts that T r has rank n, provided that n ≥ 5.

Item (3)-Remaining cases.

In G 1 , the subgroup I 1 = {Id, R 1 2 }. In G 2 , the subgroup I 2 consists in reversible maps. In G 3 , the previous argument works since p = 0 and therefore the maximal rank for a product of 3 involutions is 2.

In G 4 , the maximal rank is obtained for p = 2, s = t = v = 0 and it is 4. Let f = T r, with σ T = σ r = (a 1 , b 1 )(a 2 , b 2 ) and r is reversible by an involution that exchanges its 2-cycles. It holds that 1 2 A(r) = α 1 (r) + β 1 (r) + α 2 (r) + β 2 (r) = 0 (condition (1) for r) and

1 2 A(T ) = (α 1 (T ) + β 1 (T )) + (α 2 (T ) + β 2 (T )) = 0 (condition (1) for T ). Therefore 1 2 A(T r) = 1 2 A(r) + 1 2 A(T ) = 0. Let f ∈ G 4 . By Item (2), f ∈ I 4 if and only if A(f ) = 0 (mod 1 4 ) that is 1 2 A(f ) ∈ {0, 1 8 } (mod 1 4
). Then, any element f of I 4 such that 1 2 A(T r) = 1 8 can not be written as a product of 3 involutions.

5.

Reversibility in G n . Proof of Theorem 2.

Let f = (α f , σ f ) ∈ G n be reversible by T = (α T , σ T ) ∈ G n .
We denote by m the order of σ T . W.l.o.g. we can suppose that the action of σ T , σ f on {1, • • • , n} is transitive.

Lemma 5.1. Let f ∈ G n reversible by T in G n . Then σ f is σ T -reversible in S n and if i ∈ {1, ..., n} belongs to a σ f -cycle of length p then σ s T (i) generates a σ f -cycle of length p and either (1) m is odd or (2) m is even and either (a) there exists s odd such that

σ s T (i) ∈ σ f (i) or (b) The map given for j ∈ σ f , σ T (i) by • ǫ(j) = 1 if exists s even such that σ s T (j) ∈ σ f (i) • ǫ(j) = -1 if exists s odd such that σ s T (j) ∈ σ f (i), is well defined.
Proof. By arguments in proof of Lemma 3.1, σ s T (i) generates a σ f -cycle of length p and the only point to prove is (2).

Suppose that m is even and there doesn't exist s odd such that σ s T (i) ∈ σ f (i). First, we note that by transitivity hypothesis and reversibility relation σ f σ T = σ T σ -1 f , given j, there exist s, t such that j = σ s T σ t f (i). The reason why ǫ(j) fails to be well defined is that there exist s, s ′ with s -

s ′ odd such that σ s T σ t f (i) = σ s ′ T σ t ′ f (i) that is σ s-s ′ T σ t f (i) = σ t ′ f (i) and then σ s-s ′ T (i) = σ t+t ′ f (i) which is a contradiction.
Proof of Theorem 2 when m, the order of σ T , is odd is given by the following Proposition 5.1. Let f ∈ G n reversible by T and suppose that there exists s odd such that σ s T ∈ σ f (this is weaker than requiring σ T has odd order) then (1) σ f is an involution, (2) f is strongly reversible and

(3) f has finite order 2 or 4.

Proof. Reduction to the case σ T = Id. Let f ∈ G n reversible by T with σ s T = σ t f , with s odd. By Properties 2.2, the map T 1 = T s f -t reverses f and σ T 1 = Id.

Let f ∈ G n reversible by T with σ T = Id.

(1) As σ T = Id, one has σ f = (σ f ) -1 .

(2) The necessary and sufficient condition of Properties 3.1 (4) can be written as:

α T -1 + α f + σ f (α T ) + σ f (α f ) = 0, composing by σ f , one get σ f (α T -1 ) + σ f (α f ) + α T + α f = 0. As σ T = Id one has α T -1 = -α T , summing the previous equalities one get (A) 2(α f + σ f (α f )) = 0.
Since σ T = Id and σ f is an involution, Formula (A) leads to the necessary and sufficient condition for strongly reversibility given by Theorem 1.

(3) Formula (1) of Properties 3.1 implies that α

f 2 = α f + σ f (α f ) and α f 4 = 2 α f + σ f (α f ) .
In conclusion, on has α f 4 = 0 by Formula(A) and σ 4 f = Id, so f 4 = Id.

Proof of Theorem 2 when m is even. Let i ∈ {1, ...., n}.

Case 1. It doesn't exist s odd such that σ s T (i) = σ t f (i). Item (2) of Lemma 5.1 allows us to define T 0 as T 0 (x) = T ǫ(j) (x) for x ∈ I j .

Writing j = σ s T σ t f (i) we have T 0 (x) = T (x) if x ∈ I σ s T σ t f (i) and s is even, T -1 (x) if x ∈ I σ s T σ t f (i)
and s is odd. One can easily check that T 0 is an involution that reverses f . Case 2. There exists s odd such that σ s T (i) = σ t f (i). Let T 1 = T s f t . By Properties 2.2, the map T 1 reverses f and σ T

1 (i) = σ s T σ t f (i) = σ -t f σ s T (i) = i. Then σ T 1 , σ f (i) = σ f (i).
In addition, we have

σ T 1 (σ k f (i)) = σ -k f (σ T 1 (i)) = σ -k f (i) and σ T 1 (σ -k f (i)) = σ k f (i)
, for any k. In conclusion, σ T 1 is an involution on σ f (i) and σ T 1 (i) = i. W.l.o.g. we can consider σ f = (1, ...., n) and σ T 1 (j) = Nj for some N = 1, ..., n + 1. For clarity, we denote α j (f ) = α j and α j (T 1 ) = β j , for all j = 1, ..., n. Let x ∈ I j , one has that

T 1 • f (x) = x + α j + β j+1 and f -1 • T 1 (x) = x + β j -α N -1-j .
Therefore T 1 reverses f if and only if for any j = 1, ...n it holds that

α j + β j+1 = β j -α N -1-j .
Summing from 1 to n we get 2 n j=1 α j = 0. We conclude by noting that it is the necessary and sufficient condition for strongly reversibility in the case of a σ T 1 -invariant σ f -cycle. 6. Reversibility in G. Proofs of Theorems 3, 4, 5 and 8. The break point set of f is obtained by adding the initial point {0} to the discontinuity set of f , it is denoted by BP (f ).

The set consisting in the f -orbits of points in BP (f ) is denoted by BP ∞ (f ).

A subset V of [0, 1) is said of type M if it is a non empty finite union of intervals each of the form [b, c), with b, c in BP ∞ (f ). A type M and f -invariant set that is minimal for the inclusion among type M and f -invariant subsets of [0, 1) is called an f -component.

It is well known that IETs decompose into minimal and periodic components. This decomposition was first studied for measured surface flows by Mayer in 1943 ([May43]) and restated for IETs by Arnoux ([Arn81]) and Keane ([Kea75]).

The Arnoux-Keane-Mayer decomposition Theorem claims that [0, 1) can be decomposed as [0, 1) = P 1 ∪ ...P l ∪ M 1 ... ∪ M m , where

• P i is an f -periodic component: P i is the f -orbit of an interval [b, c) with b, c in BP ∞ (f )
and all iterates f k of f are continuous on [b, c). In particular points in P i are periodic of the same period. • M j is an f -minimal component: for any x ∈ M j , the orbit O f (x) is dense in M j . Remark 6.1. Note that f -periodic points of same period p may belong to distinct components however the set P er p (f ) consisting in f -periodic points of period p is a finite union of periodic components and it is a type M and f -invariant subset. Properties 6.1. ([Nov09], Lemma 5.1 and its proof.) Two irrational rotations R α and R β with α = β(mod1) are nonconjugate in G. The centralizer in G of an irrational rotation is the rotation group S 1 . Lemma 6.1. Let f and h be IETs such that h reverses f .

• The image by h of a minimal component of f is a minimal component of f .

• Given p ∈ N * , the set P er p (f ) is h-invariant.

Indeed, let x ∈ M a minimal component of f . Since f n (h(x)) = h(f -n (x)) one has O f (h(x)) = h(O f (x)) and therefore O f (h(x)) is dense in h(M ) meaning that h(x) belong to a minimal f - component that is exactly h(M ).
Let x be a p-periodic point of f , one has

f p (h(x)) = h(f -p (x)) = h(x) and f k (h(x)) = h(f -k (x)) = h(x) for 0 < k < p. Therefore h(x) is f -periodic of period p.
We let the reader check the following Properties 6.2. Let f and g in G.

(a) BP (f

• g) ⊆ BP (g) ∪ g -1 (BP (f )), (b) BP (f -1 ) = f (BP (f )) and (c) BP (f n ) ⊆ BP (f ) ∪ f -1 (BP (f )) ∪ ... ∪ f -n+1 (BP (f )). 6.1.2. Basic algebra of BS(1, -1) = a, b | bab -1 = a -1 . • The index 2 subgroup a, b 2 is isomorphic to Z 2 .
• The index 2 subgroup b, a 2 is isomorphic to BS(1, -1).

• For any action of BS(1, -1), the element b preserves the fixed points set of a.

Lemma 6.2.

(1) Every element of BS(1, -1) is equal to a unique element a p b q with p and q integers.

(2) An action ρ : BS(1, -1) -→ Bij(X) on a space X is not faithful if an only if there exists a positive integer p such that either ρ(a) p = Id or ρ(b) 2p = Id.

Proof. Item (1). Existence is easy and uniqueness can be proved by considering some specific faithful action of BS(1, -1), for instance the one described on the first figure of this paper. Item (2). Let us denote α = ρ(a) and β = ρ(b). According to the normal form described in item (1), if ρ is not faithful there exist two integers p and q such that (p, q) = (0, 0) and α p β q = Id.

If q is odd then Id = α p β q reverses α which implies that α is an involution. If q = 0 then α p = Id.

If q = 0 is even then if p = 0 then β q = Id if p = 0, α p = β -q commutes with β but β also reverses α p so α p is an involution. 6.2. Free faithful actions of BS(1, -1) by IET. Proof of Theorem 3. Definition 6.2. We define the growth rate of the number of discontinuities for the iterates of an IET f on the f -orbit through a given point x by

N x (f ) = lim n→+∞ #{BP (f n ) ∩ O x (f )} n .
Properties 6.3. Let f , g in G and x ∈ [0, 1).

(1) N x (f ) is well defined and N x (f ) ∈ {0, 1}.

(2) If N x (f ) = 0 for any x then there exists p such that f p is conjugated in G to a product of restricted rotations of pairwise disjoint supports.

(3) N x (f ) = N x (f -1 ). (4) BP (f ) ∩ O x (f ) = ∅ then N x (f ) = 0. (5) N g(x) (g • f • g -1 ) = N x (f ).
Proof. Items (1) and (3) are consequences of Novak's work in Section 2 of [START_REF] Christopher | Discontinuity-growth of interval-exchange maps[END_REF].

Item (2) is a reformulation of Theorem 1.2 of [START_REF] Christopher | Discontinuity-growth of interval-exchange maps[END_REF]. Item (4) follows from item (c) of Properties 6.2. To prove item (5), we use item (a) of Properties 6.2:

BP (g • f n • g -1 ) ⊆ BP (g -1 ) ∪ g(BP (f n )) ∪ g • f -n (BP (g)) and setting f g = g • f • g -1 , BP (f n ) = BP (g -1 (g • f n • g -1 )g) ⊆ BP (g) ∪ g -1 (BP (f n g )) ∪ g -1 • f -n g (BP (g -1 )
). Noting that y ∈ O x (f ) if and only if g(y) ∈ O g(x) (f g ) and setting C = 2#BP (g), we get

# (BP (f n ) ∩ O x (f )) -C ≤ # BP (f n g ) ∩ O g(x) (f g ) ≤ # (BP (f n ) ∩ O x (f )) + C.
We conclude by dividing by n and taking the limit.

Proof of Theorem 3 is inspired from the proof given by Minakawa for describing free actions of Z 2 by circle PL-homeomorphisms (see [START_REF] Minakawa | Classification of exotic circles of PL+(S 1 )[END_REF]).

The action f, h of BS(1, -1) is free thus for every x ∈ I, one has

O h k (x) (f ) ∩ O h q (x) (f ) = ∅ provided that k = q.
Therefore, as #BP (f ) is finite, there exists

N 0 such that O h n (x) (f ) ∩ BP (f ) = ∅ for any n ≥ N 0 .
Using item (4) of Properties 6.3, one get N h n (x) (f ) = 0 for n ≥ N 0 , in addition by item ( 5)

N h n (x) (h n • f • h -n ) = N x (f ).
By reversibility, it holds that

N h n (x) (h n • f • h -n ) = N h n (x) (f ǫ )
, where ǫ = 1 for n even and ǫ = -1 for n odd. Summarizing, for any x ∈ I, we get N x (f ) = 0.

Then by item (2) of Properties 6.3, there exists p such that f p is conjugated by E in G to φ, a product of restricted rotations of pairwise disjoint supports. Moreover, these restricted rotations are of infinite order and I is the union of their supports since the action is faithful and free.

We apply to φ the following Lemma 6.3. Let φ be a product of restricted rotations of pairwise disjoint supports. Then there exist a positive integer n and a PL-homeomorphism R :

I → I such that F = R • φ • R -1 ∈ G n and σ F = Id.
Moreover, the map R -1 is affine on the I i 's.

Proof. Let us decompose I as a disjoint union of consecutive half open intervals J i , i = 1, ..., n, where J i is either the support of a restricted rotation or it is a connected component of I \supp(F ). We define R as the PL-homeomorphism such that R(J i ) =

I i = [ i-1 n , i n ). It is easily seen that F = R • φ • R -1 ∈ G n and σ F = Id. Therefore F = R • φ • R -1 ∈ G n , σ F = Id and F |I i is minimal. We first prove that the corresponding H = R • η • R -1 ∈ G n where η = E • h • E -1 , that is a priori an AIET, also belongs to G n .
Let us denote J i , i = 1, ...., n the minimal components of φ. According to Lemma 6.1, there exists a permutation γ ∈ S n such that the IET η sends J i to J γ(i) . In particular J i and J γ(i) have the same length. Conjugating by the PL-homeomorphism R we get that H sends R(J i ) = I i to R(J γ(i) ) = I γ(i) . Noting that the restrictions of R to J i and to J γ(i) are affine with the same slope, we get that H is an IET.

Since H conjugates

F |I i to F -1 |I γ(i)
, Properties 6.1 implies that α γ(i) (F ) = -α i (F ). Therefore it can be check that F = (α F , Id) is reversible by g ∈ G n defined by α(g) = 0 and σ g = γ.

Finally, Hg -1 is an IET that commutes with F and fixes each I i . Since the centralizer of an irrational rotation is the rotation group S 1 , one has Hg -1 = R β i on any I i . Thus H = gR β i on any I i meaning that H ∈ G n .

We finishes the proof of Theorem 3 by proving analogously that (RE) • f • (RE) -1 ∈ G n . This is provided by the following Lemma 6.4. Let f be an IET without periodic points and such that f p ∈ G n for some positive integer p. Then f ∈ G n .

Eventually passing to a power of f p we can suppose that σ f p = Id. First, notice that f permutes the minimal components I i of f p that is there exists σ ∈ S n such that f (I i ) = I σ(i) .

Since f p is an irrational rotation on I i and f commutes with f p , it follows that f sends an interval where f p is a rotation of angle α to one with the same angle. This is a consequence of the fact that the angle α of a rotation is invariant by conjugacy in IET.

Thus, the periodic element τ of G n defined by σ τ = σ and α(τ ) = 0 commutes with F p . Therefore τ -1 f preserves each I i and commutes with f p . Since the centralizer of an irrational rotation is the rotation group S 1 , one has

τ -1 f = R β i on any I i . Thus f = τ R β i on any I i meaning that f ∈ G n .
Remark 6.2. Noting that h and f permute the minimal components of f p , we get that any M i := φ, η (J i ) is the union of finitely many J k that have same length and then R is affine on any M i . 6.3. Some extensions to other groups. Proof of Theorem 8. By similar arguments, we can establish the following: Proposition 6.1. Any free faithful actions of Z 2 by IET is (P L•IET )-conjugated to a Z 2 -action in some G n . Proposition 6.2. Let f 1 , f 2 commuting IET satisfying:

(1) P er(f

1 ) = P er(f 2 ) = ∅ and (2) f 1 is conjugated by A to F 1 in G n , where A = R • E, with E ∈ G and R a PL- homeomorphism such that R -1 affine on the I i 's. then f 2 is conjugated by A to F 2 in G n .
Indeed, eventually changing f 1 for an iterate, we can suppose that the J i = R -1 (I i ) are the minimal components of f 1 . As f 2 permutes the J i 's, then there exists a positive integer m such that the map F m 2 = Af m 2 A -1 is an IET that preserves each I i and commutes with F 1 . By properties 6.1, F m 2 ∈ G n therefore by Lemma 6.4, F 2 ∈ G n . As a consequences of these propositions we have Theorem 9. Let G be a finitely generated virtually abelian and torsion free group. If one of the following properties is satisfied

(1) G contains an element conjugated to a product of restricted rotations with disjoint supports and without periodic points. (2) there exists a subgroup Γ of G that is isomorphic to Z 2 and acts freely on I. Then G is conjugated in P L • IET to a subgroup of some G n . Remark 6.3. As a consequence of the previous result, we get Theorem 8 since it deals with groups that satisfy Item (2).

Proof of Theorem 9.

Let {f 1 , • • • , f r } be a finite generating set of G. We claim that there exist positive integers p i for i = 1, • • • , r such that f p i i are pairwise commuting. Indeed, by hypothesis there exists K an abelian normal subgroup of G with finite index, n. Let {m 1 , • • • , m n } be a set of representatives of G/K. Then, for any i = 1, • • • , r and s ∈ Z there exists j s = j(i, s) such that f s i belongs to the class modulo K of m js . By finiteness there exist s < t such that f s i and f t i are in the same class modulo K. That is, f t-s i ∈ K so taking p i = ts we get the claim. Suppose that G satisfies the first item of Theorem 9, eventually increasing the generating set of G we can suppose that f 1 is the element under consideration in this item. In particular, any iterate of f 1 is also a product of restricted rotations with disjoint supports and without periodic points. Therefore, by Lemma 6.3, f 1 is conjugated by A in P L to an element of G n .

Suppose that G satisfies the second item of the theorem, by Proposition 6.1, the subgroup Γ is conjugated in P L • IET to a subgroup of some G n . Eventually increasing the generating set of G we can suppose that f 1 belogs to Γ

In both cases, we have that f p 1 1 is conjugated by A in P L • IET to an element of G n . Let i = 2, • • • , r, we apply Proposition 6.2 to f p 1 1 and f p i i and we obtain that f p i i is conjugated by A to an element of G n .

Finally, re-applying Proposition 6.2 to f p i i and f i and we obtain that f i is conjugated by A to an element of G n . 6.4. Proof of Theorem 4. Lemma 6.5. Let f, h be IETs.

• If h commutes with f minimal then either h = Id or F ix(h) = ∅. • If h reverses f then F ix(h) ⊂ P er(f ). Proof. Let x ∈ F ix(h). • If h commutes with f , one has h(f n (x)) = f n (h(x)) = f n (x), then O f (x) ⊂ F ix(h)
. By minimality, F ix(h) = [0, 1) and h = Id.

• If h reverses f , since h is an IET there exists a subinterval I x = [x, c) ⊂ F ix(h). We now argue by contradiction supposing that x / ∈ P er(f ) therefore O f (x) is locally dense, in particular there exists a subsequence p n such that f pn (x) → x + .

By reversibility, h(f pn (x)) = f -pn (h(x)) = f -pn (x) and as f pn (x) → x + , for n sufficiently large f pn (x) ∈ F ix(h) and then f pn (x) = f -pn (x) meaning that x is f -periodic.

Proof of Theorem 4.

(1)-Let f be an minimal IET reversible by h. We argue by contradiction supposing that f, h is not free. Therefore by Lemma 6.2 (1), there exist x ∈ I and two integers p, q such that g = f p h q = Id and g(x) = x, this contradicts Lemma 6.5.

(2) Suppose that f is minimal and h has infinite order, then by the previous item, f, h generates a faithful and free action. Thus, Theorems 2, 3 and Corollary 1 imply that f, h is conjugated to an action in G n and f can not be minimal.

(3) Periodic IETs are strongly reversible. Let f be a periodic IET, by the Arnoux-Keane-Mayer decomposition Theorem, I = [0, 1) can be written as the union of finitely many f -periodic components M i , i = 1, .., n of period p i . In particular, M i = ⊔ p i k=1 J k , where

J k = f k-1 (J 1 ), J 1 = [b, c[ where b, c ∈ BP ∞ (f ) and f k is continuous on J 1 .
Eventually conjugating f and h by an IET, we can suppose that the J k 's are ordered consecutive intervals so the M i 's are intervals.

Let us fix i ∈ {1, ..., n} and denote m = p i . Since J k = f k-1 (J 1 ), all J k , k = 1, ..., p i have same length. Therefore the map H :

M i → I defined by H(J k ) = [ k-1 m , k m
) is a homothecy that conjugates the restriction f |M i to an element of G m with α(Hf |M i H -1 ) = 0.

By Theorem 1, we conclude that Hf |M i H -1 is strongly reversible, so there are two involutions i 1 and i 2 in G m such that

Hf |M i H -1 = i 1 i 2 .
Finally

f |M i = (H -1 i 1 H)(H -1 i 2 H)
, where H -1 i 1 H and H -1 i 2 H are involutions in G with supports in M i . Therefore, for all i, f |M i is strongly reversible. This leads to the required statement. 6.5. Proof of Theorem 5 and Corollary 3. Proposition 6.3. If f is reversible in IET by h then I can be decomposed as I = M 1 ⊔M 2 ...⊔M l , where M i are type M f -invariant subsets that are h-invariant and either

(1) There exists an integer p i such that any point of M i is f -periodic of period p i ; In the following items, each M i is the union of finitely many f -minimal components and h acts transitively on these components.

(2) the action of f, h on M i is a BS(1, -1) faithful free action;

(3) the action of f, h on M i is a non faithful BS(1, -1) action: moreover there exists an even integer p i even such that the restriction h p i |M i = Id; (4) there exists an even integer p i such that M i is a union of p i f -minimal components.

Proof. According to the Arnoux-Keane-Mayer decomposition Theorem, I can be decomposed as a finite union of f -minimal or f -periodic components. Let N be a component of f .

If N is p-periodic, we define M = P er p (f ).

If N is minimal, according to Lemma 6.1 and since f has finitely many components, there exists a least integer s such that h s (N ) = N and we define M = s-1 j=0 h j (N ). Case 1: N is periodic. By Lemma 6.1 and Remark 6.1, the set M is of type M, it is invariant by f and h and it satisfies item (1).

Case 2: N is minimal and the action of f, h on M is faithful and free.

Case 3: N is minimal and the action of f, h on M is either not faithful or not free. If the action is not faithful, as f is minimal, by Lemma 6.2, the map h |N has even order and the same holds for h |M . Thus, we are exactly in the situation described by item (3).

If the action is not free, therefore by Lemma 6.2 there exist x ∈ N , p = p 1 s a multiple of s and q integers such that h p (x) = f q (x).

Therefore H = h p f -q |M satisfies H(x) = x. If p is odd then H reverses F = f |M , this contradicts Lemma 6.5, so p is even. Then h p (x) = f q (x) and for all n ∈ Z, one has h p (f n (x)) = f n (h p (x)) = f n (f q (x)) = f q (f n (x)). Thus h p |O f (x) = f q |O f (x) and by minimality h p |N = f q |N . If q = 0 then h p |N = Id and h p |M = Id. From now on, we consider q = 0. If h preserves N then f q |N commutes with h, this contradicts h is a reverser of f q . If h(N ) = N and s is odd then p 1 is even, H = h s is a reverser of f that preserves N and H p 1 (x) = f q (x). We conclude that f q |N commutes with H, this contradicts H is a reverser of f q . If h(N ) = N and s is even, we are in the situation described by item (4).

Proof of Theorem 5. We will prove that f |M i is reversible by a finite order element in any situation described by Proposition 6.3.

1. M is a finite union of f -periodic components of period p.

We conclude that f is strongly reversible by Theorem 4 Item (3).

2. The action of f, h on M i is a BS(1, -1) faithful free action. We conclude that f is strongly reversible by Theorem 3, Theorem 2 and the fact that the map R is affine on M i according to Remark 6.2.

3. There exists an even integer p i such that the restriction h p i |M i = Id. Therefore p i = 2l and either l is odd and h l is an involution reversing f or l is even and h has order a multiple of 4.

4.

There exists an even integer p i such that M i = p i -1 j=0 h j (N ) is a union of an even number of f -minimal components. The map h 0 defined by h 0 (x) = h(x) if x ∈ h j (N ) and j is even h -1 (x) if x ∈ h j (N ) and j is odd, is an involution that reverses f |M i .

Proof of Corollary 3. Any reversible IET is a product of at most 2 periodic IETs.

According to Theorem 5, a reversible IET f is reversible by h with even order 2p. As f = h(h -1 f ), and (h

-1 f ) 2p = (h -1 f h -1 f ) p = (h -1 f f -1 h -1 ) p = h -2p
= Id, we have that f is the product of 2 periodic IETs. 7. Composites of involutions for 3-IETs and 4-IETs. Proof of Theorem 6.

7.1. The SAF invariant. It was introduced independently by Sah ([Sah79]) and ). We recall its definition and properties following Boshernitzan ([Bos16]).

Denote by R ⊗ Q R the tensor product of two copies of real numbers viewed as vector spaces over Q: the space of finite sums of formal products λ ⊗ γ up to the equivalence properties

(λ + λ ′ ) ⊗ γ = λ ⊗ γ + λ ′ ⊗ γ, λ ⊗ (γ + γ ′ ) = λ ⊗ γ + λ ⊗ γ ′ and q(λ ⊗ γ) = (qλ) ⊗ γ = λ ⊗ (qγ), for λ, γ in R and q ∈ Q.
Denote by R∧ Q R the skew symmetric tensor product of two copies of reals: the vector subspace of R ⊗ Q R spanned by the wedge products λ ∧ γ := λ ⊗ γγ ⊗ λ, λ, γ in R.

Definition 7.1. The Sah-Arnoux-Fathi (SAF) invariant is defined by

SAF (f ) = r k=1 λ k ⊗ γ k ∈ R ⊗ Q R,
where the vectors (λ k ) ∈ R r encode the lengths of exchanged intervals and (γ k ) the corresponding translation constants respectively.

Properties 7.1.

(

) SAF : G → R ⊗ Q R is a group homomorphism; (2) For rotations, SAF (R β ) = -1 ∧ β, in particular SAF (R β ) = 0 if and only if R β is periodic. 1 
As a consequence, any reversible IET has zero SAF-invariant.

7.2. Proof of Theorem 6.

7.2.1. Item 1: 3-IETs with zero SAF-invariant are periodic.

Proof. Let f be a 3-IET having zero SAF-invariant and with associated permutation σ ∈ S 3 . If σ fixes 1 or 3 then f is a restricted rotation with zero SAF-invariant. Therefore, by Properties 7.1 f is periodic.

We suppose that σ does not fix 1 and 3. If σ is a 3-cycle then f is a rotation with zero SAF-invariant. As before, we conclude that f is periodic.

If σ is a 2-cycle that does not fix 1 and 3 then σ = (1, 3). Therefore, f has 2 discontinuities a 1 and a 2 . We set a 0 = 0, a 3 = 1 and we denote by λ i the length of

I i = [a i-1 , a i ) for i = 1, 2, 3. One has a 1 = λ 1 , a 2 = λ 1 + λ 2 and f is easily computed: • f (x) = x + λ 2 + λ 3 = x + 1 -λ 1 for x ∈ I 1 , • f (x) = x -λ 1 + λ 3 = x + 1 -2λ 1 -λ 2 for x ∈ I 2 , • f (x) = x -λ 1 -λ 2 for x ∈ I 3 .
We compute the SAF-invariant of f :

SAF (f ) = λ 1 ⊗ (1 -λ 1 ) + λ 2 ⊗ (1 -2λ 1 -λ 2 ) + (1 -λ 1 -λ 2 ) ⊗ (-λ 1 -λ 2 ) = λ 1 ⊗ 1 + λ 2 ⊗ (1 -2λ 1 ) -1 ⊗ λ 1 + λ 1 ⊗ λ 2 + 1 ⊗ (-λ 2 ) + λ 2 ⊗ λ 1 = λ 1 ∧ λ 2 + (λ 1 + λ 2 ) ∧ 1 = -λ 1 ∧ λ 1 -λ 2 ∧ λ 1 + (λ 1 + λ 2 ) ∧ 1 = -(λ 1 + λ 2 ) ∧ λ 1 + (λ 1 + λ 2 ) ∧ 1 = (λ 1 + λ 2 ) ∧ (1 -λ 1 ). Therefore, SAF (f ) = 0 if and only if λ 1 +λ 2 1-λ 1 ∈ Q.
It is straightforward to check that the first return map of f on [0, λ 1 + λ 2 ) is given by x

→ x + (1 -2λ 1 -λ 2 ) mod(λ 1 + λ 2 ). Therefore it is minimal if and only if (1-2λ 1 -λ 2 ) λ 1 +λ 2 / ∈ Q. Note that if (1-2λ 1 -λ 2 ) λ 1 +λ 2 ∈ Q then the first return map is periodic so is f . Since (1-2λ 1 -λ 2 ) λ 1 +λ 2 = -1 + 1-λ 1
λ 1 +λ 2 we conclude that SAF (f ) = 0 if and only if f is periodic.

7.2.2. The SAF invariant for product of two restricted rotations. Given (l 1 , l 2 , δ 1 , δ 2 ) ∈ R 4 such that l 1 + l 2 = 1, 0 ≤ δ 1 < l 1 and 0 ≤ δ 2 < l 2 . We consider f the product of two restricted rotations with associated permutation (1, 2)(3, 4) and length vector (l

1 -δ 1 , δ 1 , 1 -δ 2 -l 1 , δ 2 ). The translation vector is (δ 1 , δ 1 -l 1 , δ 2 , δ 2 -l 2
). An easy computation leads to

(1)

SAF (f ) = l 1 ∧ δ 1 + l 2 ∧ δ 2 .
7.2.3. Item 2: A 4-IET with zero SAF-invariant that is not reversible.

Proof. We claim that if ( δ 1 l 1 , δ 2 l 2 ) / ∈ Q 2 and l 1 = l 2 then f is not reversible. Indeed, we argue by contradiction. Any h that reverses f sends minimal f -components to minimal ones. As l 1 = l 2 , the map h preserves [0, l 1 ) and its restriction reverses a minimal rotation, a contradiction.

Assuming that l 1 = pl 2 ∈ Q * and δ 2 = -pδ 1 + r for some rational numbers p and r, we get

SAF (f ) = pl 2 ∧ δ 1 + l 2 ∧ δ 2 = l 2 ∧ (pδ 1 + δ 2 ) = l 2 ∧ r = r(l 2 ∧ 1) = 0.
7.2.4. Item 3: Products of two restricted rotations with zero SAF-invariant.

Proof. From Formula (1), it holds that SAF

(f ) = l 1 ∧ δ 1 + (1 -l 1 ) ∧ δ 2 = 0. Moreover if l 1 = p p+1 then l 2 = 1 -l 1 = 1 p+1 and then l 1 = pl 2 . Therefore SAF (f ) = pl 2 ∧ δ 1 + l 2 ∧ δ 2 = l 2 (1 ∧ (pδ 1 + δ 2 )) = 0 implies that pδ 1 + δ 2 ∈ Q that is δ 2 = -pδ 1 + r, with r ∈ Q.
The homothecy H of ratio p + 1 conjugates f to F a product of two restricted rotations whose supports have lengths l 1 = p and l 2 = 1 respectively.

Let RP be the product of the two restricted rotations, defined by:

• RP (x) = x -q mod p, on [0, p), where q ∈ Q + is such that 0 < δ 1 -q < 1 p and • RP (x) = x -r + pq mod 1, on [p, p + 1).
As p, q and r are rational numbers, RP is periodic.

We have that g = F • RP is the product of two restricted rotations and its length vector is (pα, α, pα, 1pα) where α = δ 1q ∈ (0, 1 p ). Hence, the translation vector of g is (α, αp, 1pα, -pα).

We suppose that p ∈ N * , we consider the group Ĝp+1 the conjugate of G p+1 by H and we define i as the element Ĝp+1 with σ i = (1, 2, ..., p + 1) and α i = (-α, -α, ..., -α, pα). An easy computation shows that BP (i) = {p + 1pα, p, j, j + α with j = 0, ..., p -1} and i is periodic of period p + 1. It follows that [0, 1α), [pα, p) , [p, p + 1), [jα, j), [j, j + 1α) with j = 1, ..., p -1 are the continuity intervals of i • g and its translation constants are integers. We conclude that i • g is periodic. Hence g is the product of two periodic IETs, therefore g can be written as the product of 4 involutions and F = g • RP -1 = is the the product of 6 involutions:

i k , k = 1, • • • , 6.
Finally, the initial map

f = H • F • H -1 is the product of H • i k • H -1 , k = 1, • • • , 6 that are involutions of G.
8. Related groups. Proof of Theorem 7.

As pointed out by Leroux ([LR11]), reversible elements occur in some torsion-free groups, namely BS(1, -1), the crystallographic group C 1 and the group C 2 defined in Theorem 7. Note that, by Theorem 4 (2), in faithful actions of these groups reversible elements are not minimal. It is natural to ask whether these groups admit free or/and minimal actions by IET. 8.1. The Baumslag-Solitar group BS(1, -1). Proof of item (1).

In the example of section 2, the set [0, 1 4 ) ∪ [ 3 4 , 1) is invariant, so the action is not minimal. Here, we give an example where BS(1, -1) acts freely and minimally by IET. This action is free and minimal provided that α and β are rationally independent.

8.2. The crystallographic group C 1 . Proof of item (2).

The following action of C 1 = a, b | ba 2 b -1 = a -2 , ab 2 a -1 = b -2 is free and minimal, provided that α and β are rationally independent. Let M be a minimal c-component, Lemma 6.1 implies that the set b(M ) is a minimal component of c. Thus, by finiteness, there exists r such that b r (M ) = M and w.l.o.g we can assume that r is even.

The action of b r , c on I is not free. Indeed, by contradiction and according to Theorem 3, the map c would be conjugate (in PL • IET) to an element of some G n and therefore an iterate of c would be a product of restricted rotations with pairwise disjoint supports, this is a contradiction with a result of Novak claiming that such an IET do not belong to a non abelian free group ( [START_REF] Christopher | Interval exchanges that do not occur in free groups[END_REF] or [START_REF] Dahmani | Solvable groups of interval exchange transformations[END_REF], Theorem 3.6).

Hence, there exist x ∈ M and (p, q) ∈ Z 2 \ {(0, 0)} such that g(x) = b rp c q (x) = x. As b rp and c commute, g and c commute and then F ix(g) is c-invariant Thus the closure of the c-orbit of x is included in F ix(g), that is M ⊂ F ix(g).

Noting that b 2 and c commutes, we conclude that g = b rp c q = Id on ∪b 2k (M ).

Using that b reverses c q , we have that b rp c -q = Id on ∪b 2k+1 (M ).

Let B = b rp , one has B = c -q on ∪b 2k (M ) and B = c q on ∪b 2k+1 (M ). Since a reverses B, by Lemma 6.1, there exists l = l(M ) even such that A = a l preserves the B-components and therefore the minimal c-components. We compute [A, c -q 2 ]:

• on ∪b 2k (M ), we get [A, c -q 2 ] = [A, (c -q ) q ] = [A, B q ] = Id and • on ∪b 2k+1 (M ), we get [A, c -q 2 ] = [A, (c q ) -q ] = [A, B -q ] = Id.

In conclusion, given M a minimal c-component, either M is of type (1): there exists n = n(M ) = 0 such that [A, c n ] = Id on ∪b k (M ) (when q = 0) or type (2): there exists p = p(M ) = 0 such that b p = Id on ∪b k (M ) (when q = 0). Moreover, there is t = 0 such that c t = Id on the union of the periodic components of c. Changing l by the product of all l(M ) and n by the product of all n(M ) and t, we have [a l , c n ] = Id on I 1 , the union of the periodic and minimal c-components of type (1).

Changing p by the product of all p(M ), we have b p = Id on I 2 , the union of the minimal c-components of type (2). Conjugating by an IET, we arrive at the case where I 1 and I 2 are intervals.

  acts freely and minimally by IET.(3) The group C 2 = a, b, c | aba -1 = b -1 , bcb -1 = c -1 does not admit faithful minimal action by IET.
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6. 1 .

 1 Preliminaries. 6.1.1. Dynamical properties of IETs. In this section, we recall the Arnoux-Keane-Mayer decomposition Theorem ([Arn81], [Kea75], [May43]) and Novak's work on the growth rate of the number of discontinuities for iterates of an IET ([Nov09]). Definition 6.1. Let f ∈ G.

  The group C 2 . Proof of item (3). Leroux ([START_REF] Le | Free planar actions of the Klein bottle group[END_REF]) has proved that the elements a, b, c are non trivial, C 2 = a, b, c | aba -1 = b -1 , bcb -1 = c -1 is torsion-free, every element of C 2 has a unique expression of the form ωb n , with ω ∈ F 2 and the subgroup F 2 of C 2 generated by a and c is free.We prove that C 2 does not admit faithful minimal action by IET. More precisely, we prove Proposition 8.1. Any faithful action of C 2 by IET is conjugated in G to a reducible representation Γ 2 < G such that there exist a partition of I into two half open Γ 2 -invariant intervals I 1 and I 2 and non zero integers l, n, p verifying that • [a l , c n ] = Id in I 1 and • b p = Id on I 2 . Proof. According to the Arnoux-Keane-Mayer decomposition Theorem, I can be written as a finite union of c-minimal or c-periodic components. Eventually conjugating c in G, we can suppose that c-components are intervals.
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