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Abstract

We consider the task of classifying when an extremely reduced amount of labelled
data is available. This problem is of a great interest, in several real-world problems,
as obtaining large amounts of labelled data is expensive and time consuming. We
present a novel semi-supervised framework for multi-class classification that is
based on the normalised and non-smooth graph 1-Laplacian. Our transductive
framework is framed under a novel functional with carefully selected class priors –
that enforces a sufficiently smooth solution that strengthens the intrinsic relation
between the labelled and unlabelled data. We demonstrate through extensive ex-
perimental results on large datasets CIFAR-10 and ChestX-ray14, that our method
outperforms classic methods and readily competes with recent deep-learning ap-
proaches.

1 Introduction

In this era of big data, deep learning (DL) has reported astonishing results for different tasks in
computer vision including image classification e.g. [? ? ], detection and segmentation just to name
few. In particular, for the task of image classification, a major breakthrough has been reported in the
setting of supervised learning. In this context, majority of methods are based on deep convolutional
neural networks including ResNet [? ], VGG [? ] and SE-Net [? ] in which pre-trained, fine tuned
and trained from scratch solutions have been considered. A key factor, for these impressive results, is
the assumption of a large corpus of labelled data. These labels can be generated either by humans
or automatically on proxy tasks. However, to obtain well-annotated labels is expensive and time
consuming, and one should account for either human bias and uncertainty that adversely effect the
classification output. These drawbacks have motivated semi-supervised learning (SSL) to be a focus
of great interest in the community.

The key idea of SSL is to exploit both labelled and unlabelled data to produce a good classification
output. The desirable advantages of this setting is that one decreases the dependency for a large
amounts of well-annotated data whilst gaining further understanding of the relationships in the data.
A comprehensive revision on SSL can be seen in [? ]. In the transductive setting, several algorithmic
approaches have been proposed such as [? ? ? ? ? ? ] whilst in the inductive setting also promising
results have been reported including [? ? ]. More recently, DL for semi-supervised learning has been
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explored in both settings such as in [? ? ? ]. We refer the reader to [? ? ] for a detailed revision on
SSL for image classification.

In this work, we focus on the transductive setting for image classification with the graph p-laplacian.
Although promising results have been shown in this context, for example, the seminal algorithm of [?
] was introduced to perform such a graph transduction through the propagation of few labels by the
minimisation for p = 2. Latter machine learning studies nevertheless showed that the non-smooth
p = 1 Laplacian, related to total variation, can achieve better clustering performances [? ], but
original algorithms were only approximating p→ 1.

More advanced optimisation tools were therefore proposed to consider the exact p = 1 Laplacian for
binary [? ] or multi-class [? ] graph transduction. As underlined in [? ], the normalisation of the
operator is nevertheless crucial, to ensure within-cluster similarity when the degrees of the nodes di
are broadly distributed in the graph.

Contributions. In order to address these different issues, we propose a new graph based semi-
supervised framework called EMS-1L. The novelty of our framework largely relies on:

• A new multi-class classification functional based on the normalised and non-smooth p = 1
Laplacian, where the selection of carefully chosen class priors enforces a sufficiently smooth
solution that strengthens the intrinsic relation between the labelled and unlabelled data.

• We demonstrate that our framework accurately learns to classify different challenging
datasets such as ChestX-ray14, with a performance comparable to state of the art DL
techniques, whilst using an extremely smaller amount of labelled data.

• We show that our framework can be extended to deep SSL, and show that our approach
achieves the lowest error rate in comparison with state-of-the-art SSL approaches on CIFAR-
10 dataset.

2 Extreme Minimal Supervision with the Graph 1-Laplacian: Preliminaries

Formally speaking, we aim at solving the following problem. Given a small amount of labeled data
{(xi, yi)}li=1 with provided labels L = {1, .., L} and {yi}li=1 ∈ L and a large amount of unlabelled
data {xk}nk=l+1, we seek to infer a function f : Xn 7→ Yn such that f gets a good estimate for
{xk}l+nk=l+1. This problem is illustrated in Figure 1, where visualisations were obtained from one of
our experiments.

For addressing this problem, we consider functions u ∈ Rn defined over a graph N of n nodes. The
main focus of interest in this work are convex and absolutely one-homogeneous non-local functionals
(i.e. J(αu) = |α|J(u)) of the form:

J(u) =
∑
ij

wij

∣∣∣∣uidi − uj
dj

∣∣∣∣ , (1)

Initial Graph 

ChestXray-14
Final Graph 

ChestXray-14

Figure 1: Graphical representation of one our experiments,
where in the final classified graph, each colour represents a
different class

with some weights wij = wji ≥ 0
taken such that the vector d ∈ Rn
has non null entries satisfying: di =∑
j wij > 0. With respect to the clas-

sical 1−laplacian operator, it includes
a rescaling with the degree of the node.
When taking a quadratic term in (1)
instead of the absolute value, and con-
sidering prior information with a few
labeled nodes, one recovers the model
in [? ].

The function J can be rewritten as:

J(u) = ||WD−1u||1,
with n×n symmetric matricesW and
D = diag(d), so that d = D1n.
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Subdifferential Let us first define
as ∂J the set of possible subdifferentials of J : ∂J = {p, s.t. ∃u, with p ∈ ∂J(u)}. Any absolutely
one homogeneous function J checks:

J(u) = sup
p∈∂J
〈p, u〉 (2)

so that J(u) = 〈p, u〉, ∀p ∈ ∂J(u).
For the particular function J defined in (1), we can observe that

p ∈ ∂J ⇔ p = D−1Wz, with ||z||∞ ≤ 1. (3)
Considering the finite dimension setting, there exists LJ <∞ such that ||p||2 < LJ , ∀p ∈ ∂J . We
also have the following property.
Proposition 1. For all p ∈ ∂J , with J defined in (1), one has

〈p, d〉 = 0.

Proof. Observing that d = D1 and using (3) we have that ∃z ∈ Rn such that
〈p, d〉 = 〈D−1Wz,D1n〉.

Since W is symmetric then for all z ∈ Rn:

〈Wz,1n〉 =
∑
i

∑
j

wij(zi − zj) =
∑
i

∑
j>i

wij(zi − zj − zi + zj) = 0.

Eigenfunction. Eigenfunctions of any functional J satisfy λu ∈ ∂J(u). For J being the
1−laplacian, or nonlocal total variation, (i.e. when di is constant), eigenfunctions are known to be
essential tools to provide a relevant clustering of the graph [? ]. Methods [? ? ? ? ? ] have thus been
designed to estimate such eigenfunctions through the local minimisation of the Rayleigh quotient,
which reads:

min
||u||2=1

J(u)

H(u)
, (4)

with another absolutely one homogeneous function H , that is typically a norm. Taking H(u) = ||u||2
as the `2 norm, one can recover eigenfunctions of J [? ]. For H(u) = ||u||1 being the `1 norm, these
approaches can compute bi-valued functions u that are local minima of (4) and eigenfunctions of J
[? ]. Being bivalued, these estimations can easily be used to realise a partition of the domain. Such
schemes also relate to the Cheeger cut of the graph induced by nodes ui and edges wij . Balanced
cuts can also be obtained by considering H(u) = ||u−median(u)||1 [? ? ].

A last point to underline comes from Proposition 1, that states that eigenfunctions λu ∈ ∂J(u) should
be orthogonal to d. It is thus important to design schemes that ensure this property.

3 Classifying under Extreme Minimal Supervision with the Graph
1-Laplacian

In the following, instead of ui, we will denote by u(x) the value of function u at node x. In order
to realise a binary partition of the domain of the graph N through the minimisation of the quotient
R(u) = J(u)/H(u), we adapt the method of [? ] to incorporate the scaling d(x) of (1) and consider
the semi-explicit PDE: {

uk+1/2−uk

δt = J(uk)
H(uk)

(qk − q̃k)− pk+1/2,

uk+1 =
uk+1/2

||uk+1/2||2
(5)

with pk+1/2 ∈ ∂J(uk+1/2), q ∈ ∂H(uk), q̃k = 〈d,qk〉
〈d,d〉 d. We recall that both J and H are absolutely

one homogeneous and satisfy (2). Since 〈p, d〉 = 0, ∀p ∈ ∂J , the shift with q̃k is necessary to show
the convergence of the PDE as we have uk → u∗ ⇒ J(u∗)

H(u∗) (q
∗ − q̃∗) = p∗, for p∗ ∈ ∂J(u∗) and

q∗ ∈ ∂H(u∗).

Such sequence uk satisfies the following properties.
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Proposition 2. For 〈u0, d〉 = 0, the trajectory uk given by (5) satisfies

1 〈uk+1, d〉 = 0,

2 ||uk+1/2||2 ≥ ||uk||2,

3 R(uk) is non increasing,

4 H(uk+1/2) ≤ κ < +∞.

The proof is given in the Supplementary Material. It namely uses the fact that uk+1/2 is the unique
minimiser of:

Fk(u) =
1

2δt
||u− uk||22 +R(uk)〈qk − q̃k, u〉+ J(u). (6)

Hence, we can show the convergence of the trajectory.
Proposition 3. The sequence uk defined in (5) converges to a non constant steady point u∗.

Proof. As uk+1/2 is the unique minimizer of Fk in (6) that checks Fk(uk) = 0, and as we have
〈qk − q̃k, uk+1/2〉 ≤ H(uk+1/2), we get

1

2δtH(uk+1/2)
||uk+1/2 − uk||22 +R(uk+1) ≤ R(uk), (7)

Since uk+1 is the orthogonal projection of uk+1/2 on the `2 ball then ||uk+1−uk||22 ≤ ||uk+1/2−uk||2.
Finally, from point 4 of Proposition 2, we have that 1/H(uk+1/2) ≥ 1/κ. We then sum relation (7)
from 0 to K and deduce that:

K∑
k=0

1

2δtκ
||uk+1 − uk||22 ≤ H(u0).

so that ||uk+1 − uk||2 converges to 0. Since all the quantities are bounded, we can show (see [? ],
Theorem 2.1) that up to a subsequence uk → u∗.

From Proposition 2, the points uk being of constant norm and 〈d, uk〉 being zero (with positive
weights di), the limit point u∗ of the trajectory (5) necessarily has negative and positive entries.

In practice, to realise a partition of the graph with the scheme (5), we miniminise the functional (6)
at each iteration k with the primal dual algorithm in [? ] to obtain uk+1/2, and then normalise this
estimation. As it is non constant and satisfies 〈u∗, d〉 = 0, the limit of the scheme u∗ can be used for
partitioning with the simple criteria u∗ > 0.

Multi-class clustering. We now aim at finding L coupled functions ul that are all local minima of
the ratio J(u)/H(u). The issue is to define a good coupling constraint between the ul’s such that it
is easy to project on. Let u = [u1, · · ·uL] , we here consider the simple linear coupling :

C : {u, s.t.
L∑
l=1

ul(x) = 0, ∀x ∈ N}. (8)

There are three main reasons for considering such coupling instead of classical simplex [? ? ? ] or
orthogonality [? ] constraints:

1 Projection on this linear constraint is explicit with a simple shift of the vector u(x) for each
node x. On the other hand, simplex constraint (ul(x) ≥ 0,

∑
l u
l(x) = 1, ∀x) requires

more expensive projections of the vectors u(x) on the L simplex. Last, projection on the
orthogonal constraint of the ul’s is a non convex problem.

2 Contrary to the simplex constraint, it is compatible with the weighted zero mean condition
〈ul, d〉 that any eigenfunction of J should satisfy, as shown in Proposition 1.

3 The characteristic function of a linear constraint is absolutely one homogeneous. This leads
to a natural extension of the binary case.
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Multi-class flow. We now consider the problem:

min
||u||2=1

L∑
l=1

J(ul)

H(ul)
. (9)

To find a local minima of (9), we define the iterative multi-class functional, which reads:

FLk (u) =
1

2δt
||u− uk||22 −

L∑
l=1

R(ulk)〈qlk − q̃lk, ul〉+
L∑
l=1

J(ul) + χC(u) (10)

where qlk ∈ ∂H(ulk) and χC is the characterstic function of the constraints (8). Starting from an initial
point u0 that satisfies the constraint (χC(u0) = 0) and has been normalised (||u0||22 =

∑L
l=1 ||ul0||22 =

1), the scheme we consider reads:{
ulk+1/2 = ulk + δt

(
R(ulk)(q

l
k − q̃lk)− plk+1/2 − r

l
k+1/2

)
uk+1 =

uk+1/2

||uk+1/2||2

(11)

where plk+1/2 ∈ ∂J(u
l
k+1/2) and rk+1/2 ∈ ∂χC(uk+1/2), and the point uk+1/2 in the above PDE

corresponds to the global minimiser of (10). Notice that the subgradient of the one homogeneous
functional χC can be characterised with:

r ∈ ∂χC ⇒ {rl(x) = α(x), ∀l = 1 · · ·L and x ∈ N}. (12)

In practice, if for some l, ulk+1/2 vanishes, then we define R(ulk+1) = 0 for the next iteration. With
such assumptions, the sequence uk have the following properties, that are shown in Supplementary
Material.
Proposition 4. For 〈ul0, d〉 = 0, l = 1 · · ·L, the trajectory uk given by (11) satisfies

1 〈ulk, d〉 = 0,

2 ||uk||2 ≤ ||uk+1/2||2 ≤ κ <∞,

3
∑L
l=1H(ulk+1)

(
R(ulk+1)−R(ulk)

)
≤ − 1

2δtκ ||uk+1 − uk||22.

Point 3 of Proposition 4 contains weights H(ulk+1) that prevent from showing the exact decrease of
the sum of ratios. This is thus similar to the approach in [? ].

To ensure the decrease of the sum of ratios
∑L
l=1 J(u

l
k)/H(ulk), is is possible to introduce auxiliary

variables dealing with individual ratio decrease, as in [? ]. The involved sub-problem at each iteration
k is nevertheless more complex to solve.

Also notice that as there is no prior information on nodes’ labels, clusters can vanish or 2 clusters may
become proportional one to the other. Such issues can nevertheless not happen in the transductive
setting we now consider.

Label Propagation: Multi-Class Classification. The previous settings are unsupervised. We now
consider a semi-supervised setting where we know small subsets of labeled nodes N l ⊂ N (with
|N l| << | ⊂ N |) belonging to each cluster i, with N l ∩ Nj = ∅. Denoting L = ∪Ll=1N l, the
objective is to propagate the prior information in the graph in order to predict the labels of the
remaining nodes x ∈ N\L. To that end, we simply have to modify the coupling constraint C in (8)
as

C :

u, s.t.

∑L
l=1 u

l(x) = 0 if x ∈ N\L
ul(x) ≥ ε if x ∈ N l

ul
′
(x) ≤ −ε,∀l′ 6= l if x ∈ L\N l

 . (13)

With such constraint, clusters can no more vanish or merge since they all contain different active
nodes x ∈ N l satisfying ul(x) > 0. The same PDE (11) can be applied to propagate these labels.
Once it has converged, the label of each node x ∈ N\L is taken as:

L(x) ∈ argmax
i∈{1,···L}

ul(x).
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Soft labelling can either be obtained by considering all the clusters with non negative weights I(x) =
{l, ul(x) ≥ 0} 6= ∅ with relative weights wl(x) = ul(x)/(

∑
l∈I(x) u

l(x)) and the convention that
wl(x) = 1/L, in the case (that has never been observed in our experiments) that ul(x) = 0 for all
l = 1 · · ·L.

The parameter ε in (13) is set to a small numerical value. Indeed, even if uk+1/2 ∈ C by construction,
a small ε is required to ensure that, after the rescaling, uk+1 = uk+1/2/||uk+1/2||2 ∈ C. One can
consider different values εl for each class. In the case where L = 2, d is constant and H(u) =
||u − median(u)||1, ul is expected to be bivalued [? ] and the value of ε has a clear meaning. In
that framework, ε = 1/

√
|N |(|N | − 1) corresponds to no prior on the size of the clusters, whereas

ε = 1/
√
|N |n encourage the clusters to be of homogeneous size.

4 Experimental Results

This section is focused on describing in detail the experiments that we conducted to evaluate our
proposed approach.

4.1 Implementation Details

We here describe the specifics of our experimental setting including the data description and the
evaluation methodology.

Data Description. We validate our approach using three datasets - one small-scale and two large-
scale datasets. 1) UCI ML hand-written digits dataset, we use the test set composed of 1797 images
of size 8 × 8, and 10 classes. We also use 2) ChestX-ray14 dataset [? ], which is composed of
112,120 frontal chest view X-ray with size of 1024×1024. The dataset is composed of 14 classes.
3) The CIFAR-10 datase contains 60,000 color images of size 32×32 and 10 different classes. All
classification results were performed using these datasets.

Evaluation Protocol. We design the following evaluation scheme to validate our theory. Firstly, we
evaluate our proposed EMS-1L approach against two classic methods: Label Propagation (LP) [? ]
and Local to global consistency (LCG) [? ]. For output quality evaluation, we computed the error
rate and F1-score. Secondly and using ChestX-ray14 dataset [? ], we compared our approach against
two deep learning approaches - WANG17[? ] and YAO18 [? ]. The quality of the classification was
performed by a ROC analysis using the area under the curve (AUC). Finally, we demonstrate that our
method can be extended to deep SSL, which evaluation is performed on the CIFAR-10 dataset and
compared against state-of-the-art deep SSL[? ? ? ? ] and a fully supervised technique [? ]. For this
part, we evaluate the quality of the classifiers by reporting the error rate for a range of number of
labelled samples.

Each experiment has been repeated 10 time and the average and standard deviation are reported. For
the compared methods, the parameters were set using the default values provided in the demo code or
referenced in the papers themselves.

4.2 How good is EMS-1L?

We start by giving some insight into the performance of our approach with a comparison against two
classic methods LP [? ] and LCG [? ], which results, using the digits dataset, are reported in Table
1. One can see that for all metrics and percentages of labeled samples, our approach outperforms
the compared methods by a significant margin. In particular, one can observe that with even 1% of
labelled data, the error rate of our EMS-1L approach is almost half the second best method which is
extrapolated to the remaining percentages of labeled samples and evaluation metrics. This shows that
our EMS-1L approach is outperforms the compared methods even under extremely minimal labeled
samples.

To further evaluate the results of our approach, we move to a large scale dataset ChestX-ray14. Our
motivation to use this dataset is coming from a central problem in medical imaging which is the lack
of reliable quality annotated data. In particular, the interpretation of X-ray data heavily relies on the
radiologist’s expertise and there is still a substantial clinical error on the outcome [? ]. We ran our
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PERCENTAGE OF LABELED SAMPLES
METRIC METHOD 1% 2% 5% 10% 20%

LP [? ] 40.53±5.38 28.91±4.01 22.70±3.23 10.04±1.49 5.83±1.38
LCG [? ] 29.57±8.22 11.00±3.09 9.63±2.41 5.16±1.45 3.44±1.28ERROR

RATE EMS-1L 14.21±5.63 6.51±1.86 3.46±0.91 1.80±0.54 1.09±0.24
LP [? ] 59.48±6.99 67.66±5.15 76.08±3.67 89.86±1.53 94.12±1.46

LCG [? ] 63.80±10.74 88.23±4.16 89.95±2.89 94.80±1.49 95.55±1.28F1-
MICRO EMS-1L 84.50±7.48 93.40±1.98 96.52±0.93 98.20±0.11 98.91±0.24

LP [? ] 56.48±5.38 71.09±4.01 77.30±3.22 89.96±1.49 94.17±1.38
LCG [? ] 70.43±8.22 89.00±3.09 90.37±2.41 94.84±1.45 95.56±1.28F1-

MACRO EMS-1L 85.79±5.63 93.49±1.86 96.54±0.91 98.54±0.91 98.91±0.24

Table 1: Compression with state of the art classic transductive methods on the Digits dataset

APPROACH AVERAGE AUC
WANG17[? ] 0.7451
YAO18 [? ] 0.7614

MT [? ] 0.5
EMS-1L (20%) 0.7888

Table 2: Comparison of the classifica-
tion accuracy of EMS-1L against three
state-of-the-art deep learning method
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Edema Fibrosis

10 13 4 3
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Figure 2: Examples of correct classifications pro-
duced by our framework
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Figure 3: Plot highlighting the sensitivity of the
AUC for each class when changing the data parti-
tion of the data set (using 15% for training)
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Figure 4: Comparison of the classification ac-
curacy of EMS-1L,using different amounts of
labelled data, against state-of-the-art methods.

approach and compared against two state-of-the-art works on X-ray classification WANG17[? ] and
YAO18 [? ], which are supervised methods and, therefore, assume a large corpus of annotated data.

In Figure 2, we show few sample output that were correctly classified by our approach. Table 2
shows the averaged AUC for all classes of our approach compared against WANG17 [? ], YAO18 [?
], and MT [? ] using the official data partition. From a inspection in the table, one can see that
our EMS-1L approach outperformed the compared methods with only 20% of the data whilst the
compared approaches rely on 70% of annotated data.

Moreover, we noticed that the classification output is very stable with respect to changes in the
partition of the dataset, which is due to the semi-supervised nature of our EMS-1L approach. This is
well reflected in the Figure 3 where we show the AUC results of both EMS-1L and WANG17 [? ]
using three different random data partitions, including the partition suggested by WANG17 [? ]. The
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METHOD
LABELLED SAMPLES

1000 2000 4000
SNGT [? ] (Fully Supervised) 46.43±1.21 33.94±0.73 20.66±0.57

SSL-GAN [? ] 21.83±2.01 19.61±2.09 18.63±2.32
TDCNN [? ]† 32.67±1.93 22.99±0.79 16.17±0.37

MT [? ] 21.55±1.48 15.73±0.31 12.31±0.28
DSSL [? ] (diffusion+W)† 22.02±0.88 15.66±0.35 12.69±0.29

Deep EMS-1L 20.45±1.08 13.91±0.23 11.08±0.24

Table 3: Comparison with state of the art methods on semi-supervised learning and as a base line
a fully supervised approach on CIFAR-10 dataset. † indicates scores reported in the corresponding
work.

plot shows that WANG17 is sensitive to changes in partition which can be explained by the fact that
supervised methods heavily rely on the training set being representative. On the other hand, EMS-1L
had minimal change in the performance over the three different partitions as the underlying graphical
representation is invariant to the partition.

To further analyse the dependency on the portioning and show the advantage of EMS-1L, we compare
the AUC results of EMS-1L against WANG17 and MT17 using a random data partitions. The results
are reported in Figure 4 - it shows that EML-1L produces a more accurate classification using only
2% of the data labels than WANG17 or MT17 methods do using 70% of the data labels. The plot
also shows that as we feed EML-1L more data labels, the classification accuracy increases and
significantly outperforms compared approached whilst still using a far smaller amount of data labels.

4.3 Deep EMS-1L: An Alternative View

One interesting observation about our proposed framework is the fact that it can be adapted to DL for
semi-supervised learning SSL. To show this ability, we followed the philosophy of [? ] in which they
considered the seminal work LCG [? ]. We used their pseudo-labelling approach and connected our
EMS-1L (i.e. we replace LCG with our approach). Then we performed the image classification task
on the CIFAR-10 dataset for different label sample counts.

The results of this experiment can be seen in Table3 in which we show as a baseline a fully supervised
approach [? ] followed by four state of the art DL semi-supervised approaches [? ? ? ? ]. One can
observe that lowest error rate across different counts of labelled samples is achieved by our extension
Deep EMS-1L. After a detailed inspection of the table, we observe that even though the outputs
generated with SSL-GAN [? ] started close to our score, they were not significantly improved with
the increased number of samples.

5 Conclusion

In this work, we addressed the problem of classifying under minimal supervision (i.e. SSL), in
particular, in the transductive setting. We proposed a new semi-supervised framework which is
framed under a novel optimisation model for the task of image classification. From extensive
experimental results, we found the following. Firstly, we showed that our approach significantly
outperformed the classic SSL methods. Secondly, we evaluated our EMS-1L method for the task of
X-ray classification and demonstrated that our approach competes against the state-of-the-art results
in this context whilst requiring an extremely minimal amount of labelled data. Finally, to demonstrate
the capabilities of our approach, we showed that it can be extended as a Deep SSL framework. In this
context we observed the lowest error rate results on the CIFAR-10 with respect to the state-of-the-art
SSL methods. Future work will include investigation of our approach in terms of data aggregation
and how to handle unseen classes.
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from the CMIH, University of Cambridge is greatly acknowledged.
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This supplementary material extends further details and proofs that support the content of the main
paper. In particular, the proof of Proposition 2 and Proposition 3 from the main paper.

A Proofs

A.1 Proof of Proposition 2

1 For 〈uk, d〉 = 0, we have

〈uk+1/2, d〉 = 〈uk, d〉+ δt
(
R(uk)〈(qk − q̃k), d〉 − 〈pk+1/2, d〉

)
= δtR(uk)

(
〈qk, d〉 −

〈d, qk〉
〈d, d〉

〈d, d〉
)

= 0,

where we used Proposition 1 in the right part of the previous relation to get 〈pk+1/2, d〉 = 0.
We conclude with the fact that uk+1 is a rescaling of uk+1/2.

2 Since H is a norm, it is absolutely one homogeneous and qk ∈ ∂H(uk) ⇒ H(uk) =
〈qk, uk〉. Next, we observe that J(uk) = supp∈∂J〈p, uk〉 ≥ 〈pk+1/2, uk〉 and we get

〈uk+1/2, uk〉 = ||uk||22 + δt
(
R(uk)〈qk − q̃k, uk〉 − 〈pk+1/2, uk〉

)
≥ ||uk||22 + δt (J(uk)−R(uk)〈q̃k, uk〉 − J(uk))

≥ ||uk||22 − δtR(uk)
〈d, qk〉
〈d, d〉

〈d, uk〉

≥ ||uk||22.

We then conclude with the fact that 〈uk+1/2, uk〉 ≤ ||uk+1/2||2.||uk||2.

3 Since 〈uk, d〉 = 0 for all k and q̃k = 〈d,qk〉
〈d,d〉 d, then 〈q̃, uk+1/2〉 = 〈q̃, uk〉 = 0. Next, we

recall that H(uk+1/2) = supq∈∂H.〈q, uk+1/2〉 ≥ 〈qk, uk+1/2〉. Hence we have

Fk(uk+1/2) ≤ F (uk)
1

2δt
||uk+1/2 − uk||22 −R(uk)〈qk, uk+1/2〉+ J(uk+1/2) ≤ 0

1

2δt
||uk+1/2 − uk||22 + J(uk+1/2) ≤ R(uk)H(uk+1/2)

R(uk+1/2) ≤ R(uk)
R(uk+1) ≤ R(uk)

(14)

where the final rescaling with ||uk+1/2||2 is possible since J and H are absolutely one
homogeneous functions.

4 In the finite dimension setting, there exists KJ ,KH < ∞ such that ||p|| ≤ KJ and
||q|| ≤ KH for an absolutely one homogeneous functionals J defined in (1) and a norm H .
Then one has

uk+1/2 = uk + δt

(
J(uk)

H(uk)
(qk − q̃k)− pk+1/2

)
||uk+1/2||22 = 〈uk, uk+1〉+ δt

(
J(uk)

H(uk)
〈qk, uk+1/2〉 − 〈pk+1/2〉

)
||uk+1/2||22 ≤ ||uk+1/2||2

(
||uk||2 + δt

(
J(uk)

H(uk)
KH +KJ

))
||uk+1/2||2 ≤ 1 + δt

(
J(u0)

H(u0)
KH +KJ

)
.

Hence from the equivalence of norms in finite dimensions, there exists 0 < κ <∞) such
that H(uk+1/2 ≤ κ.
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A.2 Proof of Proposition 3

Proof. 1 For 〈ulk, d〉 = 0, and following point 1 of Proposition 2, we have

〈ulk+1/2, d〉 = 〈u
l
k, d〉+ δt

(
R(ulk)〈(qlk − q̃lk), d〉 − 〈plk+1/2, d〉 − 〈r

l
k+1/2, d〉

)
= −〈rlk+1/2, d〉
= −〈α, d〉,

where we used the characteriation of r in (12). Next, as uk+1/2 ∈ C, we have∑
l u
l
k+1/2(x) = 0, ∀x ∈ N and obtain:

L∑
l=1

〈ulk+1/2, d〉 = −
L∑
l=1

〈α, d〉

L∑
l=1

∑
x∈N

ulk+1/2(x)d(x) = −L〈α, d〉

∑
x∈N

d(x)

(
L∑
l=1

ulk+1/2(x)

)
= −L〈α, d〉

0 = 〈α, d〉.

2 We have

〈ulk+1/2, u
l
k〉 = ||ulk||22 + δt

(
R(ulk)〈qlk − q̃lk, ulk〉 − 〈plk+1/2, u

l
k〉 − 〈rlk+1/2, u

l
k〉
)
.

We follow the point 2 of Proposition 2 to first get: 〈ulk+1/2, u
l
k〉 ≥ ||ulk||2 − 〈rlk+1/2, u

l
k〉,

for i = 1 · · ·n. Then, as
∑
l〈rlk+1/2, u

l
k〉 = 〈rk+1/2,uk〉 ≤ χC(uk) = 0, we deduce that

||uk+1/2||2.||uk||2 ≥
∑
l〈ulk+1/2, u

l
k〉 ≥

∑
l〈ulk, ulk〉 = ||uk||22. Next we have

||ulk+1/2||
2
2 = 〈ulk+1/2, u

l
k〉+δt

(
R(ulk)〈qlk − q̃lk, ulk+1/2〉 − J(u

l
k+1/2)− 〈r

l
k+1/2, u

l
k+1/2〉

)
.

Summing on l, we get

||uk+1/2||22 ≤ ||uk+1/2||2

(
||uk||2 + δt

(
L∑
l=1

R(ulk)||qlk||2 + ||plk+1/2||2

))

||uk+1/2||2 ≤ ||uk||2 + δt

(
L∑
l=1

J(ulk)

H(ulk)
KH +KJ

)
≤ 1 + δtKJ

(
L∑
l=1

||ulk||2
H(ulk)

KH + 1

)

Notice that we defined R(ulk) = 0 for ulk = 0. As H is a norm, the equivalence of norm in
finite dimensions implies that ||ulk||2H(ulk) is bounded by some constant c <∞. We then
have ||uk+1/2||2 ≤ κ = 1 + δtKJ (1 + LKHc).

3 Since uk+1/2 is the global minimizer of (10), then:
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FLk (uk+1/2) ≤ FLk (uk)

1

2δt
||uk+1/2 − uk||22 +

L∑
l=1

J(ulk+1/2) ≤
L∑
l=1

R(ulk)〈qlk − q̃lk, ulk+1/2〉

1

2δt
||uk+1/2 − uk||22 +

L∑
l=1

J(ulk+1/2) ≤
L∑
l=1

R(ulk)H(ulk+1/2)

L∑
l=1

(
J(ulk+1/2)−

J(ulk)

H(ulk)
H(ulk+1/2)

)
≤ − 1

2δt
||uk+1/2 − uk||22

||uk+1/2||2
L∑
l=1

H(ulk+1)
(
R(ulk+1)−R(ulk)

)
≤ − 1

2δt
||uk+1 − uk||22

L∑
l=1

H(ulk+1)
(
R(ulk+1)−R(ulk)

)
≤ − 1

2δtκ
||uk+1 − uk||22.
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