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Abstract7

We study the complexity of the classic capacitated k-median and k-means problems parameterized by8

the number of centers, k. These problems are notoriously difficult since the best known approximation9

bound for high dimensional Euclidean space and general metric space is Θ(log k) and it remains a10

major open problem whether a constant factor exists.11

We show that there exists a (3 + ε)-approximation algorithm for the capacitated k-median and12

a (9 + ε)-approximation algorithm for the capacitated k-means problem in general metric spaces13

whose running times are f(ε, k)nO(1). For Euclidean inputs of arbitrary dimension, we give a14

(1 + ε)-approximation algorithm for both problems with a similar running time. This is a significant15

improvement over the (7 + ε)-approximation of Adamczyk et al. for k-median in general metric16

spaces and the (69 + ε)-approximation of Xu et al. for Euclidean k-means.17
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1 Introduction26

Clustering under capacity constraints is a fundamental problem whose complexity is still27

poorly understood. The capacitated k-median and k-means problems have attracted a lot28

of attention over the recent years (e.g.: [5, 23, 24, 25, 14, 4, 9, 7]), but the best known29

approximation algorithm for capacitated k-median remains a somewhat folklore O(log k)-30

approximation using the classic technique of embeddings the metric space into trees that31

follows from the work of Charikar et al [6] on the uncapacitated version, see also [1] for a32

complete exposition.33

Arguably, the hardness of the problem comes from having both a hard constraint on the34

number of clusters, k, and on the number of clients that can be assigned to each cluster.35

Indeed, constant factor approximation algorithms are known if the capacities [23, 24] or36

the number of clusters can be violated by a (1 + ε) factor [5, 14], for constant ε. Moreover,37

the capacitated facility location problem admits constant factor approximation algorithms38

with no capacity violation. On the other hand and perhaps surprisingly, the best known39

lower bound for capacitated k-median is not higher than the 1 + 2/e lower bound for the40

uncapacitated version of the problem.41

Thus, to improve the understanding of the problem a natural direction consists in obtaining42

better approximation algorithms in some specific metric spaces, or through the fixed-parameter43

complexity of the problem. For example, a quasi-polynomial time approximation scheme44
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(QPTAS) for capacitated k-median in Euclidean space of fixed dimension with (1+ε) capacity45

violation was known since the late 90’s [3]. This has been recently improved to a PTAS46

for R2 and a QPTAS for doubling metrics without capacity violation [10]. It remains an47

interesting open question to obtain constant factor approximation for other metrics such as48

planar graphs or Euclidean space of arbitrary dimension.49

For many optimization problems are at least W[1]-hard and so obtaining exact fixed-50

parameter tractable (FPT) algorithms is unlikely. However, FPT algorithms have recently51

shown that they can help break long-standing barriers in the world of approximation52

algorithms. FPT approximation algorithms achieving better approximation guarantees than53

the best known polynomial-time approximation algorithms for some classic W[1]- and W[2]-54

hard problems have been designed. For example, for k-cut [16], for k-vertex separator [22] or55

k-treewidth-deletion [17].56

For the fixed-parameter tractability of the k-median and k-means problems, a natural57

parameter is the number of clusters k. The FPT complexity of the classic uncapacitated58

k-median problem, parameterized by k, has received a lot of attention over the last 15 years.59

From a lower bound perspective, the problem is known to be W[2]-hard in general metric60

spaces and assuming the exponential time hypothesis (ETH), even for points in R4, there is61

no exact algorithm running in time no(k) [11]. For R2 there exists an exact nO(
√
k) which is62

the best one can hope for assuming ETH [11], see also [27].63

From an upper bound perspective, coreset constructions and PTAS with running time64

f(k, ε)nO(1) have been known since the early 00’s [13, 20, 18, 19, 15]. In the language of65

fixed-parameter tractability, a coreset is essentially an “approximate kernel” for the problem:66

given a set P of n points in a metric space, a coreset is, loosely speaking, a mapping from67

the points in P to a set of points Q of size (k lognε−1)O(1) such that any clustering of Q of68

cost γ can be converted into a clustering of P of cost at most γ ± εcost(OPT), through the69

inverse of the mapping (where OPT is the optimal solution for P ). See Definition 9 for a70

more complete definition.71

In Euclidean space, several coreset constructions for uncapacitated k-median are inde-72

pendent of the input size and of the dimension and so are truly approximate kernels. Thus73

approximation schemes can simply be obtained by enumerating all possible partitions of74

the coreset points into k parts, evaluating the cost of each of them and outputing the one75

of minimum cost. However, obtaining similar results in general metric spaces seems much76

harder and is likely impossible. In fact, obtaining an FPT approximation algorithm with77

approximation guarantee less than 1 + 2/e is impossible assuming Gap-ETH, see [12].78

For the capacitated k-median and k-means problems much less is known. First, the79

coreset constructions or the classic FPT-approximation schemes techniques of [21, 13] do not80

immediately apply. Thus, very little was known until the recent result of Adamczyk et al. [1]81

who proposed a (7 + ε)-approximation algorithm running in time kO(k)nO(1). More recently,82

a (69+ ε)-approximation algorithm for the capacitated k-means problem with similar running83

time has been proposed by Xu et al. [29].84

1.1 Our Results85

We present a coreset construction for the capacitated k-median and k-means problems, with86

general capacities, and in general metric spaces (Theorem 11). For an n points set, the87

coreset has size poly(kε−1 logn).88

From this we derive a (3 + ε)-approximation for the k-median problem and a (9 + ε)-89

approximation for the k-means problem in general metric spaces.90
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I Theorem 1. For any ε > 0, there exists a (3 + ε)-approximation algorithm for the91

capacitated k-median problem and a (9 + ε)-approximation algorithm for the capacitated92

k-means problem running in time (kε−1 logn)O(k)nO(1). This running time can also be93

bounded by (k/ε)O(k)nO(1).94

This results in a significant improvement over the recent results of Adamczyk et al. [1] for95

k-median and Xu et al. [29] for (Euclidean) k-means, in the same asymptotic running time.96

Moreover, combining with the techniques of Kumar et al. [21], we obtain a (1 + ε)-97

approximation algorithm for points in Rd, where d is arbitrary. We believe that this is an98

interesting result: while it seems unlikely that one can obtain an FPT-approximation better99

than 1 + 2/e in general metrics, it is possible to obtain an FPT-(1 + ε)-approximation in100

Euclidean metrics of arbitrary dimension. This works for both the discrete and continuous101

settings: in the former, the set of centers must be chosen from a discrete set of candidate102

centers in Rd and the capacities may not be uniform, while in the latter the centers can be103

placed anywhere in Rd and the capacities are uniform.104

I Theorem 2. For any ε > 0, there exists a (1 + ε)-approximation algorithm for the discrete,105

Euclidean, capacitated k-means and k-median problems which runs in time (kε−1 logn)kε−O(1)
106

nO(1). This running time can also be bounded by (kε−1)kε−O(1)
nO(1).107

I Theorem 3. For any ε > 0, there exists a (1+ε)-approximation algorithm for the continuous,108

Euclidean, capacitated k-means and k-median problems running in time (kε−1 logn)kε−O(1)
109

nO(1). This running time can also be bounded by (kε−1)kε−O(1)
nO(1).110

These two results are a major improvement over the 69-approximation algorithm of Xu111

et al. [29].112

1.2 Preliminaries113

We now provide a more formal definition of the problems.114

I Definition 4. Given a set of points V in a metric space with distance function d, together115

with a set of clients C ⊆ V , a set of centers F ⊆ V with a capacity ηf ∈ Z+ for each f ∈ F,116

and an integer k, the capacitated k-median problem asks for a set F ⊆ F of k centers and117

an assignment µ : C 7→ F such that ∀f ∈ F , |{c | µ(c) = f}| ≤ ηf and that minimizes118 ∑
c∈C d(c, µ(c)). We abbreviate the capacitated k-median instance as ((V, d), C,F, k).119

I Definition 5. The capacitated k-means problem is identical, except we seek to minimize120 ∑
c∈C d(c, µ(c))2.121

In the literature, centers are sometimes called facilities, but we will use centers throughout122

for consistency.123

In the case of the capacitated Euclidean k-median and k-means, our approach works for124

the two main definitions. First, the definition of [29, 21]: P = Rd and capacities are uniform,125

namely ηf = ηf ′ , ∀f, f ′ ∈ Rd. Second, P is some specific set of points in Rd, and for each126

f ∈ P , the input specifies a specific capacity ηf127

I Definition 6. Given a capacitated k-median instance ((V, d), C,F, k) and a set of chosen128

centers F ⊆ F, define CapKMed(C,F ) as the cost of the optimal assignment of the clients to129

the chosen centers. If it is impossible, i.e., the sum of the capacities of the centers is less130

than |C|, then CapKMed(C,F ) =∞.131

CVIT 2016
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In our analysis, we will also encounter formulations where the clients have positive real132

weights. In this case, we define a fractional variant of capacitated k-median, where the133

assignment µ is allowed to be fractional.134

I Definition 7. Suppose the clients also have weights, so we are given clients C and a weight135

function w : C → R+. Let W ⊆ C × R+ be the set of pairs {(c, w(c)) : c ∈ C}. Then,136

FracCapKMed(W,F ) is the minimum value of
∑
c∈C,f∈F µ(c, f) d(c, f) over all “fractional137

assignments” µ : C × F → R+ such that:138

1. ∀c ∈ C,
∑
f∈F µ(c, f) = w(c), i.e., µ is a proper assignment of clients, and139

2. ∀f ∈ F ,
∑
c∈C µ(c, f) ≤ ηf , i.e., µ satisfies capacity constraints at all centers.140

I Definition 8. We define CapKMeans(C,F ) and FracCapKMeans(W,F ) similarly, except141

our objective functions are
∑
c∈C d(c, µ(c))2 and

∑
c∈C,f∈F µ(c, f) d(c, f)2, respectively.142

It is well-known that, given a set F ⊆ F of centers, the problem of finding the optimum143

µ is an (integral) minimum-cost flow problem, which can be solved in polynomial time.144

Therefore, we assume that every time we have a set F ⊆ F, we can evaluate CapKMed(C,F )145

and CapKMeans(C,F ) in polynomial time. Similarly, FracCapKMed and FracCapKMeans can146

be solved through fractional min-cost flow, or even an LP, in polynomial time. Furthermore,147

if W is exactly the set C of clients with weight 1, i.e., W = {(c, 1) : c ∈ C}, then148

CapKMed(C,F ) = FracCapKMed(W,F ), since the min-cost flow formulation of FracCapKMed149

has integral capacities and therefore integral flows as well.150

We now formally state our definition of coresets, sometimes called strong coresets in the151

literature.152

I Definition 9. A (strong) coreset for a capacitated k-median instance ((V, d), C,F, k) is a153

set of weighted clients W ⊆ C × R+ such that for every set of centers F ⊆ F of size k,154

FracCapKMed(W,F ) ∈ (1− ε, 1 + ε) · CapKMed(C,F ).155

The definition is identical for capacitated k-means, except CapKMed and FracCapKMed are156

replaced by CapKMeans and FracCapKMeans above.157

B Fact 10. Let W be a coreset for a capacitated k-median instance ((V, d), C,F, k). We158

have159

min
F⊆F
|F |=k

FracCapKMed(W,F ) ∈ (1− ε, 1 + ε) · min
F⊆F
|F |=k

CapKMed(C,F ),160

In particular, an α-approximation of minF⊆F,|F |=k FracCapKMed(W,F ) implies a (1+O(ε))α-161

approximation to the capacitated k-median instance. The same holds in the capacitated162

k-means case, with FracCapKMed and CapKMed replaced by FracCapKMeans and CapKMeans,163

respectively.164

For a capacitated k-median or k-means instance ((V, d), C,F, k), the aspect ratio is the165

ratio of the maximum and minimum distances between any two points in C ∪ F . It is166

well-known that we may assume, with a multiplicative error of (1 + o(1)) in the optimal167

solution, that the instance has poly(n) aspect ratio.1 Therefore, we will make this assumption168

throughout the paper.169

1 For example, the following modification to the distances d does the trick. First, compute an O(log k)-
approximation [6] to the problem, and let that value be M . For any two points u, v ∈ C ∪ F with
d(u, v) > Mn10, truncate their distance to exactly Mn10. Then, add Mn−10 distance to each pair of
points u, v ∈ C ∪ F . The aspect ratio is now bounded by O(n20).
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Lastly, we define R+ and Z+ as the set of positive reals and positive integers, respectively.170

As usual, we define with high probability (w.h.p.) as with probability 1−n−Z for an arbitrarily171

large positive constant Z, fixed beforehand.172

2 Coreset for k-median173

In this section, we prove our main technical result for the k-median case: constructing a174

coreset for capacitated k-median of size poly(k logn ε−1).175

I Theorem 11. For any small enough constant ε ≥ 0, there exists a Monte Carlo algorithm176

that, given an instance ((V, d), C,F, k) of capacitated k-median, outputs a (strong) coreset177

W ⊆ C with size O(k2 log2 n/ε3) in polynomial time, w.h.p.178

I Theorem 12. For any small enough constant ε ≥ 0, there exists a Monte Carlo algorithm179

that, given an instance ((V, d), C,F, k) of capacitated k-means, outputs a (strong) coreset180

W ⊆ C with size O(k5 log5 n/ε3) in polynomial time, w.h.p.181

Our inspiration for the coreset construction is Chen’s algorithm [8] based on random182

sampling. Our algorithm is essentially the same, with slightly worse bounds in the sampling183

step, although our analysis is a lot more involved. We describe the full algorithm in184

pseudocode below (see Algorithm 1).185

At a high level, the algorithm first partitions the client set C into poly(k, logn) many186

subsets, called rings, with the help of a polynomial-time approximate solution (see line 1).187

The sets are called rings because they are of the form Ci ∩ (ball(f ′i , R) \ ball(f ′i , R/2)) for188

some subset of clients Ci ⊆ C, some facility f ′i ∈ F, and some positive number R (see189

line 7). Then, for each ring Ci,R, if |Ci,R| is small enough, the algorithm adds the entire ring190

into the coreset (each with weight 1); otherwise, the algorithm takes a random sample of191

r = poly(k, logn) many clients in Ci,R, weights each sampled client by |Ci,R|/r, and adds the192

weighted sample to the coreset. The weighting ensures that the total weight of the sampled193

points is always equal to |Ci,R|. To prove that the algorithm produces a coreset w.h.p., Chen194

union bounds over all
(|F|
k

)
choices of a set of k facilities, and shows that for each choice195

F ⊆ F, with probability at least 1− n−Ω(k), the total cost to assign the coreset points to F196

is approximately the total cost to assign the original clients C to F ; this statement is proved197

through standard concentration bounds. More details and intuition for the algorithm can be198

found in Section 3 of Chen’s paper [8].199

2.1 Single ring case200

We first restrict ourselves to sampling from a single ring Ci,R ⊆ C. That is, while we201

still consider the cost of serving the clients outside of Ci,R, we only perform the sampling202

(lines 12–13) on one ring Ci,R. The general case of O(k logn) many rings is more complicated203

than simply treating each ring separately. Due to space constraints, we only consider the204

single ring case in this extended abstract, and the rest is deferred to the full version.205

Fix an arbitrary ring Ci,R throughout this section, and define C ′ := Ci,R for convenience.206

Let N := |C ′| be the number of clients, and let f ′ := f ′i be the ring center of C ′ (line 4).207

Let W ′ be the (weighted) centers in Ci,R sampled by the algorithm (lines 12–13), together208

with the (unweighted) centers in C \ C ′, which have weight 1. Our goal is to show that209

FracCapKMed(W ′, F ), the cost after sampling only from C ′, is close to the original cost210

CapKMed(C,F ).211

CVIT 2016
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Algorithm 1 CoreSet(I)
1: F ′ = {f ′1, . . . , f ′O(k)} ← an (O(1), O(1)) bicriteria solution to instance I, namely a

capacitated O(k)-median solution with total cost ALG′ ≤ O(OPT ) . using, e.g., [24]
2: W ← ∅ . W ⊆ C × R+ is the final coreset at the end of the algorithm
3: Define dmin and dmax as the minimum and maximum distances, respectively, between

any two points in C ∪ F . dmax/dmin is the aspect ratio
4: for each center f ′i do . O(k) centers
5: Ci ← the clients in C assigned to center f ′i
6: for each R, a power of 2 in the range [dmin, 2dmax] do . O(logn) iterations,

assuming poly(n) aspect ratio
7: Ci,R ← Ci ∩ (ball(f ′i , R) \ ball(f ′i , R/2)) . We call the sets Ci,R rings, with ring

center f ′i . The rings Ci,R over all i, R partition the client set C.
8: r ← γk logn/ε3 for sufficiently large (absolute) constant γ
9: if |Ci,R| ≤ r then
10: add (c, 1) to W for each c ∈ Ci,R . Ci,R small enough: add everything into

coreset
11: else
12: sample r random centers in Ci,R (without replacement)
13: add (c, |Ci,R|r ) to W for each sampled center c . weighted so that total weight

is still |Ci,R|

I Lemma 13. W.h.p., for any set of k centers F ⊆ F satisfying CapKMed(C,F ) <∞,212

|FracCapKMed(W ′, F )− CapKMed(C,F )| ≤ εNR. (1)213
214

It is clear that the output W has size O(k2 log2 n/ε3). The rest of this section focuses on215

proving that W is indeed a coreset, w.h.p.216

The intuition behind the εNR additive error is that we can “charge” this error to the217

cost of the bicriteria solution (line 1) that C ′ is responsible for. In particular, the total cost218

of assigning clients in C ′ to ring center f ′ in the bicriteria solution is at least N ·R/2, since219

all clients in C ′ are distance at least R/2 to f ′. Therefore, we charge an additive error of220

εNR to a NR/2 portion of ALG′, which is a “rate” of 2ε to 1. If we can do the same for221

all rings, then since the portions of ALG′ sum to ALG′, our total additive error is at most222

2ε · ALG′ = O(ε) · OPT . Finally, replacing ε with a small enough Θ(ε) gives the desired223

additive error of ε · OPT ; note that this is where we use that the approximation ratio of224

ALG′ is O(1), and that the specific approximation ratio is not important (as long as it is225

constant). The formalization of this intuition is deferred to the full version; the argument is226

identical to Chen’s [8], so we claim no novelty here.227

We now prove Lemma 13. First of all, if N = |C ′| ≤ r (line 9), then sampling changes228

nothing, and FracCapKMed(W ′, F ) = CapKMed(C,F ). Therefore, for the rest of the proof,229

we assume that N > r = γk logn/ε3, with the γ taken to be a large enough constant.230

Our high-level strategy is the same as Chen’s: we union bound over all sets of centers231

F ⊆ F of size k, and prove that for a fixed set F , the probability of violating (1) is at most232

n−(k+10).2 Union bounding over all ≤
(
n
k

)
choices of F gives probability ≤ n−10 of violating233

2 For simplicity of presentation, we will focus on a success probability of 1− n−10. The constants can
be easily tweaked so that the algorithm succeeds w.h.p., i.e., with probaility 1− n−Z for any positive
constant Z.
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(1), proving the lemma. Therefore, from now on, we focus on a single, arbitrary set F ⊆ F234

of size k satisfying CapKMed(C,F ) < ∞, and aim to show that (1) fails with probability235

≤ n−(k+10).236

For our analysis, we define a function g : RC′+ → R+ as follows. For an input vector237

d ∈ RC′+ (indexed by clients in C ′), consider a min-cost flow instance FlowInstance(d) on the238

graph metric with the following demands: set demand dc at each client c ∈ C ′, demand 1239

at each client c ∈ C \ C ′, and demand N −
∑
c∈C′ dc (this demand can be negative) at ring240

center f ′ = f ′i (so we are effectively treating f ′ as a special client with possibly negative241

demand, not a facility). Observe that FlowInstance(d) is a feasible min-cost flow instance,242

because the sum of demands is exactly243

∑
c∈C′

dc + |C \ C ′|+
(
N −

∑
c∈C′

dc

)
= |C \ C ′|+N = |C|,244

which is the same as the sum of demands in the instance CapKMed(C,F ), which is feasible245

by assumption.246

Given this setup for an input vector d ∈ RC′+ , we define the function g(d) as the min-cost247

flow of FlowInstance(d). Observe that g(1) is exactly CapKMed(C,F ).248

Now define a random vector X ∈ RC′+ as follows. Each coordinate of X is independently249

N/r with probability r/N and 0 otherwise, so that E[X] = 1. Note that X does not250

accurately represent our sampling of r clients, since this process is not guaranteed to sample251

exactly r clients. Nevertheless, it is intuitively clear that with probability Ω(1/n), X will252

indeed have exactly r nonzero entries, since r is the expected number; we prove this formally253

in the following simple claim (with p = r/N), whose routine proof is deferred to the full254

version. And if we condition on this event, then g(X) and CapKMed(C,F ) are now identically255

distributed.256

B Claim 14. Let N be a positive integer, and let p ∈ (0, 1) such that pN is an integer. The257

probability that Binomial(N, p) = pN is at least Ω(1/
√
N).258

In light of all this, our main argument has two steps. First, we show that g(X) is259

concentrated around E[g(X)] using martingales. However, what we really need is con-260

centration around g(E[X]) = g(1) = CapKMed(C,F ), so our second step is to show that261

E[g(X)] ≈ g(E[X]) (with probability 1). We formally state the lemmas below which, as262

discussed, together imply Lemma 13.263

I Lemma 15. Assume that |C ′| > Θ(k logn/ε3). With probability ≥ 1− n−(k+20), we have264

|g(X)− E[g(X)]| ≤ εNR/2.265

I Lemma 16. Assume that |C ′| > Θ(k logn/ε3). Then, |E[g(X)]− g(E[X])| ≤ εNR/2.266

2.1.1 Proof of Lemma 15: concentration around E[g(X)] via267

martingales.268

To show that g(X) is concentrated around its mean, we show that g is sufficiently Lipschitz269

(w.r.t. the `1 distance in RC′+ ), and then apply standard martingale tools.270

B Claim 17. The function g is R-Lipschitz w.r.t. the `1 distance in RC′+ .271

Proof. Fix a client c ∈ C ′, and consider two vectors d,d′ ∈ RC′+ with d′ = d + δ · 1c. By272

definition of FlowInstance, the only difference between FlowInstance(d) and FlowInstance(d′)273

is that in FlowInstance(d′), client c has δ more demand and “special client” f ′ has δ less274

CVIT 2016
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demand. Therefore, if we begin with the min-cost flow of FlowInstance(d), and then add275

δ units of flow from c to f ′, then we now have a feasible flow for FlowInstance(d′).3 This276

means that277

g(d′) ≤ g(d) + δR.278

Similarly, starting from a min-cost flow of FlowInstance(d′) and then adding δ units of flow279

from f ′ to c, we obtain a feasible flow for FlowInstance(d), so280

g(d) ≤ g(d′) + δR.281

Together, these two inequalities show that g is R-Lipschitz. J282

We state the following Chernoff bound for Lipschitz functions, which can be proven by283

adapting the standard (multiplicative) Chernoff bound proof to a martingale.284

I Theorem 18. Let x1, . . . , xn be independent random variables taking value b with probability285

p and value 0 with probability 1− p, and let g : [0, 1]n → R be a L-Lipschitz function in `1286

norm. Define X := (x1, . . . , xn) and µ := E[g(X)]. Then, for 0 ≤ ε ≤ 1:287

Pr
[∣∣g(X)− E[g(X)]

∣∣ ≥ εpnbL] ≤ 2e−ε
2pn/3

288

We apply Theorem 18 on the L-Lipschitz function g with the randomly sampled demands.289

Set p := r/N as the sampling probability, so that X ∈ {0, 1/p}N is the random demand290

vector. Setting n := N , b := 1/p, and L := R, we obtain291

Pr
[∣∣g(X)− E[g(X)]

∣∣ ≥ (ε/2)NR
]

292

= Pr
[∣∣g(X)− E[g(X)]

∣∣ ≥ (ε/2)pnbL]293

≤ 2 exp
(
−(ε/2)2pn

3

)
294

= 2 exp
(
−(ε/2)2(r/N)N

3

)
= exp

(
−Θ(ε2r)

)
= exp

(
−Ω(ε2 · k logn

ε2
)
)

295

≤ n−(k+20)
296
297

for sufficiently large γ in the definition of r = γk logn/ε2. This concludes Lemma 15.298

2.1.2 Proof of Lemma 16: relating E[g(X)] with g(E[X]).299

We have obtained concentration about E[g(X)], but we really need concentration around300

g(E[X]) = CapKMed(C ′, F ). We establish this by proving Lemma 16.301

We first show the easy direction, that g(E[X]) ≤ E[g(X)], which essentially follows from302

the convexity of min-cost flow: Suppose the outcomes of random variable X are d1,d2, . . .303

with respective probabilities µ1, µ2, . . ., so that E[g(X)] =
∑
i µig(di). Now consider the304

flow obtained by adding up, for each i, the min-cost flow of FlowInstance(di) scaled by µi.305

This flow is a feasible flow to FlowInstance(E[X]) and has cost at most E[g(X)]. Since the306

min-cost flow of FlowInstance(E[X]) can only be lower, we have g(E[X]) ≤ E[g(X)].307

We now prove the other direction: E[g(X)] ≤ g(E[X]) + εNR/2.308

3 We define demand so that if a vertex v has d > 0 demand, then d flow must exit v in a feasible flow,
and if it has d < 0 demand, then |d| flow must enter v.
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B Claim 19. With probability 1, g(X) ≤ g(E[X]) + nNR.309

Proof. Since X ∈ [0, N/r]N , and since g is R-Lipschitz, the entire range of g(X) is contained310

in some interval of length N ·N/r ·R ≤ N · n ·R. Since E[X] ∈ [0, N/r]N as well, the value311

g(E[X]) is also contained in that interval. The statement follows. J312

I Lemma 20. With probability ≥ 1− n−10, g(X) ≤ g(E[X]) + 0.49εNR.313

Due to space constraints, the proof of Lemma 20, which is long and technical, is deferred to314

the full version. Assuming Lemma 20, we now show how Claim 19 and Lemma 20 together315

imply Lemma 16: we have316

E[g(X)] ≤ n−10 ·
(
g(E[X]) + nNR

)
+ (1− n−10)

(
g(E[X]) + 0.49εNR

)
317

= g(E[X]) +
(
n−10 · n+ (1− n−10) · 0.49ε

)
NR318

≤ g(E[X]) + (ε/2)NR,319
320

finishing the proof of Lemma 16.321

2.2 (3 + ε)- and (9 + ε)-approximation – Proof of Theorem 1322

In this section, we finish the algorithm for Theorem 1. We will focus mainly on the k-median323

case, since the k-means case is nearly identical.324

Suppose we run the coreset for the capacitated k-median instance with parameter ε0 (to325

be set later), obtaining a coreset W ⊆ C × R+ of size poly(k logn ε−1
0 ). We now want to326

compute some F ⊆ F of size k and an assignment µ of the clients in W to F minimizing327 ∑
(c,w)∈W w · d(c, µ(c)). By definition of coreset, if we compute an α-approximation to this328

problem, then we compute a (1 + ε0)α-approximation to the original capacitated k-median329

problem.330

The strategy is similar to that in [12]: we guess a set of leaders and distances that match331

the optimal solution. More formally, let F ∗ = {f∗1 , . . . , f∗k} ⊆ F be the optimal solution with332

assignment µ∗. For each f∗i ∈ F ∗, let (µ∗)−1(f∗i ) be the clients in the coreset assigned by µ∗333

to f∗i , and let `i be the client in (µ∗)−1(f∗i ) closest to f∗i . We call `i the leader of the client334

set (µ∗)−1(f∗i ). Also, let Ri be the distance d(f∗i , `i), rounded down to the closest integer335

power of (1 + ε1) for some ε1 we set later.336

The algorithm begins with an enumeration phase. There are |W |k choices for the337

set {`1, . . . , `k}, and O(ε−1
1 logn)k choices for the values R1, . . . , Rk, since we assumed338

that the instance has aspect ratio poly(n). So by enumerating over |W |kO(ε−1
1 logn)k =339

(k logn ε−1
0 ε−1

1 )O(k) choices, we can assume that we have guessed the right values `i and Ri.340

For each leader `i, define Fi as the centers f ∈ F satisfying d(`i, f) ∈ [1, 1 + ε1) ·Ri. Note341

that f∗i ∈ Fi for each i. Next, the algorithm wants to pick the center in each Fi with the342

largest capacity. This way, even if it doesn’t pick f∗i for Fi, it picks a center not much farther343

away that has at least as much capacity.344

The most natural solution is to greedily choose the center with largest capacity in each345

Fi. One immediate issue with this approach is that we might choose the same center twice,346

since the sets Fi are not necessarily disjoint. Note that this issue is not as pronounced in the347

uncapacitated k-median problem, since in that case, we can always imagine choosing the same348

center twice and then throwing out one copy, which changes nothing. In the capacitated case,349

choosing the same center twice effectively doubles the capacity at that center, so throwing350

out a copy affects the capacity at that center.351

One simple fix to this issue is the simple idea of color-coding, common in the FPT literature:352

for each center f ∈ F, independently assign a uniformly random label in {1, 2, 3, . . . , k}.353
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With probability 1/kk, each f∗i ∈ F ∗ is assigned label i. Moreover, repeating this routine354

O(kk logn) times ensures that w.h.p., this will happen in some iteration. So with a O(kk logn)355

multiplicative overhead in the running time, we may assume that each f∗i is assigned label i.356

The algorithm now chooses, from each Fi, the center with the largest capacity among all357

centers with label i. Since f∗i is an option for each Fi, the center chosen can only have larger358

capacity. Let the center chosen from Fi be fi. Let F := {f1, . . . , fk} be our chosen centers.359

We now claim that F is a (3 + ε1)-approximation. Recall µ∗, the optimal assignment to360

the centers F ∗; we construct an assignment µ to F as follows: for each client c in the coreset,361

if µ∗ assigns c to center f∗i , then we set µ(c) = fi. Observe that if µ∗(c) = f∗i , then362

d(c, fi) ≤ d(c, f∗i )+d(f∗i , `i)+d(`i, fi) ≤ d(c, f∗i )+2(1+ε1)Ri ≤ d(c, f∗i )+2(1+ε1)·d(c, f∗i ),363

where the first inequality follows from triangle inequality, the second follows since both f∗i364

and fi are approximately Ri away from `i, and the third follows from d(c, f∗i ) ≥ d(`i, f∗i ) ≥ R365

by our choice of `i. Therefore, we have d(c, µ(c)) = d(c, fi) ≤ (3 + 2ε1)d(c, f∗i ) = (3 +366

2ε1)d(c, µ∗(c)). Altogether, the total cost of the assignment µ is367 ∑
(c,w)∈W

w · d(c, µ(c)) ≤
∑

(c,w)∈W

w · (3 + 2ε1)d(c, µ∗(c)) = (3 + 2ε1)OPT.368

The optimal assignment can only be better, hence the (3+2ε1)-approximation. This implies a369

(1+ε0)(3+2ε1)-approximation in time poly(k logn ε−1
0 ε−1

1 )O(k). Finally, setting ε0, ε1 := Θ(ε),370

for Θ(·) small enough, guarantees a (3 + ε)-approximation in time (k logn ε−1)O(k)nO(1).371

Lastly, we show that the (logn)O(k) factor in the running time can be upper bounded by372

kO(k)nO(1), proving the second running time in Theorem 1. If k < logn
log logn , then (logn)O(k) =373

(logn)
logn

log logn = nO(1); otherwise, k > logn
log logn ≥

√
logn, so (logn)O(k) ≤ (k2)O(k). Therefore,374

the running time in Theorem 1 is at most O(k/ε)O(k)nO(1).375

For k-means, the algorithm and analysis are identical, except that the total cost is now376

(c,w)∈Ww · d(c, µ(c))2 ≤
∑

(c,w)∈W

w ·
(
(3 + 2ε1)d(c, µ∗(c))

)2 = (9 +O(ε1))OPT,377

implying a (9 + ε)-approximation. This concludes the proof of Theorem 1.378

3 A (1 + ε)-Approximation for Euclidean Inputs379

3.1 The Continuous (Uniform-Capacity) Case – Proof of Theorem 3380

In this section we consider the continuous case: namely the case where centers can be located381

at arbitary position in Rd and the capacities are uniform and η ≥ n/k.382

Let ε > 0. Given a set of points P , denote by OPT1(P ) the location of the optimal center383

of P (namely, the centroid of P in the case of the k-means problem or the median of P in384

the case of the k-median problem). We will make us of the following lemma of [21].385

I Lemma 21 (Lemma 5.3 in [21]). Let P be a set of points in Rd and X be a random sample386

of size O(ε−3 log(1/ε)) from P and a and b such that a ≤ cost(P,OPT1(P )) ≤ b. Then, we387

can construct a set Y of O(21/εO(1) log(b/εa)) points such that with constant probability there388

is at least one point z ∈ X ∪ Y satisfying cost(P, {z}) ≤ (1 + 2ε)cost(P,OPT1(P )). Further,389

the time taken to construct Y from X is O(21/εO(1) log(b/εa)d).390

Our algorithm for obtaining a (1 + ε)-approximation is as follows:391
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1. Compute a coreset C for capacitated k-median as described by Lemma 21, and an estimate392

γ of the value of OPT using the classic O(logn)-approximation.393

In the remaining, we assume that the minimum pairwise distance between pairs of points394

of C is at least εγ/(n logn) since otherwise one can simply take a net of the input and395

the additive error is at most εOPT (see e.g.: [12]). Moreover, we assume that there is no396

cluster containing only one point of the coreset since these clusters can be “guessed” and397

dealt with separately.398

2. Start with C = ∅, then for each subset S of C of size O(ε−3 log(k/ε)), for each s = (1 + ε)i399

in the interval [εγ/(n logn), γ] apply the procedure of Lemma 21 with a = s and b =400

(1 + ε)a and add the output of the procedure to C. We refer to C as a set of approximate401

candidate centers.402

3. Consider all subsets of size k of C. For each subset, compute the cost of using this set403

of centers for the capacitated k-median instance by using a min cost flow computation.404

Output the set of centers of minimum cost.405

We first discuss the running time of the algorithm. The time for computing the coreset406

is polynomial by Theorem 11. Generating C takes |C|O(ε−3 log(1/ε)) · 21/εO(1) log((1 + ε)/ε)d407

time. For the last part, namely enumerating all subsets of C of size k, the running time is408

|C|O(kε−3 log(1/ε)) ·2k/εO(1) logk((1+ε)/ε). Theorem 11 implies that |C| = poly(k logn ε−1) and409

so, the algorithm has running time (k logn ε−1)kε−O(1)
nO(1). Again, the (logn)kε−O(1) factor410

can be upper bounded by (k/ε)kε−O(1) or nO(1) based on whether or not kε−O(1) < logn
log logn ,411

hence the improved running time in Theorem 3.412

We show that this algorithm provides a (1+O(ε))-approximation. Theorem 11 immediately413

implies that the solution found for the coreset C can be lifted to a solution for the original414

input at a cost of an additive O(εOPT). For any (possibly weighted) set of client A and set415

of centers B, we define cost(A,B) to be the cost of the best assignment of the clients in A to416

the centers of B.417

I Lemma 22. The C computed by the algorithm contains a set of centers S̃ that is such that418

cost(C, S̃) ≤ (1 + ε)cost(C,OPT).419

Proof. This follows almost immediately from Lemma 21. By Lemma 21, for each cluster C∗i420

of OPT, there exists a set S∗i ⊆ C∗i of size at most O(ε−3 log(k/ε)) such that applying the421

procedure of Lemma 21 with the correct value of a to S∗i yields a set of points containing a422

point zi such that cost(C∗i , zi) ≤ (1 + 2ε)cost(C∗i ,OPT). Since the algorithm iterates over all423

subsets of size O(ε−3 log(k/ε)), and that the pairwise distance is at least εOPT/n, it follows424

that S∗i is one of the subset considered by the algorithm, and so zi is part of C. J425

Finally, since the algorithm iterates over all subsets of C of size at most k, Lemma 22426

implies that there exists a set {z1, . . . , zk} that is considered by the algorithm and on which427

solving a min cost flow instance yields a solution of cost at most (1 +O(ε))cost(P,OPT).428

3.2 The Non-Uniform Case – Proof of Theorem 2429

We now consider the non-uniform case. In this setting, the input consists of a set of points in430

Rd together with a set of candidate centers in Rd and a capacity ηf for each such candidate431

center. We make use of the following lemma. As slightly worse bound for the lemma can432

also be found in [26].433

I Lemma 23 ([28]). Let ε ∈ (0, 1) and X ⊆ Rd be arbitrary with X having size n > 1.434

There exists f : Rd 7→ Rm with m = O(ε−2 logn) such that ∀x ∈ X, ∀y ∈ Rd, ||x − y||2 ≤435

||f(x)− f(y)||2 ≤ (1 + ε)||x− y||2.436
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We describe a polynomial-time approximation scheme. Let ε > 0. The algorithm is as437

follows. The first step of the algorithm is identical to the continous case.438

1. Compute a coreset C for capacitated k-median as described by Theorem 21, and an439

estimate γ of the value of OPT using the classic O(logn)-approximation.440

In the remaining, we assume that the minimum pairwise distance between pairs of points441

of C is at least εγ/(n logn) since otherwise one can simply take a net of the input and442

the additive error is at most εOPT (see e.g.: [12]). Moreover, we assume that there is no443

cluster containing only one point of the coreset since these clusters can be “guessed” and444

dealt with separately.445

2. Apply Lemma 23 to the points of the coreset to obtain a set of points in a Euclidean446

space of dimension log k+log logn
εO(1) . Let C∗ and A∗ be respectively the image of the coreset447

points and of the candidate centers through the projection.448

3. Start with V = ∅ For each point p of the coreset do the following: For each i ∈449

{1, 2, . . . , n2}, consider the ith-ring defined by ball(p, (1 + ε)iεγ/(n logn)) \ ball(p, (1 +450

ε)i−1εγ/(n logn)) and choose an ε · (1+ ε)iεγ/(n logn)-net. Consider the Voronoi diagram451

induced by the points of the net. Then, for each Voronoi cell, add to V the k candidate452

centers of A∗ in the cell that are of maximum capacity.453

4. Enumerate all possible subset of V of size k and output the one that leads to the solution454

of minimum cost.455

3.2.1 Correctness.456

Theorem 11 implies that finding a near-optimal solution for the coreset points yields a457

near-optimal solution for the input point set.458

Lemma 23 immediately implies that, given the coreset construction C, and the projection459

of the coreset points onto a log k+log logn
εO(1) -dimensional Euclidean space, finding a near-optimal460

set of centers in A∗ yields a near-optimal set of centers in A through the inverse of the461

projection.462

Therefore, it remains to show that the set V contains a set of candidate centers that463

yields a near-optimal solution. To see this, consider each center of the optimal solution in A∗.464

For each such optimal center f , consider the closest coreset point c(f) together with the ring465

of c(f) containing f . Let j be the index of this ring, namely f ∈ ball(p, (1 + ε)jεγ/(n logn)) \466

ball(p, (1 + ε)j−1εγ/(n logn)).467

By definition of the net, there exists a point p of the net at distance at most ε · ball(p, (1 +468

ε)jεγ/(n logn)) ≤ 2ε||c− c(f)||2 from c(f). Therefore, consider the Voronoi cell of p and the469

top-k candidate centers in terms of capacity. If f is part of this top-k, then f is part of V470

and we are done. Otherwise, it is possible to associate to f a center f∗ that has capacity at471

least the capacity of f , and so for all the optimal centers simultaneously since we consider472

the top-k. Therefore, consider replacing f by f∗ in the optimal solution. The change in cost473

is at most, by the triangle inequality, 4ε||c − c(f)||2 since both centers are in the Voronoi474

cell of p. Finally, since c is the closest client to c(f), the cost increases by a factor at most475

(1 + 4ε) for each client and the correctness follows.476

3.2.2 Running time.477

We now bound the running time. The first two steps are clearly polynomial time. An478

ε · (1 + ε)iεγ/(n logn)-net of a ball of radius (1 + ε)iεγ/(n logn) has size ε−O(d) and so in this479

context, after Step 2, a size ε−( log k+log logn
εO(1) ). Since for each element of the net, k centers are480
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chosen and since the number of rings is, by Step 1, at most O(ε−2 logn), the total size of V is at481

most |C|kε−2 lognε−( log k+log logn
εO(1) ) which is at most |C|ε−2(k logn)ε−O(1) = (kε−1 logn)ε−O(1) .482

Enumerating all subsets of size k takes time (kε−1 logn)kε−O(1) and the theorem follows.483
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