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Abstract
Reed musical instruments can be described in terms of conceptually separate linear and nonlinear mechanisms:
a localized nonlinear element (the valve effect due to the reed) excites a linear, passive acoustical multimode
element (the musical instrument usually represented in the frequency domain by its input impedance). The
linear element in turn influences the operation of the nonlinear element. The reed musical instruments are
self-sustained oscillators. They generate an oscillating acoustical pressure (the note played) from a static over-
pressure in the player’s mouth (the blowing pressure).
A reed instrument having N acoustical modes can be described as a 2N dimensional autonomous nonlinear dy-
namical system. A reed-like instrument having two quasi-harmonic resonances, represented by a 4 dimensional
dynamical system, is studied using the continuation and bifurcation software AUTO. Bifurcation diagrams are
explored with respect to the blowing pressure, with focus on amplitude and frequency evolutions along the
different solution branches. Some of the results are interpreted in terms of the ease of playing of the reed
instrument. They can be interpreted as a theoretical illustration of the Bouasse-Benade prescription.
Keywords: Acoustics, reed instruments, bifurcation diagrams, resonance inharmonicity, ease of playing

1 INTRODUCTION
A quest for the grail of wind instruments musical acoustics is to try to understand keys of intonation and ease
of playing. From the physic’s modelisation point of view, we try to understand keys of what is controlling the
playing frequency (for intonation) and the minimum mouth pressure to get oscillations (for ease of playing).
A state of art can be found in the recent books dealing with acoustics of musical instruments: [Benade 1990],
[Campbell and Greated 1987], [Fletcher and Rossing 1998], [Chaigne and Kergomard 2016]).

Often it has been pointed out how brass instruments generally have a flaring bore so designed that impedance
peaks are well aligned in order to reach as close as possible an harmonic series. If this alignment is clearly
important for intonation, it is important too to get stable periodic oscillations easy to play. The necessity of
an alignment in an harmonic series is called here the ’Bouasse-Benade prescription’ because of what Benade
wrote in his famous book [Benade 1990], or in [Benade and Gans 1968]: "The usefulness of the harmonically
related air column resonances in fostering stable oscillations sustained by a reed-valve was first pointed out
by the french physicist Henri Bouasse in his book Instruments à vent". As a counter-example a horn was
designed to provide an air column whose resonance frequencies (frequencies of maximum input impedance)
were chosen to avoid all possible integer relations between them, this horn has been called ’tacet horn’ in
[Benade and Gans 1968]. This reed instrument has been made so that the conditions for oscillation would then
be most unfavorable.

To try to illustrate the ’Bouasse-Benade prescription’, we want to study the influence of the inharmonicity on
the playing frequency and on the minimum mouth pressure to get oscillations. And to do so, we will use the
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bifurcation diagram representation, the control parameter being the mouthp ressure. The bifurcation diagrams
are nice results to begin to answer this quest of the grail.

The wind instruments, and particularly the brass, exhibit many resonances, which makes very difficult to demon-
strate the Bouasse-Benade prescription. A way to overtake that is to work on the easiest of the complicated
resonators: a resonator having two quasi-harmonic resonance frequencies Fres1 and Fres2 where the deviation to
harmonicity, the inharmonicity parameter Inh, is defined by Fres2 = 2Fres1(1+ Inh). And to facilitate the theoret-
ical investigations, we have chosen a low frequency model of inward striking reed instruments, the reed being
assimilated to its stiffness only and being undamped. Note that if the resonances are exactly harmonic (Inh = 0)
this theoretical problem can be analysed analytically, and two bifurcation diagrams have already been obtained
(Figure 8 and 10 of [Dalmont et al 2000]).

In section 2 of this paper we present briefly the theoretical backgrounds, and particularly the equations of the
elementary model of wind instruments. Then section 2 documents the procedure used to calculate bifurcation
diagrams by using a continuation method, after having reformulated the two coupled equations of the model
in a set of four coupled first order ODE equations. The influence of the inharmonicity on the bifurcation dia-
grams is shown and discussed in section 3. The bifurcation diagrams are analysed in the light of the threshold
of periodic oscillations (to do a link with the ease of playing of the musicians, and with the Bouasse-Benade
prescription), and the effect of the inharmonicity on the playing frequency is discussed too.

2 THEORETICAL BACKGROUNDS
2.1 Acoustical model
The model presented here and used in the present publication is labelled as elementary because a number of
major simplifications are made in deriving it (see for example [Hirschberg et al 1995], [Fabre et al 2018]). The
vibrating reeds or lips are modeled as a linear one degree of freedom oscillator. The upstream resonances of the
player’s windway are neglected, as is the nonlinear propagation of sound in the air column of the instrument.
Wall vibrations are also ignored. Despite these simplifications, the elementary model is capable of reproducing
many of the important aspects of performance by human players on realistic reed and brass instruments. The
model is based on a set of three coupled equations, which have to be solved simultaneously to predict the
nature of the sound radiated by the instrument. These three constituent equations of the model are presented
hereafter.

Besides the control parameters defining the embouchure of the player, including the reed or lips parameters and
the mouth pressure pm, and the input impedance of the wind instrument, there are three variables in the set of
the coming three equations as a function of the time t: the reed or lip opening height h(t), the pressure in the
mouthpiece of the instrument p(t), and the entering volume flow into the instrument u(t).
In order to describe the vibrating reeds or lips, the first of the three constituent equations of the elementary
model is:

d2h(t)
dt2 +

ωr

Qr

dh(t)
dt

+ω
2
r (h(t)−ho) =−

pm− p(t)
µ

. (1)

In this equation, which describes the reeds or lips as a one degree of freedom (1DOF) mechanical oscillator,
the symbols ωr, Qr, ho and µ represent the angular reed resonance frequency, the quality factor of the reed
resonance, the value of the reed or lip opening height at rest, and the effective mass per unit area of the reeed
or lips respectively. These quantities are parameters of the model, which are either constant (in a stable note)
or changing slowly in a prescribed way (in a music performance). Note that if µ is positive, an increase of
the pressure difference (pm− p(t)) will imply a closing of the reed or lips aperture. It is called the ’inward



striking’ model and is used mainly for reed instruments. If µ is negative, an increase of the pressure difference
will imply an opening of the reed or lips aperture. It is called the ’outward striking’ model and is used mainly
for brass (lip reed) instruments.
The second constituent equation describes the relationship between pressure and flow in the reed lip channel:

u(t) = wh+(t)

√
2
ρ
|pm− p(t)|sign(pm− p(t)) (2)

where the square root originates from the Bernoulli equation, and the positive part of the reed or lips aperture
h+ = max(h,0) models the closed reed or lips.
The third and last constituent equation describes the relationship between flow and pressure in the instrument
mouthpiece. It is written in the frequency domain using the input impedance Z(ω) of the wind instrument:

p(ω) = Z(ω)u(ω). (3)

Other than the difference of sign of µ between ’inward striking’ reed instruments model and ’outward striking’
brass instruments model, there is another difference between these two subfamilies of wind instruments. The
control parameter ωr of vibrating lips is varying a lot, over four octaves, to get the entire tessiture of a given
brass instrument. At the opposite the ωr associated to reeds is more fixed (slightly varying because of the lower
lip of the clarinet or saxophone player) and most of the time very large compared to the playing frequencies.
This last fact justifies a low frequency approximation of the elementary model: the ωr is assumed infinite and
the reed undampted. In other words, the reed is reduced to its stiffness only and the set of three equations
becomes a set of two equations as follows:{

u(t) = w[ho− pm−p(t)
µω2

r
]
√

2
ρ
(pm− p(t))

p(ω) = Z(ω)u(ω).
(4)

When the mouth pressure is too high, the reed can be blocked against the lay of the mouthpiece. Then the
’closure pressure’ defined by pM = µω2

r .ho is the minimal mouth pressure for which the reed remains closed in
the static regime (h becomes equal to 0). By using this closure pressure, a dimensionless mouth pressure γ can
be defined: γ = pm/pM (note that most of the time the dimensionless mouth pressure is called abusively mouth
pressure).

It is this elementary low frequency model for reed instruments which is used in the present paper. In the follow-
ing, the nonlinear equation of the model is approximated by its third order Taylor series around the equilibrium
position defined by heq = ho− pm

µω2
r

, ueq = wheq

√
2
ρ

pm and peq = 0:

u(t) = ueq +A1 p(t)+A2 p(t)2 +A3 p(t)3. (5)

If we assume a non-beating reed which is typically obtained for a dimensionless mouth pressure γ lower than
0.5, the above third order approximation of the flow rates is appropriate.

The above elementary model based on the set of two equations has to be solved to predict the nature of the
sound radiated by the instrument.

2.2 Continuation method
A nice way to have an overview of the dynamics over small and large amplitudes is to use the bifurcation
diagram representation. A very few of them can be obtained analytically (see the previous subsection). It is
possible to obtain bifurcation diagrams numerically for a large range of situations by using continuation meth-
ods, such as implemented in AUTO software [Doedel et al 1997] or MANLAB software [Karkar et al 2013]



for example. In order to use AUTO technique in the following section, the elementary model has to be mathe-
matically reformulated in a set of coupled first order ODE equations.
To do so, we have mainly to introduce the derivative of the lips or reed position as a new variable and to
reformulate the input impedance equation (Eqn. 3) by a sum of individual acoustical resonance modes in the
frequency domain, and then to translate them in the time domain. There are two ways to manage that: sum of
real modes (see for example [Debut et al 2004]), sum of complex modes (see for example [Silva et al 2014]).
These two ways of approximating the input impedance in the frequency domain lead to two different sets of first
order equations dX

dt = F(X). In the present paper we use the ’real mode’ representation of the input impedance
Z.

The modal-fitted input impedance with N resonance modes, is written as follows:

Z(ω) =
N

∑
n=1

Zn
jqnωωn

ω2
n + jqnωωn−ω2 . (6)

where the nth resonance is defined by three real constants, the amplitude Zn, the dimensionless damping coeffi-
cient qn and the angular frequency ωn.
Each term of Eqn. 6 can be written in the time domain as follows:

d2 pn

dt2 +qnωn
d pn

dt
+ω

2
n pn(t) = Znqnωn

du
dt

, (7)

such that the acoustical pressure is p(t) = ∑
N
n=1 pn(t).

Taking into account the other equation of the elementary model, the derivative of the volume flow nonlinear
equation (Eqn. 4), the previous set of N second order ODE (Eqn. 7) can be rewritten by using the following
expression of du

dt :

du
dt

= w
1

µω2
r

d(∑N
n=1 pn)

dt

√
2
ρ
(pm−

N

∑
n=1

pn(t))

+w[ho−
pm−∑

N
n=1 pn(t)

µω2
r

](−1/2)
d(∑N

n=1 pn)

dt
1√

2
ρ
(pm−∑

N
n=1 pn(t))

. (8)

If the third order Taylor series approximation is used (Eqn. 5), then in place of Eqn. 8 we get:

du
dt

= [A1 +2A2(
N

∑
n=1

pn)+3A3(
N

∑
n=1

pn)
2]

d(∑N
n=1 pn)

dt
.

Then the equations can be put into a state-space representation dX
dt = F(X), where F is a nonlinear vector

function, and X the state vector having 2N real components defined as follows:

X =

[
p1; ...; pN ;

d p1

dt
; ...;

d pN

dt

]′
. (9)

In practice, because our paper is dedicated to a two quasi harmonically resonances instrument, the state space
representation is based on the state vector of 4 real components X =

[
p1; p2; d p1

dt ; d p2
dt

]
.

Bifurcation diagrams for different values of inharmonicity are presented and discussed in the coming Section.
It is assumed the following configuration of relative amplitudes between Z1 and Z2 of the two resonances: Z1
slightly higher than Z2.



3 BIFURCATION DIAGRAMS
3.1 Exactly harmonic resonances
The results shown in Figure 1 for the case Inh = 0 are qualitatively consistent with the one published in
[Dalmont et al 2000] (see in particular its Figure 8). Note that the continuation method gives an additional
information: the stability nature of the periodic oscillations. The bifurcation diagram shows two branches com-
ing from the equilibrium position:
- the first branch is originating from the linear threshold pm = pthr1, associated to the first resonance Fres1, ac-
cording to an inverse Hopf bifurcation. This fundamental regime is a ’standard Helmholtz motion’ according to
[Dalmont et al 2000]. Because it is an inverse bifurcation case, the branch is unstable and then becomes stable
at the limit point at pm = psubthr.
- the second branch is originating from the linear threshold pm = pthr2, associated to the second resonance Fres2,
according to a direct Hopf bifurcation. Note that pthr2 is bigger than pthr1, because Z1 is larger than Z2. This
branch which would correspond to the second regime (the octave) is not observable in practice, because the
periodic solutions are unstable.

There is a third branch wich is originating from the unstable octave branch, thanks to a period doubling bifur-
cation. This branch which would correspond to an other fundamental regime (the ’inverted Helmholtz motion’
according to [Dalmont et al 2000]) is unstable. The associated lower curve shows the frequency of the periodic
oscillations corresponding to the stable branche of the bifurcation diagram. In particular the frequency of the
fundamental regime (green curve) is locked at the value Fres1 = Fres2/2 whatever pm is.
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Figure 1. Bifurcation diagram for an air column with two exactly harmonic resonances (Inh = 0) as a function
of the control parameter pm. Thick lines describe stable solutions, thin lines unstable solutions. Upper graph:
RMS value of oscillating pressure p(t). Lower graph: frequency of oscillation.

3.2 Quasi-harmonic resonances
Let’s go to the case Inh = 0.02 (Figure 2). The bifurcation diagram is quite close to the one with Inh = 0. We
would like to point out two things. First, at the threshold pm = pthr1 the Hopf bifurcation has become direct as
it can be predicted theoretically ([Grand et al 1997]). Second, again there are periodic oscillations for mouth



pressures pm values below pm = pthr1 (though the bifurcation is direct) until a new value pm = psubthr which is
a bit larger than the one of the case Inh = 0. Note that the frequency of the fundamental regime (green curve)
is not locked at the value Fres1 anymore but is partially pull out toward the value Fres2/2, which is intuitively
sensible. If the inharmonicity was negative, we would have the same kind of results, the frequency being pull
out toward Fres2/2 lower than Fres1.
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Figure 2. Bifurcation diagram for an air column with two quasi-harmonic resonances (Inh = 0.02) as a function
of the control parameter pm. Thick lines describe stable solutions, thin lines unstable solutions. Upper graph:
RMS value of oscillating pressure p(t). Lower graph: frequency of oscillation.

Let’s go to the case Inh = 0.04 (Figure 3). Now the branch coming from the threshold pm = pthr1, correspond-
ing to the fundamental regime, looks like a classical branch associated to the direct Hopf bifurcation, there is
no psubthr anymore. pm = pthr1 is now the the threshold of oscillation. In fact, when the inharmonicity is in-
creasing, the dynamics of the system behaves more and more like the dynamics of the one acoustical resonance
system. The frequency of the fundamental regime comes from the threshold value Fthr1 = Fres1 at the direct
Hopf bifurcation point, and then is partially pull out toward the value Fres2/2.

The above discussion illustrates important things because of the inverse Hopf bifurcation:
- on one hand, there is a minimum value pm = psubthr lower than pthr1 where we can have periodic oscillations.
This particular value psubthr is a kind of quantitative caracterisation of the ease of playing. It has been shown
that the lowest value of psubthr is obtained when the two resonances are perfectly harmonic (Inh= 0). It suggests
the reed instrument is the easiest to play when Inh= 0. In a way this is a theoretical illustration of the Bouasse-
Benade prescription ([Bouasse 1929], [Benade 1990]).
- on the other hand, the stable periodic oscillations which appear for pm slightly larger than psubthr can have
fundamental frequencies significantly different from Fthr1 = Fres1 because of the effect of the presence of the
second resonance which controls partially the intonation of the fundamental regime. This study illustrates the
limit of the linear stability analysis approach to predict the behavior of the small amplitude periodic oscillations.
Note that it is the case too when Z2 > Z1 (see Figure 10 of [Dalmont et al 2000]).
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Figure 3. Bifurcation diagram for an air column with two quasi-harmonic resonances (Inh = 0.04) as a function
of the control parameter pm. Thick lines describe stable solutions, thin lines unstable solutions. Upper graph:
RMS value of oscillating pressure p(t). Lower graph: frequency of oscillation.

4 CONCLUSIONS AND PERSPECTIVES
Bifurcation diagrams of a basic reed instrument having two quasi-harmonic resonances have been calculated by
using a continuation method. The dynamical behaviour has been described as a function of the inharmonicity
between the two acoustical resonancies, from perfect harmonicity to an inharmonicity equal to 0.04. The Hopf
bifurcations, direct or inverse, are observed, the stability of the branches analysed, and their implication on the
playing frequency discussed. Some of the mouth pressure thresholds results are interpreted in terms of the ease
of playing of the reed instrument. Because of an inverse Hopf bifurcation (perfect harmonicity) or of a dou-
ble fold after a direct Hopf bifurcation (moderate inharmonicity), there may be a minimum value pm = psubthr
lower than pthr1 where periodic stable oscillations can be observed. This particular value psubthr is a kind of
quantitative caracterisation of the ease of playing. It has been shown that the lowest value of psubthr is ob-
tained when the two resonances are perfectly harmonic. It suggests the reed instrument is the easiest to play
when the resonances are harmonic. In a way this is a theoretical illustration of the Bouasse-Benade prescription
([Bouasse 1929], [Benade 1990]).

Obviously the results given in the present manuscript are depending on a physical model of reed or brass
instruments based on approximations which sometimes can be perceived as basic or even crude. For example
the non linear equation describing the entering volume fow has been approximated by its third order Taylor
series expansion. Preliminary bifurcations diagrams have been successfully obtained by using the exact non
linear equation too. The present study which is a preliminary one, offers many possibilities of complementary
works which are in progress: same study with the assumption Z1 slightly lower than Z2, dynamics of the reed
taken into account, more than two resonances in order to study the brass instruments.
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