
HAL Id: hal-02169702
https://hal.science/hal-02169702

Submitted on 1 Jul 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Self-dual pattern spectra for characterising the
dermal-epidermal junction in 3D reflectance confocal

microscopy imaging
Julie Robic, Benjamin Perret, Alex Nkengne, Michel Couprie, Hugues Talbot

To cite this version:
Julie Robic, Benjamin Perret, Alex Nkengne, Michel Couprie, Hugues Talbot. Self-dual pattern spectra
for characterising the dermal-epidermal junction in 3D reflectance confocal microscopy imaging. ISMM
2019 - International Symposium on Mathematical Morphology and Its Applications to Signal and
Image Processing, Jul 2019, Saarbrücken, Germany. pp.508-519, �10.1007/978-3-030-20867-7_39�.
�hal-02169702�

https://hal.science/hal-02169702
https://hal.archives-ouvertes.fr


Self-dual pattern spectra for characterising the
dermal-epidermal junction in 3D reflectance

confocal microscopy imaging.

Julie Robic1,2, Benjamin Perret2, Alex Nkengne1, Michel Couprie2, and
Hugues Talbot2,3

1 Laboratoires Clarins, Pontoise, France.
2 Université Paris-Est, Laboratoire d’Informatique Gaspard-Monge UMR 8049,

UPEMLV, ESIEE Paris, ENPC, CNRS, France.
3 CentraleSupélec, Centre de Vision Numérique, INRIA, France.

Abstract. The Dermal-Epidermal Junction (DEJ) is a 2D surface sep-
arating the epidermis from the dermis which undergoes multiple changes
under pathological or ageing conditions. Recent advances in reflectance
confocal microscopy now enables the extraction of the DEJ from in-vivo
imaging. This articles proposes a method to automatically analyse DEJ
surfaces using self-dual morphological filters. We use self-dual pattern
spectra with non-increasing attributes and we propose a novel measure
in order to characterize the evolution of the surface under the filtering
process. The proposed method is assessed on a specifically constituted
dataset and we show that the proposed surface feature significantly cor-
relates with both chronological ageing and photo-ageing.

Keywords: Pattern spectrum · Tree-of-Shapes · 2D surface · skin.

1 Introduction

We address the problem of automatically characterizing a specific structure of
the skin, the Dermal-Epidermal Junction (DEJ), in in-vivo Reflectance Confocal
Microscopy (RCM) 3D images. The DEJ is a complex, surface-like, 2D bound-
ary, separating the epidermis from the dermis, which undergoes multiple changes
under pathological or ageing conditions (see Figure 1). In particular, alterations
of the DEJ modify the regularity and the depth of its peaks and valleys, called
dermal papillae [6,12]. Automated analysis of RCM images of the skin is a chal-
lenging task due to the very low signal to noise ratio and the important blur
present in the acquisitions.

In previous work [15,13], we have presented a method to obtain reliable seg-
mentation of the DEJ in RCM images using 3D conditional random fields embed-
ding biological prior (see Figure 1). Moreover, the proposed method guarantees
that the segmented region of the 3D RCM image is indeed a 2D topological
surface defined on a regular grid, i.e., an elevation/topographic map.
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Young subject Older subject

(a) Young subject (b) Aged subject

Fig. 1: DEJ ageing. First row: en-face sections of 2 RCM stacks coming respec-
tively from a young (a) and an older (b) subject. The DEJ corresponds to
the brightest rings. Second row: automatically segmented DEJ surfaces from
a young (a) and an older (b) subject using the method desribed in [15].

Besides this, granulometries and pattern spectra [10] are standard morpho-
logical tools for characterizing the content of an image. Their principle is to iter-
atively apply a sequence of increasing filters and to measure the evolution of the
filtered image. Their extension to attribute connected filters [17], is widely used
to obtain efficient and powerful multi-scale features using tree based represen-
tations of images that enable a region-based analysis, rather than a pixel-based
one. In particular, attribute profiles [4] are now a standard approach to com-
pute pixel-wise features for the semantic segmentation of high-resolution remote
sensing images.

Moreover, their self-dual extension [3,9], using the Tree-of-Shapes image rep-
resentation [11] (also called tree of level lines or inclusion tree), have been shown
to increase the performances of classifiers. In such a representation, each level
line (or iso-contour) of the surface is the boundary of a region of interest. Then,
the inclusion relation between the various level lines of the surface forms a tree
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structure: this representation is called the Tree-of-Shapes. This representation
benefits from several useful properties: it is invariant to scaling, rotations, trans-
lations, and monotone contrast modifications. This last invariance also implies
that the Tree-of-Shapes is a self-dual representation, i.e., that the inversion of
the topographic surface (where peaks become valleys and conversely) does not
modify the representation.

The objective of this article is to provide a method for automatically char-
acterizing a DEJ surface with the objective to quantify the ageing process. As
our DEJ surfaces are indeed elevation maps, it is thus possible to analyse them
using morphological representations such as the Tree-of-Shapes. An example of
a DEJ topographic surface, its level lines, and the corresponding Tree-of-Shapes
are presented in Figure 2. From the DEJ surface, we next compute self-dual
pattern spectra, with the following desirable properties:

1. the ability to select the attribute guiding the filtering according to the der-
matologists’ analysis;

2. providing an analytic formulation of the algorithm generalizing the subtrac-
tive filtering rule [17] to non increasing attribute filters on the Tree-of-Shapes
proposed in [2];

3. the definition a novel measure in order to characterize the filtered surfaces.

The proposed method is assessed on a specifically constituted dataset involving
15 persons divided in two age groups. Our results show that the proposed char-
acterization of the DEJ surface is significantly correlated with both chronological
ageing and photo-ageing.

This article is organized as follows. Section 2 recalls the definition of the Tree-
of-Shapes. Section 3 defines subtractive self-dual attribute filters and related
pattern spectra. The parameters of the method and their biological significance
are discussed in Section 4. Finally, Section 5 presents the assessment of the
proposed method and discusses the results.

2 Tree of shapes

In this section, we review the definition of the Tree-of-Shapes. We mainly follow
the formalism proposed in [1].

A DEJ surface is modelled by a topographic map, i.e., a function f from a
non empty finite rectangular subset E of Z2 to R. An element of E is called a
point. The value of f at a point x of E is called the elevation or level of f at x.

Let X ⊆ E, we denote by CCx(X) the connected component of X that con-
tains the pixel x using the classical 4-adjacency on the discrete grid. We denote
by CC(X) the set of connected components of X: CC(X) = {CCx(X), x ∈ X}.
Moreover, we assume that E is connected: i.e., CC(E) = {E}.

Given a topographic map f , the upper-level set (respectively lower-level set)
of f at level k in R, denoted by [f > k] (respectively [f < k]), is the set of pixels
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(a) Segmented DEJ as a 2D surface

(b) Level lines of the 2D surface in (a) (c) Tree-of-Shapes shown in (b)

Fig. 2: Example of DEJ segmentation as a topographic surface. In (a), the DEJ
segmentation is presented in 3D. Each level line is the contour of a level set of
the surface (b). In (c), the Tree-of-Shapes induced by the inclusion relationship
between the level lines.

where the elevation of f is larger than k (respectively lower than k):

[f > k] = {x ∈ E | f(x) > k} , and (1)
[f < k] = {x ∈ E | f(x) < k} . (2)

While the set of connected components of the upper-level (respectively lower-
level) sets of f enables to define the classical Max-Tree [16] (respectively Min-
Tree) which is oriented toward the maxima (respectively the minima) of f , con-
sidering the union of both enables to define a new structure, the Tree-of-Shapes,
that represents equally the minima and the maxima of f .

Let X be a connected subset of E, the saturation of X denoted sat(X), is
the set defined as the union of X and its holes. Formally, one can define sat(X)
equals to CCp∞(Xc)c, where p∞ is an arbitrary point designing the exterior of
E (usually taken on the border of E) and where, given a subset Y of E, Y c
is the complement of Y in E, i.e., Y c = {x ∈ E | x /∈ Y }. The saturation of a
connected component of a lower/upper level set of a topographic map of f is
called a shape of f and the set of shapes of f is denoted by S(f). The level lines of
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the topographic map f are the contours of the shapes S(f). Note that, to ensure
that each level line of f is an isolated closed curve, we used the intermediate
continuous multivalued function representation proposed in [5].

Let f be a topographic map. The inclusion relation on the set of shapes
S(f) induces a tree structure called the Tree-of-Shapes (see Figure 3). Given
two distinct shapes s1 and s2 in S(f), we say that s2 is a child of s1, and that s1
is the parent of s2, if s2 is included in s1 and if it is maximal for this condition:
i.e., for any shape s3 in S(f) such that s2 ⊆ s3 ⊂ s1 then s2 = s3. For any
shape s in S(f) different from E, the unique parent of s is denoted Par(s). By
abuse of notation, we set Par(E) equals to E. Given a shape s in S(f), the set
of children of s is denoted Ch(s).

A

E F

B DC

A∪B∪C∪D∪E∪F

A∪B∪C∪D∪E

A B∪C∪D

C

Fig. 3: Tree-of-Shapes of a topographic map. The root of the tree is at the top
represented by a red circle.

Let f be a topographic map. Given a shape s in S(f), the proper points of s,
denoted by Pro(s) is the non empty subset of points of s that do not belong to
any child of s: i.e., Pro(s) = s\

⋃
Ch(s). Given a shape s in S(f), the elevation

of f is constant on Pro(s): it is called the level of s and it is denoted by Lvl(s).

3 Attribute profiles and pattern spectra

An attribute profile of a topographic map is obtained by the application of
a sequence of increasing morphological filters [10,17]: the sequence of results
then provides a multi-scale characterization of the map highlighting the features
selected by the filters. While attribute profiles can be used directly as features
for point-wise segmentation [4], global features can be defined by considering the
evolution of some measure, such as the volume or the area, on the filtered maps:
this is then called a pattern spectrum of the map [10,17]. In the context of this
article, we define attribute profiles and pattern spectra in the particular case of
self-dual attribute connected filters; more general definitions can be found in the
previously cited articles.

Let f be a topographic map. An attribute on S(f) is a function A from S(f)
to R+. In general A is not an increasing function and some care must be taken
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in order to define the result of a filtering of f by A: this issue has been studied
in the context of the Max-Tree in [16] and, for the construction of attribute
profiles, the subtractive rule is usually chosen [17]. The authors of [2] proposed
an algorithm to extend the subtractive filtering rule to the case of of the Tree of
Shapes, for which we give an analytic formulation in the followings paragraph.

In the original definition of the subtractive rule in [17], the level of a point in
the filtered map is obtained by counting the number of non deleted components
under it in the original map. To generalize this idea to a Tree-of-Shapes based
filter, one must take into account that node levels are not necessarily increasing
in such trees: counting nodes is thus not a useful method to retrieve meaningful
levels. Instead, for any shape s, we consider the contrast of s, denoted by cont(s),
and defined as the difference between the level of the shape s and the level of its
parent, which can be positive or negative: i.e., cont(s) = Lvl(s) − Lvl(Par(s)).
Then, the new level of a filtered shape s is equal to its original level minus
the contrast of every deleted ancestors of this shape. Formally, the subtractive
self-dual attribute filter σA(f, k) of f by A at threshold k ∈ R+ is defined by:

∀x ∈ E, σA(f, k)(x) = Lvl(min {s ∈ S(s) | x ∈ s, and A(s) ≥ k})

−
∑
q∈S(s)

s⊂q,A(q)<k

cont(q), (3)

i.e., the level of the smallest non deleted shape containing x minus the contrast
of every deleted shapes containing x. Applications of the subtractive self-dual
attribute filter are illustrated in Figure 4.

The self-dual attribute profiles of the topographic map f for the subtractive
self-dual attribute filter σA by the attribute A is then defined as the partial
function application σA(f, ·): i.e., the function that associates the result of the
subtractive self-dual attribute filter σA(f, k) to a threshold value k ∈ R+.

Finally, given a measure ξ that associates a single real value to any topo-
graphic map and a self-dual attribute profiles σA(f, ·), the pattern spectrum
ρξA(f) of the topographic map f for A is defined as the function:

ρξA(f) =
d(ξ ◦ σA(f, ·))

dk
, (4)

i.e., the derivative of the function that associates the measure of σA(f, ·) for ξ
to a threshold value k ∈ R.

4 Choice of the attribute and of the measure

Two parameters need to be determined to define a pattern spectrum of a DEJ:
the attribute guiding the filtering process and the measure characterizing the
result of the filters.

Concerning the choice of the filtering criterion, visual analysis made by der-
matologist [7,8] have shown that the regularity of the dermal papillae, i.e., the
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Fig. 4: Self-dual attribute filter with the subtractive rule. Each row shows the
filtering of a map f composed of 4 regions (first column). The second column
shows the Tree-of-Shapes of f with the node levels in parenthesis. The third
column shows the filtered tree, and finally, the last column shows the filtered
map. In each case, the shape corresponding to the region B is removed by the
filter. In the first case, the Tree-of-Shapes is equal to the Max-Tree of f and
the result is identical to the one obtained with the classical definition of the
subtractive rule [17].

peaks and the valleys of the DEJ, decreases with age. Therefore, we propose to
use the compactness attribute during the filtering process. Formally, the com-
pactness comp(s) of a shape s ⊆ E is defined as:

comp(s) =
4π area(s)

perimeter(s)2
, (5)

where area(s) is the number of points in s and perimeter(s) is the length of the
perimeter of s. The compactness is a scale and rotation invariant measure that
is maximal for a circle with a value of 1 and that tends toward 0 as the shape
regularity decreases. An illustration of the DEJ surface evolution undergoing a
filtering process with a compactness criterion is presented in Figure 5.

Then, we need to determine the measure to be extracted at each filtering step.
As the DEJ is a 2D surface, separating the epidermis from the dermis, we aim to
compute an attribute in connection with the DEJ anatomy. Among all possible
criteria, the surface area is a good candidate to obtain global information on the
complexity of the surface as it is directly linked to the number, depth and shape
of the peaks and the valleys in the DEJ.

We define the surface area of a shape s, denoted by sarea(s), recursively as:

sarea(s) = area(s) + perimeter(s)× cont(s) +
∑

c∈Ch(s)

(sarea(c)− area(c)) , (6)

where the second part of the equation adds up the surface area of the children
Ch(s) of sminus their area, which is already counted in the area of s. An example
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(a) σA(f, 0.20) (b) σA(f, 0.21)

(c) σA(f, 0.22)

Fig. 5: Filtering of a DEJ surface f with a compactness criterion. In each case,
the threshold value is indicated in the figure caption.

of the surface area attribute is presented in Figure 6. The surface area attribute
differs from the area attribute in the way that it takes into account the level of a
node which, in our case, encodes the location in depth of the corresponding region
in the 3D segmentation. The surface area attribute can be computed efficiently in
linear time using Algorithm 1. The surface area attribute is calculated from the
leaves up to the root of the tree. First, the product of the perimeter and contrast
is calculated from the leaves to the root of the tree. Second, the area of each node
(with its holes filled) is added to their corresponding surface area attribute. One
can note that all the parameters of the algorithm (e.g., the perimeter length of
the shapes) can also be computed efficiently [18].

Algorithm 1: Surface area attribute.
Input : A Tree-of-Shapes tree, and the three functions area, perimeter and

cont on the nodes of the tree.
Output: The surface area attribute.

1 for all nodes i of tree do sarea(i) := 0 ;
2 for all nodes i of the tree from the leaves to the root (excluded) do
3 sarea(i)+ = cont(i)× perimeter(i) ;
4 sarea(Par(i))+ = sarea(i) ;
5 end
6 for all nodes i of tree do sarea(i)+ = area(i) ;
7 return S;
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Area

Contrast

(a) (b)

(c)

Fig. 6: Computation of the surface area. The surface area is the sum of the area
(red arrows) and the contrast × perimeter (blue arrows). In (a) the attribute is
calculated on a leaf of the tree. In (b) it is calculated on its parent. A 3D repre-
sentation of the surface area attribute is shown in (c). The red areas correspond
to the area of the corresponding nodes. The contrast (blue lines) × perimeter
(black lines) is calculated to obtain the grey areas which are added to the red
areas to finally obtain the surface area attribute.

One can note that the surface area of the root (i.e., the surface area of the
whole topographic map) is equal to the discrete variation of the map plus the area
of its domain. Moreover, as the pattern spectrum ρsareacomp measures the evolution of
the surface area, the area terms cancel each other out, and the pattern spectrum
then measures the evolution of the total variation of the surface.

The whole pattern spectrum of a topographic map f can be computed exactly
and efficiently: for each shape by increasing value of compactness λ, subtract the
product of the perimeter by the contrast of the shape to the surface area of the
root node in order to obtain ξ ◦ σA(f, λ).

5 Experiments

In the following experiments, we assess the variability of the proposed DEJ char-
acterisation between two groups of patients with different ages. Fifteen healthy
volunteers with fair skin were enrolled in this study. Volunteers were assigned
to two groups: a 7-person group aged from 18 to 25 and another 8-person group
aged from 55 to 65. Our investigations were carried out on the cheek to assess
chronological ageing, the dorsal forearm and the volar arm to assess photo-
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ageing. No cosmetic products or skin treatment were allowed on the day of the
acquisitions. Appropriate consent was obtained from all subjects before imaging.
Distributions are compared using a two-sample Kolmogorov-Smirnov test and
and the statistics significance is defined as follow:

1. *: 0.01 < P-values ≤ 0.05;
2. **: 0.001 < P-values ≤ 0.01;
3. ***: P-values ≤ 0.001.
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(c) Dorsal forearm

Fig. 7: Mean and standard deviation of the pattern spectra ρsareacomp of the two age
groups on the three acquisition locations.

In order to reduce the inter-subject variability, we study the pattern spectra
expressed as a percentage of decrease of the surface area attribute. The average
pattern spectra ρsareacomp computed for each group at each location are presented in
Figure 7. The lines represent the mean values and the shadowed areas the stan-
dard deviations for each population (20-30 years old and 55-65 years old). The



Self-dual pattern spectra 11

pattern spectra for the epidermal surface on the cheek are statistically different.
We do not find statistical differences on the other areas.

Finally, to obtain an aggregated descriptor of the DEJ shape, we study the
area under the curve (AUC), of the pattern spectra. We present box-and-whisker
plots of the AUC measure of the pattern spectra for the three acquisition loca-
tions (cheek, volar arm and dorsal forearm) in Figure 8. Parametric data are
analyzed using Student’s unpaired t-test and non-parametric data are subjected
to a Mann–Whitney test. One can observe that the AUC of the pattern spectra
is higher in the younger group than in the older group on the cheek. When com-
paring the volar arm (photo-protected) and the dorsal forearm (photo-exposed),
the photo-ageing effect is quantified among both populations with a significant
decrease of the AUC. Therefore, the AUC of the pattern spectra of the DEJ
with a compactness attribute and a surface area measure is able to assess the
chronological ageing on the cheek and the photo-ageing for our two populations.
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Fig. 8: Area under the curve of the pattern spectra. For each location and age
group, we see: 1) the median AUC (central bar), 2) the first and third quartile
(extremities of the box), and 3) the lowest datum still within 1.5 inter quartile
range (difference between the third and first quartile) of the lower quartile, and
the highest datum still within 1.5 inter quartile range of the upper quartile range
(bottom and top extremities).

These results support our previous findings using local topological descriptors
of the Tree-of-Shape regarding the chronological ageing on the DEJ on the cheek
and photo-ageing among the young population [13]. However, the use of the
pattern spectra brings more significant characteristics regarding the photo-aging
among the older population compared to the local descriptors.

The proposed method also enriches the skin ageing descriptor focused on the
automatic characterization of the epidermal cells in RCM images [14]. In future
works, we plan to develop a novel method to automatically characterize the third
significant ageing feature observable in skin RCM images: the dermal fibers.
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