Vincent Cohen-Addad

Jason Li

On the Fixed-Parameter Tractability of Capacitated Clustering

Keywords: 2012 ACM Subject Classification Theory of computation → Facility location and clustering; Theory Keywords and phrases approximation algorithms, fixed-parameter tractability, capacitated, kmedian, k-means, clustering, core-sets, Euclidean Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

We study the complexity of the classic capacitated k-median and k-means problems parameterized by the number of centers, k. These problems are notoriously difficult since the best known approximation bound for high dimensional Euclidean space and general metric space is Θ(log k) and it remains a major open problem whether a constant factor exists.

We show that there exists a (3 +)-approximation algorithm for the capacitated k-median and a (9 +)-approximation algorithm for the capacitated k-means problem in general metric spaces whose running times are f (, k)n O(1) . For Euclidean inputs of arbitrary dimension, we give a (1 +)-approximation algorithm for both problems with a similar running time. This is a significant improvement over the (7 +)-approximation of Adamczyk et al. for k-median in general metric spaces and the (69 +)-approximation of Xu et al. for Euclidean k-means.

Introduction

Clustering under capacity constraints is a fundamental problem whose complexity is still poorly understood. The capacitated k-median and k-means problems have attracted a lot of attention over the recent years (e.g.: [START_REF] Byrka | An approximation algorithm for uniform capacitated k-median problem with 1+ capacity violation[END_REF][START_REF] Shi | On uniform capacitated k-median beyond the natural LP relaxation[END_REF][START_REF] Shi | Approximating capacitated k-median with (1 + k open facilities[END_REF][START_REF] Shi | On uniform capacitated k-median beyond the natural LP relaxation[END_REF][START_REF] Goemans | Constant approximation for capacitated k-median with (1+epsilon)-capacity violation[END_REF][START_REF] Byrka | Bi-factor approximation algorithms for hard capacitated k-median problems[END_REF][START_REF] Chuzhoy | Approximating k-median with non-uniform capacities[END_REF][START_REF] Charikar | A constant-factor approximation algorithm for the k-median problem[END_REF]), but the best known approximation algorithm for capacitated k-median remains a somewhat folklore O(log k)approximation using the classic technique of embeddings the metric space into trees that follows from the work of Charikar et al [START_REF] Charikar | Rounding via trees: Deterministic approximation algorithms for group steiner trees and k-median[END_REF] on the uncapacitated version, see also [START_REF] Adamczyk | Constant factor FPT approximation for capacitated k-median[END_REF] for a complete exposition.

Arguably, the hardness of the problem comes from having both a hard constraint on the number of clusters, k, and on the number of clients that can be assigned to each cluster.

Indeed, constant factor approximation algorithms are known if the capacities [START_REF] Shi | On uniform capacitated k-median beyond the natural LP relaxation[END_REF][START_REF] Shi | Approximating capacitated k-median with (1 + k open facilities[END_REF] or the number of clusters can be violated by a (1 +) factor [START_REF] Byrka | An approximation algorithm for uniform capacitated k-median problem with 1+ capacity violation[END_REF][START_REF] Goemans | Constant approximation for capacitated k-median with (1+epsilon)-capacity violation[END_REF], for constant . Moreover, the capacitated facility location problem admits constant factor approximation algorithms with no capacity violation. On the other hand and perhaps surprisingly, the best known lower bound for capacitated k-median is not higher than the 1 + 2/e lower bound for the uncapacitated version of the problem.

Thus, to improve the understanding of the problem a natural direction consists in obtaining better approximation algorithms in some specific metric spaces, or through the fixed-parameter complexity of the problem. For example, a quasi-polynomial time approximation scheme

23:2

On the Fixed-Parameter Tractability of Capacitated Clustering (QPTAS) for capacitated k-median in Euclidean space of fixed dimension with (1 +) capacity violation was known since the late 90's [START_REF] Arora | Approximation schemes for Euclidean kmedians and related problems[END_REF]. This has been recently improved to a PTAS for R 2 and a QPTAS for doubling metrics without capacity violation [START_REF] Cohen-Addad | Approximation schemes for capacitated clustering in doubling metrics[END_REF]. It remains an interesting open question to obtain constant factor approximation for other metrics such as planar graphs or Euclidean space of arbitrary dimension.

For many optimization problems are at least W [START_REF] Adamczyk | Constant factor FPT approximation for capacitated k-median[END_REF]-hard and so obtaining exact fixedparameter tractable (FPT) algorithms is unlikely. However, FPT algorithms have recently shown that they can help break long-standing barriers in the world of approximation algorithms. FPT approximation algorithms achieving better approximation guarantees than the best known polynomial-time approximation algorithms for some classic W [START_REF] Adamczyk | Constant factor FPT approximation for capacitated k-median[END_REF]-and W [START_REF] Alon | The probabilistic method[END_REF]hard problems have been designed. For example, for k-cut [START_REF] Gupta | An fpt algorithm beating 2-approximation for k-cut[END_REF], for k-vertex separator [START_REF] Lee | Partitioning a graph into small pieces with applications to path transversal[END_REF] or k-treewidth-deletion [START_REF] Gupta | Losing treewidth by separating subsets[END_REF].

For the fixed-parameter tractability of the k-median and k-means problems, a natural parameter is the number of clusters k. The FPT complexity of the classic uncapacitated k-median problem, parameterized by k, has received a lot of attention over the last 15 years.

From a lower bound perspective, the problem is known to be W [START_REF] Alon | The probabilistic method[END_REF]-hard in general metric spaces and assuming the exponential time hypothesis (ETH), even for points in R 4 , there is no exact algorithm running in time n o(k) [START_REF] Cohen-Addad | The bane of low-dimensionality clustering[END_REF]. For R 2 there exists an exact n O(√ k) which is the best one can hope for assuming ETH [START_REF] Cohen-Addad | The bane of low-dimensionality clustering[END_REF], see also [START_REF] Marx | Optimal parameterized algorithms for planar facility location problems using voronoi diagrams[END_REF].

From an upper bound perspective, coreset constructions and PTAS with running time f (k,)n O (1) have been known since the early 00's [START_REF] Fernandez De La | Approximation schemes for clustering problems[END_REF][START_REF] Kumar | A simple linear time (1+ ") -approximation algorithm for k-means clustering in any dimensions[END_REF][START_REF] Har | Smaller coresets for k-median and k-means clustering[END_REF][START_REF] Har | On coresets for k-means and k-median clustering[END_REF][START_REF] Frahling | Coresets in dynamic geometric data streams[END_REF]. In the language of fixed-parameter tractability, a coreset is essentially an "approximate kernel" for the problem:

given a set P of n points in a metric space, a coreset is, loosely speaking, a mapping from the points in P to a set of points Q of size (k log n -1) O (1) such that any clustering of Q of cost γ can be converted into a clustering of P of cost at most γ ± cost(OPT), through the inverse of the mapping (where OPT is the optimal solution for P). See Definition 9 for a more complete definition.

In Euclidean space, several coreset constructions for uncapacitated k-median are independent of the input size and of the dimension and so are truly approximate kernels. Thus approximation schemes can simply be obtained by enumerating all possible partitions of the coreset points into k parts, evaluating the cost of each of them and outputing the one of minimum cost. However, obtaining similar results in general metric spaces seems much harder and is likely impossible. In fact, obtaining an FPT approximation algorithm with approximation guarantee less than 1 + 2/e is impossible assuming Gap-ETH, see [START_REF] Cohen-Addad | Tight FPT approximations for k-median and k-means[END_REF].

For the capacitated k-median and k-means problems much less is known. First, the coreset constructions or the classic FPT-approximation schemes techniques of [START_REF] Kumar | Linear-time approximation schemes for clustering problems in any dimensions[END_REF][START_REF] Fernandez De La | Approximation schemes for clustering problems[END_REF] do not immediately apply. Thus, very little was known until the recent result of Adamczyk et al. [START_REF] Adamczyk | Constant factor FPT approximation for capacitated k-median[END_REF] who proposed a (7 +)-approximation algorithm running in time k O(k) n O (1) . More recently, a (69 +)-approximation algorithm for the capacitated k-means problem with similar running time has been proposed by Xu et al. [START_REF] Xu | A constant parameterized approximation for hardcapacitated k-means[END_REF].

Our Results

We present a coreset construction for the capacitated k-median and k-means problems, with general capacities, and in general metric spaces (Theorem 11). For an n points set, the coreset has size poly(k -1 log n).

From this we derive a (3 +)-approximation for the k-median problem and a (9 +)approximation for the k-means problem in general metric spaces.

V. Cohen-Addad and J. Li

23:3

Theorem 1. For any > 0, there exists a (3 +)-approximation algorithm for the capacitated k-median problem and a (9 +)-approximation algorithm for the capacitated 1) . This running time can also be bounded by 1) .

k-means problem running in time (k -1 log n) O(k) n O(
(k/) O(k) n O(
This results in a significant improvement over the recent results of Adamczyk et al. [START_REF] Adamczyk | Constant factor FPT approximation for capacitated k-median[END_REF] for k-median and Xu et al. [START_REF] Xu | A constant parameterized approximation for hardcapacitated k-means[END_REF] for (Euclidean) k-means, in the same asymptotic running time.

Moreover, combining with the techniques of Kumar et al. [START_REF] Kumar | Linear-time approximation schemes for clustering problems in any dimensions[END_REF], we obtain a (1 +)approximation algorithm for points in R d , where d is arbitrary. We believe that this is an interesting result: while it seems unlikely that one can obtain an FPT-approximation better than 1 + 2/e in general metrics, it is possible to obtain an FPT-(1 +)-approximation in Euclidean metrics of arbitrary dimension. This works for both the discrete and continuous settings: in the former, the set of centers must be chosen from a discrete set of candidate centers in R d and the capacities may not be uniform, while in the latter the centers can be placed anywhere in R d and the capacities are uniform.

Theorem 2. For any > 0, there exists a (1 +)-approximation algorithm for the discrete, Euclidean, capacitated k-means and k-median problems which runs in time

(k -1 log n) k -O(1)
n O (1) . This running time can also be bounded by (k -1) k -O(1) n O (1) .

Theorem 3. For any > 0, there exists a (1+)-approximation algorithm for the continuous, Euclidean, capacitated k-means and k-median problems running in time

(k -1 log n) k -O(1)
n O (1) . This running time can also be bounded by (k -1) k -O(1) n O (1) .

These two results are a major improvement over the 69-approximation algorithm of Xu et al. [START_REF] Xu | A constant parameterized approximation for hardcapacitated k-means[END_REF].

Preliminaries

We now provide a more formal definition of the problems. In the literature, centers are sometimes called facilities, but we will use centers throughout for consistency.

In the case of the capacitated Euclidean k-median and k-means, our approach works for the two main definitions. First, the definition of [START_REF] Xu | A constant parameterized approximation for hardcapacitated k-means[END_REF][START_REF] Kumar | Linear-time approximation schemes for clustering problems in any dimensions[END_REF]: P = R d and capacities are uniform, In our analysis, we will also encounter formulations where the clients have positive real weights. In this case, we define a fractional variant of capacitated k-median, where the assignment µ is allowed to be fractional. assignments" µ : C × F → R + such that:

namely η f = η f , ∀f, f ∈ R d .
1. ∀c ∈ C, f ∈F µ(c, f) = w(c), i.e.,
d(c, µ(c)) 2 and c∈C,f ∈F µ(c, f) d(c, f) 2 , respectively.
It is well-known that, given a set F ⊆ F of centers, the problem of finding the optimum µ is an (integral) minimum-cost flow problem, which can be solved in polynomial time.

Therefore, we assume that every time we have a set F ⊆ F, we can evaluate CapKMed(C, We now formally state our definition of coresets, sometimes called strong coresets in the literature.

Definition 9. A (strong) coreset for a capacitated k-median instance ((V, d), C, F, k) is a set of weighted clients W ⊆ C × R + such that for every set of centers F ⊆ F of size k, FracCapKMed(W, F) ∈ (1 -, 1 +) • CapKMed(C, F).
The definition is identical for capacitated k-means, except CapKMed and FracCapKMed are replaced by CapKMeans and FracCapKMeans above.

Fact 10. Let W be a coreset for a capacitated k-median instance ((V, d), C, F, k). We have min

F ⊆F |F |=k FracCapKMed(W, F) ∈ (1 -, 1 +) • min F ⊆F |F |=k CapKMed(C, F),
In particular, an α-approximation of min F ⊆F,|F |=k FracCapKMed(W, F) implies a (1+O())αapproximation to the capacitated k-median instance. The same holds in the capacitated k-means case, with FracCapKMed and CapKMed replaced by FracCapKMeans and CapKMeans, respectively.

For a capacitated k-median or k-means instance ((V, d), C, F, k), the aspect ratio is the ratio of the maximum and minimum distances between any two points in C ∪ F . It is well-known that we may assume, with a multiplicative error of (1 + o(1)) in the optimal solution, that the instance has poly(n) aspect ratio. 1 Therefore, we will make this assumption throughout the paper.

Lastly, we define R + and Z + as the set of positive reals and positive integers, respectively.

As usual, we define with high probability (w.h.p.) as with probability 1-n -Z for an arbitrarily large positive constant Z, fixed beforehand.

Coreset for k-median

In this section, we prove our main technical result for the k-median case: constructing a coreset for capacitated k-median of size poly(k log n -1).

Theorem 11. For any small enough constant ≥ 0, there exists a Monte Carlo algorithm that, given an instance

((V, d), C, F, k) of capacitated k-median, outputs a (strong) coreset W ⊆ C with size O(k 2 log 2 n/ 3) in polynomial time, w.h.p.
Theorem 12. For any small enough constant ≥ 0, there exists a Monte Carlo algorithm that, given an instance

((V, d), C, F, k) of capacitated k-means, outputs a (strong) coreset W ⊆ C with size O(k 5 log 5 n/ 3) in polynomial time, w.h.p.
Our inspiration for the coreset construction is Chen's algorithm [START_REF] Chen | On coresets for k-median and k-means clustering in metric and Eluclidean spaces and their applications[END_REF] based on random sampling. Our algorithm is essentially the same, with slightly worse bounds in the sampling step, although our analysis is a lot more involved. We describe the full algorithm in pseudocode below (see Algorithm 1).

At a high level, the algorithm first partitions the client set C into poly(k, log n) many subsets, called rings, with the help of a polynomial-time approximate solution (see line 1).

The sets are called rings because they are of the form F ⊆ F, with probability at least 1 -n -Ω(k) , the total cost to assign the coreset points to F is approximately the total cost to assign the original clients C to F ; this statement is proved through standard concentration bounds. More details and intuition for the algorithm can be found in Section 3 of Chen's paper [START_REF] Chen | On coresets for k-median and k-means clustering in metric and Eluclidean spaces and their applications[END_REF].

C i ∩ (ball(f i , R) \ ball(f i , R/2)) for some subset of clients C i ⊆ C, some facility f i ∈ F,

Single ring case

We first restrict ourselves to sampling from a single ring

C i,R ⊆ C. That is,
C i,R ← C i ∩ (ball(f i , R) \ ball(f i , R/2))
We call the sets C i,R rings, with ring center f i . The rings C i,R over all i, R partition the client set C. sample r random centers in C i,R (without replacement)

13: add (c, |C i,R | r) to W for each sampled center c weighted so that total weight is still |C i,R | Lemma 13. W.h.p., for any set of k centers F ⊆ F satisfying CapKMed(C, F) < ∞, |FracCapKMed(W , F) -CapKMed(C, F)| ≤ N R.
(

It is clear that the output W has size O(k2 log 2 n/ 3). The rest of this section focuses on proving that W is indeed a coreset, w.h.p.

The intuition behind the N R additive error is that we can "charge" this error to the cost of the bicriteria solution (line 1) that C is responsible for. In particular, the total cost of assigning clients in C to ring center f in the bicriteria solution is at least N • R/2, since all clients in C are distance at least R/2 to f . Therefore, we charge an additive error of N R to a N R/2 portion of ALG , which is a "rate" of 2 to 1. If we can do the same for all rings, then since the portions of ALG sum to ALG , our total additive error is at most

2 • ALG = O() • OP T .
Finally, replacing with a small enough Θ() gives the desired additive error of • OP T ; note that this is where we use that the approximation ratio of

ALG is O(1)
, and that the specific approximation ratio is not important (as long as it is constant). The formalization of this intuition is deferred to the full version; the argument is identical to Chen's [START_REF] Chen | On coresets for k-median and k-means clustering in metric and Eluclidean spaces and their applications[END_REF], so we claim no novelty here.

We now prove Lemma 13. First of all, if N = |C | ≤ r (line 9), then sampling changes nothing, and FracCapKMed(W , F) = CapKMed(C, F). Therefore, for the rest of the proof, we assume that N > r = γk log n/ 3 , with the γ taken to be a large enough constant.

Our high-level strategy is the same as Chen's: we union bound over all sets of centers F ⊆ F of size k, and prove that for a fixed set F , the probability of violating (1) is at most n -(k+10) . 2 Union bounding over all ≤ n k choices of F gives probability ≤ n -10 of violating

23:7

(1), proving the lemma. Therefore, from now on, we focus on a single, arbitrary set F ⊆ F of size k satisfying CapKMed(C, F) < ∞, and aim to show that (1) fails with probability

≤ n -(k+10) .
For our analysis, we define a function g : R C + → R + as follows. For an input vector

d ∈ R C + (indexed
d c + |C \ C | + N - c∈C d c = |C \ C | + N = |C|,
which is the same as the sum of demands in the instance CapKMed(C, F), which is feasible by assumption.

Given this setup for an input vector d ∈ R C + , we define the function g(d) as the min-cost flow of FlowInstance(d). Observe that g(1) is exactly CapKMed(C, F). Now define a random vector X ∈ R C + as follows. Each coordinate of X is independently N/r with probability r/N and 0 otherwise, so that E[X] = 1. Note that X does not accurately represent our sampling of r clients, since this process is not guaranteed to sample exactly r clients. Nevertheless, it is intuitively clear that with probability Ω(1/n), X will indeed have exactly r nonzero entries, since r is the expected number; we prove this formally in the following simple claim (with p = r/N), whose routine proof is deferred to the full version. And if we condition on this event, then g(X) and CapKMed(C, F) are now identically distributed.

Claim 14. Let N be a positive integer, and let p ∈ (0, 1) such that pN is an integer. The probability that Binomial(N, p) = pN is at least Ω(1/ √ N).

In light of all this, our main argument has two steps. First, we show that g(X) is concentrated around E[g(X)] using martingales. However, what we really need is concentration around g(E[X]) = g(1) = CapKMed(C, F), so our second step is to show that E[g(X)] ≈ g(E[X]) (with probability 1). We formally state the lemmas below which, as discussed, together imply Lemma 13.

Lemma 15. Assume that |C | > Θ(k log n/ 3). With probability ≥ 1 -n -(k+20) , we have |g(X) -E[g(X)]| ≤ N R/2. Lemma 16. Assume that |C | > Θ(k log n/ 3). Then, |E[g(X)] -g(E[X])| ≤ N R/2.

Proof of Lemma 15: concentration around E[g(X)] via martingales.

To show that g(X) is concentrated around its mean, we show that g is sufficiently Lipschitz Together, these two inequalities show that g is R-Lipschitz.

We state the following Chernoff bound for Lipschitz functions, which can be proven by adapting the standard (multiplicative) Chernoff bound proof to a martingale.

Theorem 18. Let x 1 , . . . , x n be independent random variables taking value b with probability p and value 0 with probability 1 -p, and let g : [0, 1] n → R be a L-Lipschitz function in 1 norm. Define X := (x 1 , . . . , x n) and µ := E[g(X)]. Then, for 0 ≤ ≤ 1:

Pr g(X) -E[g(X)] ≥ pnbL ≤ 2e -2 pn/3
We apply Theorem 18 on the L-Lipschitz function g with the randomly sampled demands.

Set p := r/N as the sampling probability, so that X ∈ {0, 1/p} N is the random demand vector. Setting n := N , b := 1/p, and

L := R, we obtain Pr g(X) -E[g(X)] ≥ (/2)N R = Pr g(X) -E[g(X)] ≥ (/2)pnbL] ≤ 2 exp -(/2) 2 pn 3 = 2 exp -(/2) 2 (r/N)N 3 = exp -Θ(2 r) = exp -Ω(2 • k log n 2) ≤ n -(k+20)
for sufficiently large γ in the definition of r = γk log n/ 2 . This concludes Lemma 15.

Proof of Lemma 16: relating E[g(X)] with g(E[X]).

We have obtained concentration about E[g(X)], but we really need concentration around

g(E[X]) = CapKMed(C , F
). We establish this by proving Lemma 16.

We first show the easy direction, that g(E[X]) ≤ E[g(X)], which essentially follows from the convexity of min-cost flow: Suppose the outcomes of random variable X are d 1 , d 2 , . . . We now prove the other direction:

with respective probabilities µ 1 , µ 2 , . . ., so that E[g(X)] = i µ i g(d i). Now
E[g(X)] ≤ g(E[X]) + N R/2.

23:9

Claim 19. With probability 1, g(X) ≤ g(E[X]) + nN R.

Proof. Since X ∈ [0, N/r] N , and since g is R-Lipschitz, the entire range of g(X) is contained in some interval of length

N • N/r • R ≤ N • n • R. Since E[X] ∈ [0, N/r] N as well, the value g(E[X]
) is also contained in that interval. The statement follows.

Lemma 20. With probability

≥ 1 -n -10 , g(X) ≤ g(E[X]) + 0.49 N R.
Due to space constraints, the proof of Lemma 20, which is long and technical, is deferred to the full version. Assuming Lemma 20, we now show how Claim 19 and Lemma 20 together imply Lemma 16: we have

E[g(X)] ≤ n -10 • g(E[X]) + nN R + (1 -n -10) g(E[X]) + 0.49 N R = g(E[X]) + n -10 • n + (1 -n -10) • 0.49 N R ≤ g(E[X]) + (/2)N R,
finishing the proof of Lemma 16.

(3 +)and (9 +)-approximation -Proof of Theorem 1

In this section, we finish the algorithm for Theorem 1. We will focus mainly on the k-median case, since the k-means case is nearly identical.

Suppose we run the coreset for the capacitated k-median instance with parameter 0 (to be set later), obtaining a coreset W ⊆ C × R + of size poly(k log n -1 0). We now want to compute some F ⊆ F of size k and an assignment µ of the clients in W to F minimizing

(c,w)∈W w • d(c, µ(c))
. By definition of coreset, if we compute an α-approximation to this problem, then we compute a (1 + 0)α-approximation to the original capacitated k-median problem.

The strategy is similar to that in [START_REF] Cohen-Addad | Tight FPT approximations for k-median and k-means[END_REF]: we guess a set of leaders and distances that match the optimal solution. More formally, let F * = {f * 1 , . . . , f * k } ⊆ F be the optimal solution with assignment µ * . For each f * i ∈ F * , let (µ *) -1 (f * i) be the clients in the coreset assigned by µ * to f * i , and let i be the client in (µ *) -1 (f * i) closest to f * i . We call i the leader of the client set (µ *) -1 (f * i). Also, let R i be the distance d(f * i , i), rounded down to the closest integer power of (1 + 1) for some 1 we set later.

The algorithm begins with an enumeration phase. There are |W | k choices for the set { 1 , . . . , k }, and O(-1 1 log n) k choices for the values R 1 , . . . , R k , since we assumed that the instance has aspect ratio poly(n). So by enumerating over

|W | k O(-1 1 log n) k = (k log n -1 0 - 1
1
) O(k) choices, we can assume that we have guessed the right values i and R i .

For each leader i , define

F i as the centers f ∈ F satisfying d(i , f) ∈ [1, 1 + 1) • R i . Note that f * i ∈ F i for each i.
Next, the algorithm wants to pick the center in each F i with the largest capacity. This way, even if it doesn't pick f * i for F i , it picks a center not much farther away that has at least as much capacity.

The most natural solution is to greedily choose the center with largest capacity in each F i . One immediate issue with this approach is that we might choose the same center twice, since the sets F i are not necessarily disjoint. Note that this issue is not as pronounced in the uncapacitated k-median problem, since in that case, we can always imagine choosing the same center twice and then throwing out one copy, which changes nothing. In the capacitated case, choosing the same center twice effectively doubles the capacity at that center, so throwing out a copy affects the capacity at that center.

One simple fix to this issue is the simple idea of color-coding, common in the FPT literature:

for each center f ∈ F, independently assign a uniformly random label in {1, 2, 3, . . . , k}.

C V I T 2 0 1 6

23:10 On the Fixed-Parameter Tractability of Capacitated Clustering

With probability 1/k k , each f * i ∈ F * is assigned label i. Moreover, repeating this routine O(k k log n) times ensures that w.h.p., this will happen in some iteration. So with a O(k k log n) multiplicative overhead in the running time, we may assume that each f * i is assigned label i.

The algorithm now chooses, from each F i , the center with the largest capacity among all centers with label i. Since f * i is an option for each F i , the center chosen can only have larger capacity. Let the center chosen from F i be f i . Let F := {f 1 , . . . , f k } be our chosen centers.

We now claim that F is a (3 + 1)-approximation. Recall µ * , the optimal assignment to the centers F * ; we construct an assignment µ to F as follows: for each client c in the coreset,

if µ * assigns c to center f * i , then we set µ(c) = f i . Observe that if µ * (c) = f * i , then d(c, f i) ≤ d(c, f * i)+d(f * i , i)+d(i , f i) ≤ d(c, f * i)+2(1+ 1)R i ≤ d(c, f * i)+2(1+ 1)•d(c, f * i),
where the first inequality follows from triangle inequality, the second follows since both f * i and f i are approximately R i away from i , and the third follows from

d(c, f * i) ≥ d(i , f * i) ≥ R by our choice of i . Therefore, we have d(c, µ(c)) = d(c, f i) ≤ (3 + 2 1)d(c, f * i) = (3 + 2 1)d(c, µ * (c))
. Altogether, the total cost of the assignment µ is

(c,w)∈W w • d(c, µ(c)) ≤ (c,w)∈W w • (3 + 2 1)d(c, µ * (c)) = (3 + 2 1) OP T.
The optimal assignment can only be better, hence the (3 + 2 1)-approximation. This implies a k) . Finally, setting 0 , 1 := Θ(), for Θ(•) small enough, guarantees a (3 +)-approximation in time (k log n -1) O(k) n O (1) .

(1+ 0)(3+2 1)-approximation in time poly(k log n -1 0 - 1
1) O(
Lastly, we show that the (log n) O(k) factor in the running time can be upper bounded by 1) , proving the second running time in Theorem 1. k) . Therefore, the running time in Theorem 1 is at most O(k/) O(k) n O (1) .

k O(k) n O(
If k < log n log log n , then (log n) O(k) = (log n) log n log log n = n O(1) ; otherwise, k > log n log log n ≥ √ log n, so (log n) O(k) ≤ (k 2) O(
For k-means, the algorithm and analysis are identical, except that the total cost is now In this section we consider the continuous case: namely the case where centers can be located at arbitary position in R d and the capacities are uniform and η ≥ n/k.

Let > 0. Given a set of points P , denote by OPT 1 (P) the location of the optimal center of P (namely, the centroid of P in the case of the k-means problem or the median of P in the case of the k-median problem). We will make us of the following lemma of [START_REF] Kumar | Linear-time approximation schemes for clustering problems in any dimensions[END_REF]. Our algorithm for obtaining a (1 +)-approximation is as follows:

1. Compute a coreset C for capacitated k-median as described by Lemma 21, and an estimate γ of the value of OPT using the classic O(log n)-approximation.

In the remaining, we assume that the minimum pairwise distance between pairs of points of C is at least γ/(n log n) since otherwise one can simply take a net of the input and the additive error is at most OPT (see e.g.: [START_REF] Cohen-Addad | Tight FPT approximations for k-median and k-means[END_REF]). Moreover, we assume that there is no cluster containing only one point of the coreset since these clusters can be "guessed" and dealt with separately. 3. Consider all subsets of size k of C. For each subset, compute the cost of using this set of centers for the capacitated k-median instance by using a min cost flow computation.

Output the set of centers of minimum cost.

We first discuss the running time of the algorithm. The time for computing the coreset is polynomial by Theorem 11. Generating

C takes |C| O(-3 log(1/)) • 2 1/ O(1) log((1 +)/)d time.
For the last part, namely enumerating all subsets of C of size k, the running time is 1) log k ((1+)/). Theorem 11 implies that |C| = poly(k log n -1) and so, the algorithm has running time (k log n -1) k -O(1) n O (1) . Again, the (log n) k -O (1) factor can be upper bounded by (k/) k -O (1) or n O (1) based on whether or not k -O(1) < log n log log n , hence the improved running time in Theorem 3.

|C| O(k -3 log(1/)) •2 k/ O(
We show that this algorithm provides a (1+O())-approximation. Theorem

The Non-Uniform Case -Proof of Theorem 2

We now consider the non-uniform case. In this setting, the input consists of a set of points in R d together with a set of candidate centers in R d and a capacity η f for each such candidate center. We make use of the following lemma. As slightly worse bound for the lemma can also be found in [START_REF] Mahabadi | Nonlinear dimension reduction via outer bi-lipschitz extensions[END_REF].

Lemma 23 ([28]). Let ∈ (0, 1) and X ⊆ R d be arbitrary with X having size n > 1.

There exists f :

R d → R m with m = O(-2 log n) such that ∀x ∈ X, ∀y ∈ R d , ||x -y|| 2 ≤ ||f (x) -f (y)|| 2 ≤ (1 +)||x -y|| 2 .
C V I T 2 0 1 6

23:12 On the Fixed-Parameter Tractability of Capacitated Clustering

We describe a polynomial-time approximation scheme. Let > 0. The algorithm is as follows. The first step of the algorithm is identical to the continous case.

1. Compute a coreset C for capacitated k-median as described by Theorem 21, and an estimate γ of the value of OPT using the classic O(log n)-approximation.

In the remaining, we assume that the minimum pairwise distance between pairs of points of C is at least γ/(n log n) since otherwise one can simply take a net of the input and the additive error is at most OPT (see e.g.: [START_REF] Cohen-Addad | Tight FPT approximations for k-median and k-means[END_REF]). Moreover, we assume that there is no cluster containing only one point of the coreset since these clusters can be "guessed" and dealt with separately. . Let C * and A * be respectively the image of the coreset points and of the candidate centers through the projection. 4. Enumerate all possible subset of V of size k and output the one that leads to the solution of minimum cost.

Correctness.

Theorem 11 implies that finding a near-optimal solution for the coreset points yields a near-optimal solution for the input point set. -dimensional Euclidean space, finding a near-optimal set of centers in A * yields a near-optimal set of centers in A through the inverse of the projection.

Therefore, it remains to show that the set V contains a set of candidate centers that yields a near-optimal solution. To see this, consider each center of the optimal solution in A * .

For each such optimal center f , consider the closest coreset point c(f) together with the ring of c(f) containing f . Let j be the index of this ring, namely f ∈ ball(p, (1 +) j γ/(n log n)) \ ball(p, (1 +) j-1 γ/(n log n)).

By definition of the net, there exists a point p of the net at distance at most • ball(p, () . Since for each element of the net, k centers are

Definition 4 .Definition 5 .

 45 Given a set of points V in a metric space with distance function d, together with a set of clients C ⊆ V , a set of centers F ⊆ V with a capacity η f ∈ Z + for each f ∈ F, and an integer k, the capacitated k-median problem asks for a set F ⊆ F of k centers and an assignment µ : C → F such that ∀f ∈ F , |{c | µ(c) = f }| ≤ η f and that minimizes c∈C d(c, µ(c)). We abbreviate the capacitated k-median instance as ((V, d), C, F, k). The capacitated k-means problem is identical, except we seek to minimize c∈C d(c, µ(c)) 2 .

Definition 6 .

 6 Second, P is some specific set of points in R d , and for each f ∈ P , the input specifies a specific capacity η f Given a capacitated k-median instance ((V, d), C, F, k) and a set of chosen centers F ⊆ F, define CapKMed(C, F) as the cost of the optimal assignment of the clients to the chosen centers. If it is impossible, i.e., the sum of the capacities of the centers is less than |C|, then CapKMed(C, F) = ∞.

Definition 7 .

 7 Suppose the clients also have weights, so we are given clients C and a weight function w : C → R + . Let W ⊆ C × R + be the set of pairs {(c, w(c)) : c ∈ C}. Then, FracCapKMed(W, F) is the minimum value of c∈C,f ∈F µ(c, f) d(c, f) over all "fractional

 F) and CapKMeans(C, F) in polynomial time. Similarly, FracCapKMed and FracCapKMeans can be solved through fractional min-cost flow, or even an LP, in polynomial time. Furthermore, if W is exactly the set C of clients with weight 1, i.e., W = {(c, 1) : c ∈ C}, then CapKMed(C, F) = FracCapKMed(W, F), since the min-cost flow formulation of FracCapKMed has integral capacities and therefore integral flows as well.

 and some positive number R (see line 7). Then, for each ring C i,R , if |C i,R | is small enough, the algorithm adds the entire ring into the coreset (each with weight 1); otherwise, the algorithm takes a random sample of r = poly(k, log n) many clients in C i,R , weights each sampled client by |C i,R |/r, and adds the weighted sample to the coreset. The weighting ensures that the total weight of the sampled points is always equal to |C i,R |. To prove that the algorithm produces a coreset w.h.p., Chen union bounds over all |F| k choices of a set of k facilities, and shows that for each choice

Algorithm 1

 1 while we still consider the cost of serving the clients outside of C i,R , we only perform the sampling (lines 12-13) on one ring C i,R . The general case of O(k log n) many rings is more complicated than simply treating each ring separately. Due to space constraints, we only consider the single ring case in this extended abstract, and the rest is deferred to the full version. Fix an arbitrary ring C i,R throughout this section, and define C := C i,R for convenience.Let N := |C | be the number of clients, and let f := f i be the ring center of C (line 4).Let W be the (weighted) centers in C i,R sampled by the algorithm (lines 12-13), together with the (unweighted) centers in C \ C , which have weight 1. Our goal is to show that FracCapKMed(W , F), the cost after sampling only from C , is close to the original cost CapKMed(C, F). CoreSet(I)

8 :r 9 :

 89 ← γk log n/3 for sufficiently large (absolute) constant γif |C i,R | ≤ r then 10: add (c, 1) to W for each c ∈ C i,R C i,R small enough: add everything into coreset 11: else 12:

 by clients in C), consider a min-cost flow instance FlowInstance(d) on the graph metric with the following demands: set demand d c at each client c ∈ C , demand 1 at each client c ∈ C \ C , and demand N -c∈C d c (this demand can be negative) at ring center f = f i (so we are effectively treating f as a special client with possibly negative demand, not a facility). Observe that FlowInstance(d) is a feasible min-cost flow instance, because the sum of demands is exactly c∈C

Claim 17 .

 17 (w.r.t. the 1 distance in R C +), and then apply standard martingale tools. The function g is R-Lipschitz w.r.t. the 1 distance in R C + . Proof. Fix a client c ∈ C , and consider two vectors d, d ∈ R C + with d = d + δ • 1 c . By definition of FlowInstance, the only difference between FlowInstance(d) and FlowInstance(d) is that in FlowInstance(d), client c has δ more demand and "special client" f has δ less -Parameter Tractability of Capacitated Clustering demand. Therefore, if we begin with the min-cost flow of FlowInstance(d), and then add δ units of flow from c to f , then we now have a feasible flow for FlowInstance(d). 3 This means that g(d) ≤ g(d) + δR. Similarly, starting from a min-cost flow of FlowInstance(d) and then adding δ units of flow from f to c, we obtain a feasible flow for FlowInstance(d), so g(d) ≤ g(d) + δR.

 consider the flow obtained by adding up, for each i, the min-cost flow of FlowInstance(d i) scaled by µ i . This flow is a feasible flow to FlowInstance(E[X]) and has cost at most E[g(X)]. Since the min-cost flow of FlowInstance(E[X]) can only be lower, we have g(E[X]) ≤ E[g(X)].

(

 c,w)∈W w • d(c, µ(c)) 2 ≤ (c,w)∈W w • (3 + 2 1)d(c, µ * (c)) 2 = (9 + O(1)) OP T, implying a (9 +)-approximation. This concludes the proof of Theorem 1.

3 A

 3 (1 +)-Approximation for Euclidean Inputs 3.1 The Continuous (Uniform-Capacity) Case -Proof of Theorem 3

Lemma 21 (

 21 Lemma 5.3 in [21]). Let P be a set of points in R d and X be a random sample of size O(-3 log(1/)) from P and a and b such that a ≤ cost(P, OPT 1 (P)) ≤ b. Then, we can construct a set Y of O(2 1/ O(1) log(b/ a)) points such that with constant probability there is at least one point z ∈ X ∪ Y satisfying cost(P, {z}) ≤ (1 + 2)cost(P, OPT 1 (P)). Further, the time taken to construct Y from X is O(2 1/ O(1) log(b/ a)d).

2 .

 2 Start with C = ∅, then for each subset S of C of size O(-3 log(k/)), for each s = (1 +) i in the interval [γ/(n log n), γ] apply the procedure of Lemma 21 with a = s and b = (1 +)a and add the output of the procedure to C. We refer to C as a set of approximate candidate centers.

2 .

 2 Apply Lemma 23 to the points of the coreset to obtain a set of points in a Euclidean space of dimension log k+log log n O[START_REF] Adamczyk | Constant factor FPT approximation for capacitated k-median[END_REF]

3 .

 3 Start with V = ∅ For each point p of the coreset do the following: For each i ∈ {1, 2, . . . , n 2 }, consider the ith-ring defined by ball(p, (1+) i γ/(n log n)) \ ball(p, (1 +) i-1 γ/(n log n)) and choose an • (1 +) i γ/(n log n)-net. Consider the Voronoi diagraminduced by the points of the net. Then, for each Voronoi cell, add to V the k candidate centers of A * in the cell that are of maximum capacity.

Lemma 23 immediately

 23 implies that, given the coreset construction C, and the projection of the coreset points onto a log k+log log n O[START_REF] Adamczyk | Constant factor FPT approximation for capacitated k-median[END_REF]

)

 j γ/(n log n)) ≤ 2 ||c -c(f)|| 2 from c(f). Therefore, consider the Voronoi cell of p and the top-k candidate centers in terms of capacity. If f is part of this top-k, then f is part of V and we are done. Otherwise, it is possible to associate to f a center f * that has capacity at least the capacity of f , and so for all the optimal centers simultaneously since we consider the top-k. Therefore, consider replacing f by f * in the optimal solution. The change in cost is at most, by the triangle inequality, 4 ||c -c(f)|| 2 since both centers are in the Voronoi cell of p. Finally, since c is the closest client to c(f), the cost increases by a factor at most (1 + 4) for each client and the correctness follows.

3. 2 . 2

 22 Running time.We now bound the running time. The first two steps are clearly polynomial time. An• (1 +) i γ/(n log n)-net of a ball of radius (1 +) i γ/(n log n) has size -O(d) and so in this context, after Step 2, a size -(log k+log log n O[START_REF] Adamczyk | Constant factor FPT approximation for capacitated k-median[END_REF]

 + is the final coreset at the end of the algorithm 3: Define d min and d max as the minimum and maximum distances, respectively, between any two points in C ∪ F d max /d min is the aspect ratio 4: for each center f i do O(k) centers

	5:	C i ← the clients in C assigned to center f i	
	6:	for each R, a power of 2 in the range [d min , 2d max] do	O(log n) iterations,
		assuming poly(n) aspect ratio	
	7:		

1: F = {f 1 , . . . , f O(k) } ← an (O(1), O(1)) bicriteria solution to instance I, namely a capacitated O(k)-median solution with total cost ALG ≤ O(OP T) using, e.g., [24] 2: W ← ∅ W ⊆ C × R

 Finally, since the algorithm iterates over all subsets of C of size at most k,Lemma 22 implies that there exists a set {z 1 , . . . , z k } that is considered by the algorithm and on which solving a min cost flow instance yields a solution of cost at most (1 + O())cost(P, OPT).

11 immediately implies that the solution found for the coreset C can be lifted to a solution for the original input at a cost of an additive O(OPT). For any (possibly weighted) set of client A and set of centers B, we define cost(A, B) to be the cost of the best assignment of the clients in A to the centers of B. Lemma 22. The C computed by the algorithm contains a set of centers S that is such that cost(C, S) ≤ (1 +)cost(C, OPT). Proof. This follows almost immediately from Lemma 21. By Lemma 21, for each cluster C * i of OPT, there exists a set S * i ⊆ C * i of size at most O(-3 log(k/)) such that applying the procedure of Lemma 21 with the correct value of a to S * i yields a set of points containing a

point z i such that cost(C * i , z i) ≤ (1 + 2)cost(C * i , OPT).

Since the algorithm iterates over all subsets of size O(-3 log(k/)), and that the pairwise distance is at least OPT/n, it follows that S * i is one of the subset considered by the algorithm, and so z i is part of C.

For example, the following modification to the distances d does the trick. First, compute an O(log k)approximation[START_REF] Charikar | Rounding via trees: Deterministic approximation algorithms for group steiner trees and k-median[END_REF] to the problem, and let that value be M . For any two points u, v ∈ C ∪ F with d(u, v) > M n 10 , truncate their distance to exactly M n[START_REF] Cohen-Addad | Approximation schemes for capacitated clustering in doubling metrics[END_REF] . Then, add M n -10 distance to each pair of points u, v ∈ C ∪ F . The aspect ratio is now bounded by O(n

[START_REF] Kumar | A simple linear time (1+ ") -approximation algorithm for k-means clustering in any dimensions[END_REF]).

For simplicity of presentation, we will focus on a success probability of 1 -n -10 . The constants can be easily tweaked so that the algorithm succeeds w.h.p., i.e., with probaility 1 -n -Z for any positive constant Z.

We define demand so that if a vertex v has d > 0 demand, then d flow must exit v in a feasible flow, and if it has d < 0 demand, then |d| flow must enter v.

Funding Jason Li: Supported in part by NSF awards CCF-1536002, CCF-1540541, and CCF-1617790. ;

chosen and since the number of rings is, by Step

) which is at most 1) .

Enumerating all subsets of size k takes time (k -1 log n) k -O (1) and the theorem follows.